CN111353166A - 一种图片转汉字的加密方法 - Google Patents
一种图片转汉字的加密方法 Download PDFInfo
- Publication number
- CN111353166A CN111353166A CN202010114708.5A CN202010114708A CN111353166A CN 111353166 A CN111353166 A CN 111353166A CN 202010114708 A CN202010114708 A CN 202010114708A CN 111353166 A CN111353166 A CN 111353166A
- Authority
- CN
- China
- Prior art keywords
- sequence
- binary
- matrix
- numerical
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000011159 matrix material Substances 0.000 claims abstract description 88
- 230000000739 chaotic effect Effects 0.000 claims abstract description 45
- 239000003086 colorant Substances 0.000 claims abstract description 9
- 238000013075 data extraction Methods 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 229910002056 binary alloy Inorganic materials 0.000 claims description 9
- 230000001174 ascending effect Effects 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 abstract description 6
- 238000013500 data storage Methods 0.000 abstract 1
- 244000309465 heifer Species 0.000 description 6
- 240000001549 Ipomoea eriocarpa Species 0.000 description 4
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 244000062250 Kaempferia rotunda Species 0.000 description 1
- 235000013422 Kaempferia rotunda Nutrition 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 244000236658 Paeonia lactiflora Species 0.000 description 1
- 235000008598 Paeonia lactiflora Nutrition 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/602—Providing cryptographic facilities or services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/08—Computing arrangements based on specific mathematical models using chaos models or non-linear system models
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Nonlinear Science (AREA)
- Health & Medical Sciences (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种图片转汉字的加密方法,包括:首先将某幅彩色图片分解出红、绿、蓝三基色,利用自定义的矩阵R、G、B数据提取规则进行数据提取与存放,得到数值序列RP、GP和BP;然后利用自定义规则,将数值序列RP、GP和BP转换成二进制序列P1和P2;再利用混沌系统所产生混沌序列的密码特性,对二进制序列P1和P2分别进行置乱、分组,以及依次对分组后的二进制序列进行循环移位操作;最后将循环移位加密后数据进行数值与汉字的转换,得到该幅彩色图片的加密密文。本发明利用混沌密码特性以及自定义规则,对彩色图片转换而成的二进制序列进行置乱,并对分组后的二进制序列依次进行循环移位加密操作,保证了图片转汉字加密方法的安全性和可行性。
Description
技术领域
本发明涉及信息安全技术领域,特别涉及一种图片转汉字的加密方法。
背景技术
随着现代通信技术的飞速发展,计算机网络已成为众多领域进行信息交换的手段,用户不仅可以通过即时通信应用程序向其他用户发送语音,还可以通过即时通信应用程序向其他用户发送图片。由于计算机网络是一个开放式网络,文字或图片信息交换时往往面临信息被窃取、篡改和伪造等安全问题,为了保证文字或图片信息的安全性,用户对应的发送设备在发送图片之前需要对图片进行加密,然后向其他用户发送加密后的图片。目前大多数主流图像加密解密技术主要集中在图像置乱、图像扩散等操作上,形成一副“面目全非”的密文图像。如果改变一种密文图像信息的呈现方式,将图片转换成文字的加密方式不失为一种值得挑战的方法,亟待进行深入研究。
发明内容
有鉴于此,本发明的目的是为了解决现有技术中的不足,提供一种图片转汉字的加密方法,利用自定义规则,将彩色图片RGB三基色转换成2个二进制序列,并利用混沌系统所产生混沌序列的密码特性,对2个二进制序列分别进行置乱、分组,以及依次对分组后的二进制序列进行循环移位操作,进而将循环移位加密后数据进行数值与汉字的转换以生成密文,从而保证了图片转汉字加密方法的安全性和可行性。
为解决上述问题,本发明提供了一种图片转汉字的加密方法,包括下面几个步骤:
(1)将某张彩色图片分解出红、绿、蓝三基色,分别表示为矩阵R、G、B,再利用自定义的矩阵R、G、B数据提取规则,将矩阵R、G、B中数据分别提取并放入数值序列RP、GP、BP中,得到数值序列RP={RP1,...,RPi,...,RPM×N}、GP={GP1,...,GPi,...,GPM×N}和BP={BP1,...,BPi,...,BPM×N},其中彩色图片和矩阵R、G、B的大小均为M×N,数值序列RP、GP、BP的长度为M×N;
(2)将数值序列RP、GP、BP中各元素依次进行二进制转换,得到二进制序列RB={RB1,...,RBi,...,RB8×M×N}、GB={GB1,...,GBi,...,GB8×M×N}和BB={BB1,...,BBi,...,BB8×M×N},再利用自定义规则将3个二进制序列RB、GB和BB转换为2个二进制序列,得到二进制序列P1={P11,...,P1i,...,P18×M×N}和二进制序列P2={P21,...,P2i,...,P28×M×N};
(3)首先利用外部加密密钥(α,β),按照如下(1)-(5)公式分别计算得到混沌系统的初值x1、参数μ、初始迭代步数m、第一抽取间隔n1和第二抽取间隔n2,
则x1=mod(δ+α,0.99999)+0.00001, (1)
μ=β+mod(δ,4-β), (2)
其中,α∈(0,1),β∈(3.75,4),
然后由初值x1和参数μ,对如下公式(6)所示的Logistic混沌系统进行迭代,k表示迭代次数(k=1,2,3,....),xk+1表示第k次迭代得到的混沌信号,
xk+1=μ·xk·(1-xk) (6)
得到混沌序列X={x1,x2,...,xk,...},从混沌序列X的第m个元素开始每隔n1个元素取1个,从而形成长度为8×M×N的混沌序列Y={Y1,...,Yk,...,Y8×M×N},并从混沌序列X的第m个元素开始每隔n2个元素取1个,从而形成长度为8×M×N的混沌序列Z={Z1,...,Zk,...,Z8×M×N};
(4)首先,将混沌序列Y按升序排序,根据混沌序列Y排序前、后的位置变化置乱规则,对二进制序列P1={P11,P12,...,P18×M×N}进行置乱,得到置乱后的二进制序列同时将混沌序列Z按升序排序,根据混沌序列Z排序前、后的位置变化置乱规则,对二进制序列P2={P21,P22,...,P28×M×N}进行置乱,得到置乱后的二进制序列
然后,将置乱后的二进制序列中元素从头到尾依次正向以6个元素为单位进行分组,如剩多余元素则在其末尾补二进制‘1’直至补满6个一组,得到分组后的二进制分组序列,表示为同时将置乱后的二进制序列中元素从尾到头依次逆向以6个元素为单位进行分组,如剩多余元素则在其末尾补二进制‘1’直至补满6个一组,得到分组后的二进制分组序列,表示为其中每一个二进制分组序列或均包含6个二进制位,且分组的数量为
①利用混沌序列X,按照如下所示公式(7)计算分别得到移位方向d_shift1、d_shift2和移位个数k_shift1、k_shift2,
②当d_shift1=0时,将二进制分组序列中元素循环左移k_shift1位,得到移位后的二进制分组序列当d_shift1=1时,将二进制分组序列中元素循环右移k_shift1位,得到移位后的二进制分组序列
当d_shift2=0时,将二进制分组序列中元素循环左移k_shift2位,得到移位后的二进制分组序列当d_shift2=1时,将二进制分组序列中元素循环右移k_shift2位,得到移位后的二进制分组序列
最后将数值型数据PP1i和PP2i分别进行组合,从而得到分组移位后的数值序列PP1={PP11,...,PP1i,...,PP1L}和PP2={PP21,...,PP2i,...,PP2L};
进一步地,步骤(1)中所述的自定义的矩阵R、G、B数据提取规则,将矩阵R、G、B中数据分别提取并放入数值序列RP、GP、BP中,是指R、G、B矩阵数据提取的初始位置参数和方向参数分别由如下所示公式(9)计算,
当R_position=0、R_direction=0时,从R矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列RP,当R_position=0、R_direction=1时,从R矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列RP,当R_position=1、R_direction=0时,从R矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列RP,当R_position=1、R_direction=1时,从R矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列RP,当R_position=2、R_direction=0时,从R矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列RP,当R_position=2、R_direction=1时,从R矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列RP,当R_position=3、R_direction=0时,从R矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列RP,当R_position=3、R_direction=1时,从R矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列RP,其中数值序列RP表示为{RP1,RP2,...,RPi,...,RPM×N},其中i=1,2,3,...,M×N-1,M×N.
当G_position=0、G_direction=0时,从G矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列GP,当G_position=0、G_direction=1时,从G矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列GP,当G_position=1、G_direction=0时,从G矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列GP,当G_position=1、G_direction=1时,从G矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列GP,当G_position=2、G_direction=0时,从G矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列GP,当G_position=2、G_direction=1时,从G矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列GP,当G_position=3、G_direction=0时,从G矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列GP,当G_position=3、G_direction=1时,G矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列GP,其中数值序列GP表示为{GP1,GP2,...,GPi,...,GPM×N},其中i=1,2,3,...,M×N-1,M×N.
当B_position=0、B_direction=0时,从B矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列BP,当B_position=0、B_direction=1时,从B矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列BP,当B_position=1、B_direction=0时,从B矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列BP,当B_position=1、B_direction=1时,从B矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列BP,当B_position=2、B_direction=0时,从B矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列BP,当B_position=2、B_direction=1时,从B矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列BP,当B_position=3、B_direction=0时,从B矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列BP,当B_position=3、B_direction=1时,从B矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列BP,其中数值序列BP表示为{BP1,BP2,...,BPi,...,BPM×N},其中i=1,2,3,...,M×N-1,M×N.
进一步地,步骤(2)中所述的将数值序列RP、GP、BP中各元素依次进行二进制转换,是指采用dec2bin(mod(RPi+7,256),8)函数将数值序列RP中各元素依次转换为8位二进制,采用dec2bin(GPi,8)函数将数值序列GP中各元素依次转换为8位二进制,采用dec2bin(mod(BPi-1,256),8)函数将数值序列BP中各元素依次转换为8位二进制。
进一步地,步骤(2)中所述的利用自定义规则将3个二进制序列转换为2个二进制序列,是指二进制序列RB、GB和BB中各元素按位进行异或操作,即得到二进制序列P1={P11,...,P1i,...,P18×M×N}和二进制序列P2={P21,...,P2i,...,P28×M×N}
进一步地,步骤(5)中所述的分组移位后的数值序列PP1和PP2,进行数值与汉字的转换,其转换关系表述如下:
设定一个空字符序列C,将数值序列PP1={PP11,PP12,...,PP1i,...,PP1L}和数值序列PP2={PP21,PP22,...,PP2i,...,PP2L}中各对应元素依次利用native2unicode(·)函数将数值数据[PP1i+176,PP2i+161]转换为单个中文字符,并添加到字符序列C中,即C=[C,native2unicode([PP1i+176,PP2i+161])],从而得到对应的属于GB2312汉字集的序列C,即为该幅彩色图片的加密密文。
有益效果:本发明利用自定义规则,将彩色图片R、G、B三基色转换成2个二进制序列,并利用混沌系统所产生混沌序列的密码特性,对2个二进制序列分别进行置乱、分组,以及依次对分组后的二进制序列进行循环移位操作,进而将循环移位加密后数据进行数值与汉字的转换以生成密文,具有良好的抵抗已知/选择明文攻击、唯密文攻击的性能,从而保证了图片转汉字加密方法的安全性和可行性。
附图说明
图1为本发明的一种图片转汉字的加密流程示意图。
具体实施方式
如图1所示的一种图片转汉字的加密方法,包括如下几个步骤:
(1)将某张彩色图片分解出红、绿、蓝三基色,分别表示为矩阵R、G、B,再利用自定义的矩阵R、G、B数据提取规则,即R、G、B矩阵数据提取的初始位置参数和方向参数分别由如下所示公式计算,
当R_position=0、R_direction=0时,从R矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列RP,当R_position=0、R_direction=1时,从R矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列RP,当R_position=1、R_direction=0时,从R矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列RP,当R_position=1、R_direction=1时,从R矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列RP,当R_position=2、R_direction=0时,从R矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列RP,当R_position=2、R_direction=1时,从R矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列RP,当R_position=3、R_direction=0时,从R矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列RP,当R_position=3、R_direction=1时,从R矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列RP,其中数值序列RP表示为{RP1,RP2,...,RPi,...,RPM×N},其中i=1,2,3,...,M×N-1,M×N.
当G_position=0、G_direction=0时,从G矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列GP,当G_position=0、G_direction=1时,从G矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列GP,当G_position=1、G_direction=0时,从G矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列GP,当G_position=1、G_direction=1时,从G矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列GP,当G_position=2、G_direction=0时,从G矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列GP,当G_position=2、G_direction=1时,从G矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列GP,当G_position=3、G_direction=0时,从G矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列GP,当G_position=3、G_direction=1时,G矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列GP,其中数值序列GP表示为{GP1,GP2,...,GPi,...,GPM×N},其中i=1,2,3,...,M×N-1,M×N.
当B_position=0、B_direction=0时,从B矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列BP,当B_position=0、B_direction=1时,从B矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列BP,当B_position=1、B_direction=0时,从B矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列BP,当B_position=1、B_direction=1时,从B矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列BP,当B_position=2、B_direction=0时,从B矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列BP,当B_position=2、B_direction=1时,从B矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列BP,当B_position=3、B_direction=0时,从B矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列BP,当B_position=3、B_direction=1时,从B矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列BP,其中数值序列BP表示为{BP1,BP2,...,BPi,...,BPM×N},其中i=1,2,3,...,M×N-1,M×N.
从而得到数值序列RP={RP1,...,RPi,...,RPM×N}、GP={GP1,...,GPi,...,GPM×N}和BP={BP1,...,BPi,...,BPM×N},其中彩色图片和矩阵R、G、B的大小均为M×N,数值序列RP、GP、BP的长度为M×N;
(2)采用dec2bin(mod(RPi+7,256),8)函数将数值序列RP中各元素依次转换为8位二进制,得到二进制序列RB={RB1,...,RBi,...,RB8×M×N},采用dec2bin(GPi,8)函数将数值序列GP中各元素依次转换为8位二进制,得到二进制序列GB={GB1,...,GBi,...,GB8×M×N},采用dec2bin(mod(BPi-1,256),8)函数将数值序列BP中各元素依次转换为8位二进制,得到二进制序列BB={BB1,...,BBi,...,BB8×M×N},再利用自定义规则将3个二进制序列转换为2个二进制序列,将二进制序列RB、GB和BB中各元素按位进行异或操作,即得到二进制序列P1={P11,...,P1i,...,P18×M×N}和二进制序列P2={P21,...,P2i,...,P28×M×N};
(3)首先利用外部加密密钥(α,β),按照如下所示公式分别计算得到混沌系统的初值(x1)、参数(μ)、初始迭代步数(m)和抽取间隔(n1、n2),
则x1=mod(δ+α,0.99999)+0.00001,
μ=β+mod(δ,4-β),
其中,α∈(0,1),β∈(3.75,4),
然后由初值x1和参数μ,对如下公式所示的Logistic混沌系统进行迭代,k表示迭代次数(k=1,2,3,....),xk+1表示第k次迭代得到的混沌信号,
xk+1=μ·xk·(1-xk)
得到混沌序列X={x1,x2,...,xk,...},从混沌序列X的第m个元素开始每隔n1个元素取1个,从而形成长度为8×M×N的混沌序列Y={Y1,...,Yk,...,Y8×M×N},并从混沌序列X的第m个元素开始每隔n2个元素取1个,从而形成长度为8×M×N的混沌序列Z={Z1,...,Zk,...,Z8×M×N};
(4)首先,将混沌序列Y按升序排序,根据序列Y排序前、后的位置变化置乱规则,对二进制序列P1={P11,P12,...,P18×M×N}进行置乱,得到置乱后的二进制序列同时将混沌序列Z按升序排序,根据序列Z排序前、后的位置变化置乱规则,对二进制序列P2={P21,P22,...,P28×M×N}进行置乱,得到置乱后的二进制序列
然后,将置乱后的二进制序列中元素从头到尾依次正向以6个元素为单位进行分组,如剩多余元素则在末尾补二进制‘1’直至补满6个一组,得到分组后的二进制分组序列,表示为同时将置乱后的二进制序列中元素从尾到头依次逆向以6个元素为单位进行分组,如剩多余元素则在末尾补二进制‘1’直至补满6个一组,得到分组后的二进制分组序列,表示为其中每一个二进制分组序列或均包含6个二进制位,且分组的数量为
①利用混沌序列X,按照如下所示公式计算分别得到移位方向d_shift1、d_shift2和移位个数k_shift1、k_shift2,
②当d_shift1=0时,将二进制分组序列中元素循环左移k_shift1位,得到移位后的二进制分组序列当d_shift1=1时,将二进制分组序列中元素循环右移k_shift1位,得到移位后的二进制分组序列
当d_shift2=0时,将二进制分组序列中元素循环左移k_shift2位,得到移位后的二进制分组序列当d_shift2=1时,将二进制分组序列中元素循环右移k_shift2位,得到移位后的二进制分组序列
最后将数值型数据PP1i和PP2i分别进行组合,从而得到分组移位后的数值序列PP1={PP11,...,PP1i,...,PP1L}和PP2={PP21,...,PP2i,...,PP2L};
(5)分组移位后的数值序列PP1和PP2,进行数值与汉字的转换,即设定一个空字符序列C,将数值序列PP1={PP11,PP12,...,PP1i,...,PP1L}和数值序列PP2={PP21,PP22,...,PP2i,...,PP2L}中各对应元素依次利用native2unicode(·)函数将数值数据[PP1i+176,PP2i+161]转换为单个中文字符,并添加到字符序列C中,即C=[C,native2unicode([PP1i+176,PP2i+161])],从而得到对应的属于GB2312汉字集的序列C,即为该幅彩色图片的加密密文,其中序列C的长度为
下面结合具体的实施例对本发明作进一步说明:
实施例1
按照上述具体实施方式中一种图片转汉字的加密方法,步骤如下:
(1)将某张大小为18×15的待加密彩色图片“clock.png”,分解出红、绿、蓝三基色,分别表示为矩阵R、G、B,其中矩阵R=G=B=[0,0,0,0,0,130,147,147,130,0,0,0,0,0,0;0,0,0,0,0,0,147,147,0,0,0,0,0,0,0;0,0,0,0,0,0,147,147,0,0,0,0,0,0,0;0,0,0,1,51,103,147,147,135,103,51,1,0,0,0;0,0,20,118,147,147,147,147,147,147,147,118,20,0,0;0,20,134,147,159,206,235,245,235,206,159,147,134,20,0;1,117,147,175,242,247,171,171,247,247,242,175,147,117,1;52,147,160,242,247,247,147,147,247,247,247,242,160,147,52;105,147,207,247,247,247,147,147,247,247,247,247,206,147,105;135,147,236,247,247,247,147,147,247,247,247,247,235,147,133;147,147,245,247,247,247,147,147,147,147,171,247,245,147,144;135,147,236,247,247,247,171,147,147,147,170,247,235,147,133;105,147,207,247,247,247,247,247,247,247,247,247,207,147,105;52,147,160,242,247,247,247,247,247,247,247,242,160,147,52;1,117,147,175,242,247,247,247,247,247,242,175,147,117,1;0,20,134,147,159,207,236,245,236,207,159,147,134,20,0;0,0,20,118,147,147,147,147,147,147,147,118,20,0,0;0,0,0,1,51,103,132,144,133,103,52,1,0,0,0],再利用自定义的矩阵R、G、B数据提取规则,得到数值序列RP={0,0,0,1,52,105,135,147,135,105,52,1,0,0,0,0,0,0,0,0,20,117,147,147,147,147,147,147,147,117,20,0,0,0,0,0,0,20,134,147,160,207,236,245,236,207,160,147,134,20,0,0,0,0,1,118,147 175,242,247,247,247,247,247,242,175,147,118,1,0,0,0,51,147,159,242 247,247,247,247,247,247,247,242,159,147,51,0,0,0,103,147,207,247,247,247,247,247,247,247,247,247,206,147,103,0,0,130,132,147,236,247,247,247,171,147,147,147,147,171,235,147,147,147,147,147,144,147,245,247,247,247,147,147,147,147,147,171,245,147,147,147,147,147,133,147,236,247,247,247,147,147 247,247,247,247,235,147,135,0,0,130,103,147,207,247,247,247,147,147,247,247,247,247,206,147,103,0,0,0,52,147,159,242,247,247,170,171,247,247,247,242,159,147,51,0,0,0,1,118,147,175,242,247,247,247,247,247,242 175,147,118,1,0,0,0,0,20,134,147,160,207,235,245,235,206,160,147,134,20,0,0,0,0,0,0,20,117,147,147,147,147,147,147,147,117,20,0,0,0,0,0,0,0,0,1,52,105,133,144,133,105,52,1,0,0,0,0,0,0}、数值序列GP={0,0,0,0,0,0,1,52,105,133,144,133,105,52,1,0,0,0,0,0,0,0,20,117,147,147,147,147,147,147,147,117,20,0,0,0,0,0,20,134,147,160,206,235,245,235,207,160,147,134,20,0,0,0,0,1,118,147,175,242,247,247,247,247,247,242,175,147,118,1,0,0,0,51,147,159,242,247,247,247,171,170,247,247,242,159,147,52,0,0,0,103,147,206,247,247,247,247,147,147,247,247,247,207,147,103,130,0,0,135,147,235,247,247,247,247,147,147,247,247,247,236,147,133,147,147,147,147,147,245,171,147,147,147,147,147,247,247,247,245,147,144,147,147,147,147,147,235,171,147,147,147,147,171,247,247,247,236,147,132,130,0,0,103,147,206,247,247,247,247,247,247,247,247,247,207,147,103,0,0,0,51,147,159,242,247,247,247,247,247,247,247,242,159,147,51,0,0,0,1,118,147,175,242,247,247,247,247,247,242,175,147,118,1,0,0,0,0,20,134,147,160,207,236,245,236,207,160,147,134,20,0,0,0,0,0,0,20,117,147,147,147,147,147,147,147,117,20,0,0,0,0,0,0,0,0,1,52,105,135,147,135,105,52,1,0,0,0}和数值序列BP={0,0,0,0,0,130,147,147,130,0,0,0,0,0,0,0,0,0,0,0,147,147,0,0,0,0,0,0,0,0,0,0,0,0,0,147,147,0,0,0,0,0,0,0,0,0,1,51,103,147,147,135,103,51,1,0,0,0,0,20,118,147,147,147,147,147,147,147,118,20,0,0,0,20,134,147,159,206,235,245,235,206,159,147,134,20,0,1,117,147,175,242,247,171,171,247,247,242,175,147,117,1,52,147,160,242,247,247,147,147,247,247,247,242,160,147,52,105,147,207,247,247,247,147,147,247,247,247,247,206,147,105,135,147,236,247,247,247,147,147,247,247,247,247,235,147,133,147,147,245,247,247,247,147,147,147,147,171,247,245,147,144,135,147,236,247,247,247,171,147,147,147,170,247,235,147,133,105,147,207,247,247,247,247,247,247,247,247,247,207,147,105,52,147,160,242,247,247,247,247,247,247,247,242,160,147,52,1,117,147,175,242,247,247,247,247,247,242,175,147,117,1,0,20,134,147,159,207,236,245,236,207,159,147,134,20,0,0,0,20,118,147,147,147,147,147,147,147,118,20,0,0,0,0,0,1,51,103,132,144,133,103,52,1,0,0,0},其中彩色图片和矩阵R、G、B的大小均为18×15,数值序列RP、GP、BP的长度为270;
(2)采用dec2bin(mod(RPi+7,256),8)函数将数值序列RP中各元素依次转换为8位二进制,得到二进制序列RB,采用dec2bin(GPi,8)函数将数值序列GP中各元素依次转换为8位二进制,得到二进制序列GB,采用dec2bin(mod(BPi-1,256),8)函数将数值序列BP中各元素依次转换为8位二进制,得到二进制序列BB,再利用自定义规则将3个二进制序列转换为2个二进制序列,将二进制序列RB、GB和BB中各元素按位进行异或操作,即得到二进制序列P1={0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,1,1,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,1,0,1,1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,1,0,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,1,1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,1,0,1,1,0,1,1,0,1,1,0,0,0,1,1,1,1,1,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0,1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0,0,1,0,1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,0,1,1,0,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0,0,1,1,0,1,1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,1,1,1,0,0,1,1,0,1,1,1,1,0,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,1,1,0,1,1,1,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,1,0,1,1,1,1,0,0,1,1,1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,1,1,1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,0,1,1,0,1,1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,0,1,0,1,0,0,0,1,0,1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,1,0,1,1,0,1,1,0,1,1,0,0,0,1,1,1,1,1,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,1,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0,1,1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,1,0,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,1,1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,1,1,0,0,0,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0,1,1,1,1,1,0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1,1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1}和二进制序列P2={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,1,1,1,0,1,0,0,1,1,0,1,1,1,1,0,1,1,1,1,0,1,0,1,0,0,1,0,1,1,0,1,1,0,0,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,1,0,0,0,1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,0,1,1,0,0,0,1,0,1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,1,1,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,1,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,0,0,1,0,1,1,0,0,0,1,0,0,0,1,1,1,0,0,0,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,1,1,1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,1,1,1,1,1,0,1,1,0,0,1,0,1,0,0,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,1,1,0,0,1,0,1,1,1,0,0,1,0,0,1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,0,0,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0,1,1,1,1,0,1,0,0,1,1,1,1,0,1,1,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0,1,1,1,0,1,0,0,1,1,1,1,1,0,0,1,0,1,1,1,0,1,0,1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,1,1,0,1,0,1,1,1,1,0,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,1,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
(3)首先利用外部加密密钥α=0.12345,β=3.75,分别计算得到混沌系统的初值x1=0.963900210048011、参数μ=3.859549789951989、初始迭代步数m=557和抽取间隔n1=4、n2=29,
然后由初值x1和参数μ,对Logistic混沌系统进行迭代,得到混沌序列X={x1,x2,...,xk,...},从混沌序列X的第557个元素开始每隔4个元素取1个,从而形成长度为2160的混沌序列Y={Y1,...,Yk,...,Y8×M×N},并从混沌序列X的第557个元素开始每隔29个元素取1个,从而形成长度为2160的混沌序列Z={Z1,...,Zk,...,Z8×M×N};
(4)首先,将混沌序列Y按升序排序,根据序列Y排序前、后的位置变化置乱规则,对二进制序列P1进行置乱,得到置乱后的二进制序列同时将混沌序列Z按升序排序,根据序列Z排序前、后的位置变化置乱规则,对二进制序列P2进行置乱,得到置乱后的二进制序列
接着,将每一个二进制分组序列其中i=1,2,3,...,360,依次进行循环移位、数值型数据组合等操作,从而得到分组移位后的数值序列PP1={30,50,30,17,57,15,4,21,11,5,24,54,0,5,8,15,1,32,61,56,31,56,41,10,21,5,45,36,4,39,4,5,25,17,16,34,39,48,6,21,7,42,24,45,15,2,1,12,56,1,35,30,22,11,51,62,6,7,38,7,4,48,2,8,24,5,49,54,59,45,38,16,47,44,18,18,60,23,63,18,10,9,10,45,49,54,54,14,33,20,0,5,21,43,19,10,58,26,9,24,32,49,5,56,6,55,57,40,17,0,19,32,1,49,53,24,24,9,5,8,42,34,56,39,2,10,43,13,2,4,59,13,27,17,62,33,24,42,9,32,21,0,51,10,4,39,3,29,26,6,16,41,26,23,7,48,58,18,16,37,16,49,41,12,26,60,20,6,23,32,3,14,5,16,42,36,55,56,38,56,32,12,1,35,48,16,25,26,17,24,5,25,26,41,29,31,14,38,16,29,6,10,30,60,47,5,1,29,9,32,27,53,15,60,12,8,32,11,13,46,16,52,19,55,40,13,22,7,42,31,51,8,20,32,25,30,42,47,37,9,32,9,41,35,41,62,29,39,59,35,12,6,19,3,5,1,24,43,18,47,19,28,14,48,19,6,33,54,59,9,59,14,6,41,18,63,20,29,23,21,51,29,8,3,55,42,32,3,19,44,23,12,48,34,44,45,60,41,32,14,49,8,30,17,46,61,34,1,23,12,0,10,22,19,32,46,11,4,3,53,39,26,29,35,21,23,18,15,5,55,20,45,32,4,21,26,41,10,16,18,56,27,4,0,24,0,20,25,35,37,0,7,15,3,29,2,61,24,0,19}和PP2={52,13,56,18,19,58,60,5,47,33,12,32,60,38,3,51,15,18,53,44,38,15,56,16,45,56,25,19,38,36,14,53,17,6,4,36,40,20,39,60,3,39,50,21,37,45,39,62,42,25,18,50,5,40,20,41,14,54,8,14,51,38,58,51,14,4,5,40,28,27,49,26,3,57,4,55,10,5,24,42,14,39,1,24,2,20,54,24,35,24,49,30,37,0,59,11,63,62,14,3,22,52,15,38,50,25,58,27,35,21,51,25,54,43,4,17,26,63,9,4,63,12,11,20,20,4,28,26,27,26,29,31,51,16,23,26,27,35,27,4,47,28,16,44,26,62,14,59,30,17,43,4,19,42,53,2,15,23,59,55,37,61,58,2,45,0,41,48,58,14,0,56,44,8,63,10,58,26,20,29,52,0,10,10,2,41,11,50,12,4,27,57,53,24,40,38,44,33,27,57,23,46,9,26,7,37,60,35,10,9,48,26,52,7,5,48,12,2,51,22,15,38,8,20,2,36,4,25,21,35,10,5,42,12,58,54,39,29,8,21,43,8,27,15,30,63,34,32,52,48,53,51,60,33,1,51,33,11,24,62,22,49,18,25,14,32,25,4,24,19,7,60,34,42,19,18,51,15,52,39,8,16,63,53,52,37,35,2,23,16,7,39,17,34,44,47,7,46,14,12,33,60,4,15,63,59,25,57,43,42,25,48,35,13,5,34,56,49,61,13,54,36,6,59,26,50,37,48,24,4,47,19,51,15,30,43,63,10,10,12,3,49,59,32,40,24,57,5,56,19,50,52,6,14,35,45,57,51,46,51};
(5)分组移位后的数值序列PP1和PP2,进行数值与汉字的转换,得到对应的属于GB2312汉字集的序列C,即为某幅彩色图片的加密密文,为“握猱钨脸榇扣摧纽恍德拳媪拜登袱吭卑谐碇柰锨璋儋罕盼蒂莺源辞着疮抵刹璃昆遗咨嗟度泡筏谌扔荻科参比歼杷焙映斡痞簧愕钍动纷蜘矾丛嗲槽冈券单幡嫔虢菁忠阑撙苴楼仑飓铅锕滤函谷孩莨幔娴孀竟涯墓耙悼牌邸密含赅蔬汞趣蟹嵴蛋枨队绾檑丶聊岸迷泻弊崽濂炔然灌氮弗卩噎璎椎驳亥劢交布椿刖嚼嗽帘罡鸦燃谀辜啸判敖惚和椿走朝蛙士恫捞佶蚀撬分啵臧赂儡肇榔徂氽迹饰臁氖堆芹携场举低扩卩垣幺杌值杈姓肌鲍荧啵朗涩视镰去导哨手俟蜕锨就致兰挖陡合为旎擗灯陛湍公歇搜寤空歙鸡秆协唬皆薹腊淝茅绲兀脚匹泛诙夏惬甫乃协邵巫谌呔诈苟刑供偌影倏钹兔琢胝友贾对幂陈耽痹嚷郜鹿哌梅桃境嗪茂读押妤牍勾毹据睹偎麓锍脑桶钦湃悌捅膏持缯谄心常酶鼙迁既嗖颐芡菪歙傧携经崧篙违涟捺碥液壁翘妓昂貉颇卯笑廾毁匆侈瀹鬃逝艇榆呕怯缕垦倒绁男荽性窗趴侍汆韩阔颅瑜艘窜傲壬肮内搔淤沾坝氛咖朝湍参碲仍跋迷”。
实施例2
按照上述一种图片转汉字的加密方法,某张待加密彩色图片仍为大小为18×15的“clock.png”图片,其加密步骤与具体实施例1相似,仅加密密钥发生细微变化:α=0.12345000000001;或β=3.85000000000001,图片转汉字的加密结果如表1所示。由表1可知,加密密钥的细微变化会引起图片转汉字加密密文发生很大的变化,由此可见本专利所提一种图片转汉字的加密方法对加密密钥具有敏感性。
表1外部加密密钥发生微变时,图片转汉字加密结果
实施例3
按上述一种图片转汉字的加密方法,其加密步骤与具体实施例1相似,仅某幅待加密彩色图片“clock.png”R、G、B三基色的某个像素值发生微变:R1,1=1;或R9,8=255;或R18,15=255;或G1,1=1;或G9,8=255;或G18,15=255;或B1,1=1;或B9,8=255;或B18,15=255,图片转汉字的加密结果如表2所示。由表2可见:待加密某幅彩色图片RGB三基色的细微变化会引起加密密文的“面目全非”,由此可见本专利所提一种图片转汉字的加密方法对待加密彩色图片的平文信息具有敏感性。
表2待加密某幅彩色图片RGB三基色发生微变时,图片转汉字加密结果
由上述具体实施例2、3分析可知,本专利所提一种图片转汉字的加密方法所生成的中文字符串密文不仅与外部加密密钥密切相关,而且依赖于待加密彩色图片平文信息,因此本专利所提一种图片转汉字的加密方法可抵抗已知/选择明文攻击,具有很强的安全性。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (5)
1.一种图片转汉字的加密方法,其特征在于,包括下面几个步骤:
(1)将某幅彩色图片分解出红、绿、蓝三基色,分别表示为矩阵R、G、B,再利用自定义的矩阵R、G、B数据提取规则,将矩阵R、G、B中数据分别提取并放入数值序列RP、GP、BP中,得到数值序列RP={RP1,...,RPi,...,RPM×N}、GP={GP1,...,GPi,...,GPM×N}和BP={BP1,...,BPi,...,BPM×N},其中彩色图片和矩阵R、G、B的大小均为M×N,数值序列RP、GP、BP的长度为M×N;
(2)将数值序列RP、GP、BP中各元素依次进行二进制转换,得到二进制序列RB={RB1,...,RBi,...,RB8×M×N}、GB={GB1,...,GBi,...,GB8×M×N}和BB={BB1,...,BBi,...,BB8×M×N},再利用自定义规则将3个二进制序列RB、GB和BB转换为2个二进制序列,得到二进制序列P1={P11,...,P1i,...,P18×M×N}和二进制序列P2={P21,...,P2i,...,P28×M×N};
(3)首先利用外部加密密钥(α,β),按照如下(1)-(5)公式分别计算得到混沌系统的初值x1、参数μ、初始迭代步数m、第一抽取间隔n1和第二抽取间隔n2,
则x1=mod(δ+α,0.99999)+0.00001, (1)
μ=β+mod(δ,4-β), (2)
其中,α∈(0,1),β∈(3.75,4),
然后由初值x1和参数μ,对如下公式(6)所示的Logistic混沌系统进行迭代,k表示迭代次数(k=1,2,3,....),xk+1表示第k次迭代得到的混沌信号,
xk+1=μ·xk·(1-xk) (6)
得到混沌序列X={x1,x2,...,xk,...},从混沌序列X的第m个元素开始每隔n1个元素取1个,从而形成长度为8×M×N的混沌序列Y={Y1,...,Yk,...,Y8×M×N},并从混沌序列X的第m个元素开始每隔n2个元素取1个,从而形成长度为8×M×N的混沌序列Z={Z1,...,Zk,...,Z8×M×N};
(4)首先,将混沌序列Y按升序排序,根据混沌序列Y排序前、后的位置变化置乱规则,对二进制序列P1={P11,P12,...,P18×M×N}进行置乱,得到置乱后的二进制序列同时将混沌序列Z按升序排序,根据混沌序列Z排序前、后的位置变化置乱规则,对二进制序列P2={P21,P22,...,P28×M×N}进行置乱,得到置乱后的二进制序列
然后,将置乱后的二进制序列中元素从头到尾依次正向以6个元素为单位进行分组,如剩多余元素则在其末尾补二进制‘1’直至补满6个一组,得到分组后的二进制分组序列,表示为同时将置乱后的二进制序列中元素从尾到头依次逆向以6个元素为单位进行分组,如剩多余元素则在其末尾补二进制‘1’直至补满6个一组,得到分组后的二进制分组序列,表示为其中每一个二进制分组序列或均包含6个二进制位,且所述分组的数量为
①利用混沌序列X,按照如下所示公式(7)计算分别得到移位方向d_shift1、d_shift2和移位个数k_shift1、k_shift2,
②当d_shift1=0时,将二进制分组序列中元素循环左移k_shift1位,得到移位后的二进制分组序列当d_shift1=1时,将二进制分组序列中元素循环右移k_shift1位,得到移位后的二进制分组序列
当d_shift2=0时,将二进制分组序列中元素循环左移k_shift2位,得到移位后的二进制分组序列当d_shift2=1时,将二进制分组序列中元素循环右移k_shift2位,得到移位后的二进制分组序列
最后将数值型数据PP1i和PP2i分别进行组合,从而得到分组移位后的数值序列PP1={PP11,...,PP1i,...,PP1L}和PP2={PP21,...,PP2i,...,PP2L};
2.根据权利要求书1所述的一种图片转汉字的加密方法,其特征在于:步骤(1)中所述的自定义的矩阵R、G、B数据提取规则,将矩阵R、G、B中数据分别提取并放入数值序列RP、GP、BP中,是指R、G、B矩阵数据提取的初始位置参数和方向参数分别由如下所示公式(9)计算,
当R_position=0、R_direction=0时,从R矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列RP,当R_position=0、R_direction=1时,从R矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列RP,当R_position=1、R_direction=0时,从R矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列RP,当R_position=1、R_direction=1时,从R矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列RP,当R_position=2、R_direction=0时,从R矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列RP,当R_position=2、R_direction=1时,从R矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列RP,当R_position=3、R_direction=0时,从R矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列RP,当R_position=3、R_direction=1时,从R矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列RP,其中数值序列RP表示为{RP1,RP2,...,RPi,...,RPM×N},其中i=1,2,3,...,M×N-1,M×N.
当G_position=0、G_direction=0时,从G矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列GP,当G_position=0、G_direction=1时,从G矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列GP,当G_position=1、G_direction=0时,从G矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列GP,当G_position=1、G_direction=1时,从G矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列GP,当G_position=2、G_direction=0时,从G矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列GP,当G_position=2、G_direction=1时,从G矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列GP,当G_position=3、G_direction=0时,从G矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列GP,当G_position=3、G_direction=1时,G矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列GP,其中数值序列GP表示为{GP1,GP2,...,GPi,...,GPM×N},其中i=1,2,3,...,M×N-1,M×N.
当B_position=0、B_direction=0时,从B矩阵的最左上角位置开始从左往右逐行提取数据并按序放入数值序列BP,当B_position=0、B_direction=1时,从B矩阵的最左上角位置开始从上往下逐列提取数据并按序放入数值序列BP,当B_position=1、B_direction=0时,从B矩阵的最右上角位置开始从右往左逐行提取数据并按序放入数值序列BP,当B_position=1、B_direction=1时,从B矩阵的最右上角位置开始从上往下逐列提取数据并按序放入数值序列BP,当B_position=2、B_direction=0时,从B矩阵的最左下角位置开始从左往右逐行提取数据并按序放入数值序列BP,当B_position=2、B_direction=1时,从B矩阵的最左下角位置开始从下往上逐列提取数据并按序放入数值序列BP,当B_position=3、B_direction=0时,从B矩阵的最右下角位置开始从右往左逐行提取数据并按序放入数值序列BP,当B_position=3、B_direction=1时,从B矩阵的最右下角位置开始从下往上逐列提取数据并按序放入数值序列BP,其中数值序列BP表示为{BP1,BP2,...,BPi,...,BPM×N},其中i=1,2,3,...,M×N-1,M×N.
3.根据权利要求书1所述的一种图片转汉字的加密方法,其特征在于:步骤(2)中所述的将数值序列RP、GP、BP中各元素依次进行二进制转换,是指采用dec2bin(mod(RPi+7,256),8)函数将数值序列RP中各元素依次转换为8位二进制,采用dec2bin(GPi,8)函数将数值序列GP中各元素依次转换为8位二进制,采用dec2bin(mod(BPi-1,256),8)函数将数值序列BP中各元素依次转换为8位二进制。
5.根据权利要求书1所述的一种图片转汉字的加密方法,其特征在于:步骤(5)中所述的分组移位后的数值序列PP1和PP2,进行数值与汉字的转换,其转换关系表述如下:
设定一个空字符序列C,将数值序列PP1={PP11,PP12,...,PP1i,...,PP1L}和数值序列PP2={PP21,PP22,...,PP2i,...,PP2L}中各对应元素依次利用native2unicode(·)函数将数值数据[PP1i+176,PP2i+161]转换为单个中文字符,并添加到字符序列C中,即C=[C,native2unicode([PP1i+176,PP2i+161])],从而得到对应的属于GB2312汉字集的序列C,即为该幅彩色图片的加密密文。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010114708.5A CN111353166B (zh) | 2020-02-25 | 2020-02-25 | 一种图片转汉字的加密方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010114708.5A CN111353166B (zh) | 2020-02-25 | 2020-02-25 | 一种图片转汉字的加密方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111353166A true CN111353166A (zh) | 2020-06-30 |
CN111353166B CN111353166B (zh) | 2021-10-26 |
Family
ID=71194189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010114708.5A Active CN111353166B (zh) | 2020-02-25 | 2020-02-25 | 一种图片转汉字的加密方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111353166B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113259390A (zh) * | 2021-06-25 | 2021-08-13 | 深圳市爱挖网络科技有限公司 | 一种用于招聘平台的账号安全防护系统 |
CN113255860A (zh) * | 2021-03-26 | 2021-08-13 | 南通大学 | 一种基于分层加密的商品防伪二维码生成方法 |
CN113935344A (zh) * | 2021-10-12 | 2022-01-14 | 南通大学 | 一种基于商标图片置乱加密的商品防伪码批量生成方法 |
CN115632756A (zh) * | 2022-08-18 | 2023-01-20 | 重庆市地理信息和遥感应用中心 | 基于动态循环位移的地理数据加密系统及方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0421754A2 (en) * | 1989-10-04 | 1991-04-10 | Teledyne Industries, Inc. | Block substitution based encryption by a modulo 2 addition method and apparatus |
CN1738235A (zh) * | 2005-09-12 | 2006-02-22 | 西安交通大学 | 基于混沌特性的图像防伪方法 |
CN106599640A (zh) * | 2016-11-30 | 2017-04-26 | 上海斐讯数据通信技术有限公司 | 一种用户终端的加密系统、加密方法以及解锁系统、解锁方法 |
CN107078900A (zh) * | 2014-09-14 | 2017-08-18 | 亚历山大·杜兰德 | 基于可再现随机序列的密码系统 |
CN107481181A (zh) * | 2017-07-27 | 2017-12-15 | 银江股份有限公司 | 一种用于保护个人隐私的图片隐藏方法、还原方法及图片隐藏系统 |
CN109688289A (zh) * | 2018-12-25 | 2019-04-26 | 秒针信息技术有限公司 | 一种图像加密传输、图像解密方法及装置 |
CN110011783A (zh) * | 2019-03-21 | 2019-07-12 | 南通大学 | 一种汉字的加密、解密方法 |
CN110046513A (zh) * | 2019-04-11 | 2019-07-23 | 长安大学 | 基于Hopfield混沌神经网络的明文关联图像加密方法 |
CN110086601A (zh) * | 2019-04-28 | 2019-08-02 | 郑州轻工业学院 | 基于像素值关联的约瑟夫遍历和超混沌系统图像加密方法 |
CN110650005A (zh) * | 2019-09-17 | 2020-01-03 | 南通大学 | 一种中英文字符串加密方法 |
CN110740226A (zh) * | 2019-09-16 | 2020-01-31 | 西安理工大学 | 基于数据容器和相位迭代恢复过程的光学图像加密方法 |
-
2020
- 2020-02-25 CN CN202010114708.5A patent/CN111353166B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0421754A2 (en) * | 1989-10-04 | 1991-04-10 | Teledyne Industries, Inc. | Block substitution based encryption by a modulo 2 addition method and apparatus |
CN1738235A (zh) * | 2005-09-12 | 2006-02-22 | 西安交通大学 | 基于混沌特性的图像防伪方法 |
CN107078900A (zh) * | 2014-09-14 | 2017-08-18 | 亚历山大·杜兰德 | 基于可再现随机序列的密码系统 |
CN106599640A (zh) * | 2016-11-30 | 2017-04-26 | 上海斐讯数据通信技术有限公司 | 一种用户终端的加密系统、加密方法以及解锁系统、解锁方法 |
CN107481181A (zh) * | 2017-07-27 | 2017-12-15 | 银江股份有限公司 | 一种用于保护个人隐私的图片隐藏方法、还原方法及图片隐藏系统 |
CN109688289A (zh) * | 2018-12-25 | 2019-04-26 | 秒针信息技术有限公司 | 一种图像加密传输、图像解密方法及装置 |
CN110011783A (zh) * | 2019-03-21 | 2019-07-12 | 南通大学 | 一种汉字的加密、解密方法 |
CN110046513A (zh) * | 2019-04-11 | 2019-07-23 | 长安大学 | 基于Hopfield混沌神经网络的明文关联图像加密方法 |
CN110086601A (zh) * | 2019-04-28 | 2019-08-02 | 郑州轻工业学院 | 基于像素值关联的约瑟夫遍历和超混沌系统图像加密方法 |
CN110740226A (zh) * | 2019-09-16 | 2020-01-31 | 西安理工大学 | 基于数据容器和相位迭代恢复过程的光学图像加密方法 |
CN110650005A (zh) * | 2019-09-17 | 2020-01-03 | 南通大学 | 一种中英文字符串加密方法 |
Non-Patent Citations (4)
Title |
---|
M. KAR等: "RGB image encryption using hyper chaotic system", 《2017 THIRD INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN)》 * |
NARASIMHAN AARTHIE等: "mage Encryption: An Information Security Perceptive", 《JOURNAL OF ARTIFICIAL INTELLIGENCE, 7》 * |
SOURABH SINGH等: "An Enhanced Text to Image Encryption Technique using RGB Substitution and AES", 《INTERNATIONAL JOURNAL OF ENGINEERING TRENDS AND TECHNOLOGY (IJETT)》 * |
李英: "面向互联网的图像敏感内容分析系统的关键技术研究", 《中国优秀博硕士学位论文全文数据库(博士)信息科技辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113255860A (zh) * | 2021-03-26 | 2021-08-13 | 南通大学 | 一种基于分层加密的商品防伪二维码生成方法 |
CN113255860B (zh) * | 2021-03-26 | 2022-08-02 | 南通大学 | 一种基于分层加密的商品防伪二维码生成方法 |
CN113259390A (zh) * | 2021-06-25 | 2021-08-13 | 深圳市爱挖网络科技有限公司 | 一种用于招聘平台的账号安全防护系统 |
CN113259390B (zh) * | 2021-06-25 | 2021-09-14 | 深圳市爱挖网络科技有限公司 | 一种用于招聘平台的账号安全防护系统 |
CN113935344A (zh) * | 2021-10-12 | 2022-01-14 | 南通大学 | 一种基于商标图片置乱加密的商品防伪码批量生成方法 |
CN115632756A (zh) * | 2022-08-18 | 2023-01-20 | 重庆市地理信息和遥感应用中心 | 基于动态循环位移的地理数据加密系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111353166B (zh) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111353166B (zh) | 一种图片转汉字的加密方法 | |
CN103778590B (zh) | 利用数字图像存储和传输信息的方法和装置 | |
Rasras et al. | A methodology based on steganography and cryptography to protect highly secure messages | |
CN109995504A (zh) | 一种字符串的加密和解密方法 | |
CN110011783B (zh) | 一种汉字的加密、解密方法 | |
CN106100841B (zh) | 一种基于分子加密技术的数据加密系统及方法 | |
CN103491279B (zh) | 超混沌Lorenz系统的4-邻域异或图像加密方法 | |
CN112001467B (zh) | 一种基于图片加解密的商品防伪码生成与识别方法 | |
CN111382452A (zh) | 一种汉字转图片的加密方法 | |
CN106530207A (zh) | 基于Logistic混沌映射的数字图像加密方法 | |
CN109981245B (zh) | 一种字符串的加密、解密方法 | |
CN115514469B (zh) | 一种信息加密保护方法 | |
US20170155503A1 (en) | Encryption system and method based on biometric technology | |
CN104268825A (zh) | 一种针对图像的加密及密文处理方法 | |
CN110798455B (zh) | 一种防止信息泄露的加密通讯传输系统 | |
Vinodhini et al. | A survey on DNA and image steganography | |
CN109981246B (zh) | 一种字符串的加密方法和解密方法 | |
CN110166784A (zh) | 一种基于像素块的自适应图像纹理区隐写算法 | |
Vijayakumar et al. | Increased level of security using DNA steganography | |
CN104573781A (zh) | 一种二维码编码及解码方法 | |
CN110650006B (zh) | 一种中英文字符串的加密和解密方法 | |
CN109257161A (zh) | 二进制数据加密设备及加密方法 | |
CN110278066B (zh) | 一种中文字符串的加密、解密方法 | |
CN110061832B (zh) | 以汉字作为密码的对称密码算法的实现方法 | |
CN108270544A (zh) | 一种基于urDEED算法的密文图像可逆信息隐藏方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |