CN111352214A - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
CN111352214A
CN111352214A CN201811581619.0A CN201811581619A CN111352214A CN 111352214 A CN111352214 A CN 111352214A CN 201811581619 A CN201811581619 A CN 201811581619A CN 111352214 A CN111352214 A CN 111352214A
Authority
CN
China
Prior art keywords
lens
optical
optical lens
image
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811581619.0A
Other languages
English (en)
Other versions
CN111352214B (zh
Inventor
王东方
章鲁栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Sunny Automotive Optech Co Ltd
Original Assignee
Ningbo Sunny Automotive Optech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Sunny Automotive Optech Co Ltd filed Critical Ningbo Sunny Automotive Optech Co Ltd
Priority to CN201811581619.0A priority Critical patent/CN111352214B/zh
Publication of CN111352214A publication Critical patent/CN111352214A/zh
Application granted granted Critical
Publication of CN111352214B publication Critical patent/CN111352214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Abstract

公开了一种光学镜头和包括该光学镜头的成像设备。光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第二透镜可具有负光焦度,其物侧面为凹面,像侧面为凸面;第三透镜可具有正光焦度,其物侧面和像侧面均为凸面;第四透镜可具有正光焦度,其物侧面和像侧面均为凸面;第五透镜可具有负光焦度,其物侧面和像侧面均为凹面;以及第六透镜可具有正光焦度,其物侧面和像侧面均为凸面。根据本申请的光学镜头,可实现高解像、低成本、小型化、前端小口径、小畸变、温度性能佳等有益效果中的至少一个。

Description

光学镜头及成像设备
技术领域
本申请涉及光学镜头和包括该光学镜头的成像设备,更具体地,本申请涉及一种包括六片透镜的光学镜头及成像设备。
背景技术
得益于近年来汽车辅助驾驶系统的高速发展,光学镜头在汽车上得到越来越广泛的应用,光学镜头的像素要求也越来越高。同时越来越多的公司也开始研究自动驾驶光学镜头。
出于安全性的考虑,通常车载应用的光学镜头性能要求非常高,而应用于自动驾驶的光学镜头性能要求则是更加严格。首先,自动驾驶用光学镜头需要极高的像素要求,在原有车载应用类光学镜头基础上,应用于自动驾驶的光学镜头为了提升解像能力,通常会选用6片、7片甚至更多的镜片结构,但这会严重影响镜头的小型化。尤其这类光学镜头工作环境多变,需要在恶劣的天气中具备良好的光学性能,所以对温度稳定性的要求较高,保证在较宽的温度范围内,像高的变化量较小,严格控制后焦偏移量,以避免镜头在温度变化时,镜头成像质量下降。另一方面,这类光学镜头需要更小的畸变,以减小成像的变形。
因此,目前市场迫切需要一款高解像兼顾小型化、温度性能佳、小畸变、低成本等特点的光学镜头,以满足例如自动驾驶应用的要求。
发明内容
本申请提供了可适用于车载安装的、可至少克服或部分克服现有技术中的上述至少一个缺陷的光学镜头。
本申请的一个方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第二透镜可具有负光焦度,其物侧面为凹面,像侧面为凸面;第三透镜可具有正光焦度,其物侧面和像侧面均为凸面;第四透镜可具有正光焦度,其物侧面和像侧面均为凸面;第五透镜可具有负光焦度,其物侧面和像侧面均为凹面;以及第六透镜可具有正光焦度,其物侧面和像侧面均为凸面。
在一个实施方式中,第五透镜和第六透镜可互相胶合形成胶合透镜。
在一个实施方式中,光学镜头可具有至少两个非球面镜片。
在一个实施方式中,第二透镜、第三透镜和第四透镜均可为非球面镜片。
在一个实施方式中,光学镜头的光学总长度TTL、光学镜头的最大视场角FOV以及光学镜头的最大视场角所对应的像高H之间可满足:TTL/H/FOV≤0.035。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径D以及光学镜头的最大视场角所对应的像高H之间可满足:D/H/FOV≤0.04。
在一个实施方式中,光学镜头的最大视场角度FOV、光学镜头的整组焦距值F以及光学镜头的最大视场角所对应的像高H之间可满足:(FOV×F)/H≤70。
在一个实施方式中,第五透镜的焦距值F5与第六透镜的焦距值F6之间可满足:0.5≤|F5/F6|≤0.82。
在一个实施方式中,第二透镜至第六透镜中的、除第五透镜之外的任一透镜的中心厚度dn(n=3、5、8、11)与第二透镜至第六透镜中的、除第五透镜之外的任一透镜的中心厚度dm(m=3、5、8、11)之间可满足:max{dn/dm}≤2.5。
在一个实施方式中,第一透镜的物侧面的中心曲率半径R1与第一透镜的像侧面的中心曲率半径R2之间可满足:1≤R1/R2≤13。
在一个实施方式中,第五透镜的物侧面的中心曲率半径R10与第五透镜的像侧面的中心曲率半径R11之间可满足:-240≤R10/R11≤-160。
在一个实施方式中,第二透镜和第三透镜之间的空气间隔d4与光学镜头的光学总长度TTL之间可满足:0.03≤d4/TTL≤0.25。
在一个实施方式中,第四透镜和第五透镜之间的空气间隔d9与光学镜头的光学总长度TTL之间可满足:0.01≤d9/TTL≤0.06。
在一个实施方式中,第三透镜的焦距值F3与光学镜头的整组焦距值F之间可满足:0.5≤F3/F≤4.5。
本申请的另一方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜、第二透镜和第五透镜均可具有负光焦度;第三透镜、第四透镜和第六透镜均可具有正光焦度;第五透镜和第六透镜可互相胶合形成胶合透镜;以及光学镜头的光学总长度TTL、光学镜头的最大视场角FOV以及光学镜头的最大视场角所对应的像高H之间可满足:TTL/H/FOV≤0.035。
在一个实施方式中,第一透镜的物侧面可为凸面,像侧面为可凹面。
在一个实施方式中,第二透镜的物侧面可为凹面,像侧面可为凸面。
在一个实施方式中,第三透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第四透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第五透镜的物侧面和像侧面均可为凹面。
在一个实施方式中,第六透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,光学镜头可具有至少两个非球面镜片。
在一个实施方式中,第二透镜、第三透镜和第四透镜均可为非球面镜片。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径D以及光学镜头的最大视场角所对应的像高H之间可满足:D/H/FOV≤0.04。
在一个实施方式中,光学镜头的最大视场角度FOV、光学镜头的整组焦距值F以及光学镜头的最大视场角所对应的像高H之间可满足:(FOV×F)/H≤70。
在一个实施方式中,第五透镜的焦距值F5与第六透镜的焦距值F6之间可满足:0.5≤|F5/F6|≤0.82。
在一个实施方式中,第二透镜至第六透镜中的、除第五透镜之外的任一透镜的中心厚度dn(n=3、5、8、11)与第二透镜至第六透镜中的、除第五透镜之外的任一透镜的中心厚度dm(m=3、5、8、11)之间可满足:max{dn/dm}≤2.5。
在一个实施方式中,第一透镜的物侧面的中心曲率半径R1与第一透镜的像侧面的中心曲率半径R2之间可满足:1≤R1/R2≤13。
在一个实施方式中,第五透镜的物侧面的中心曲率半径R10与第五透镜的像侧面的中心曲率半径R11之间可满足:-240≤R10/R11≤-160。
在一个实施方式中,第二透镜和第三透镜之间的空气间隔d4与光学镜头的光学总长度TTL之间可满足:0.03≤d4/TTL≤0.25。
在一个实施方式中,第四透镜和第五透镜之间的空气间隔d9与光学镜头的光学总长度TTL之间可满足:0.01≤d9/TTL≤0.06。
在一个实施方式中,第三透镜的焦距值F3与光学镜头的整组焦距值F之间可满足:0.5≤F3/F≤4.5。
本申请的又一方面提供了一种成像设备,该成像设备可包括根据上述实施方式的光学镜头及用于将光学镜头形成的光学图像转换为电信号的成像元件。
本申请采用了例如六片透镜,通过优化设置镜片的形状,合理分配各镜片的光焦度以及形成胶合透镜等,实现光学镜头的高解像、低成本、小型化、前端小口径、小畸变、温度性能佳等有益效果中的至少一个。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;以及
图3为示出根据本申请实施例3的光学镜头的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜,第一胶合透镜也可被称作第二胶合透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学镜头包括例如六个具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六个透镜沿着光轴从物侧至像侧依序排列。
根据本申请示例性实施方式的光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第一透镜设置为凸面朝向物侧的弯月形状能够尽可能得收集大视场光线,使光线进入后方光学系统,增加通光量。在实际应用中,考虑到车载应用类镜头室外安装使用环境,会处于雨雪等恶劣天气,这样凸面朝向物侧的弯月形状,有利于水滴的滑落,减小对成像的影响。
第二透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凸面。第二透镜设置为凸面朝向像侧的弯月形状设计能够使得光线正确平稳地进入后方光线系统,有利于提高解像。
第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面。第三透镜设置为具有正光焦度且布置在孔径光阑之前,可有利于光线平稳过渡,减小光学镜头的口径及镜头长度,有利于小型化。
第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面。第四透镜具有正光焦度,在例如设置的孔径光阑之后使用一个具有正光焦度的第四透镜,可进一步矫正前方镜片组产生的像差,同时使光束再次汇聚,即可增大镜头的光圈,又可缩短镜头总长,使光学系统更紧凑,使得该光学系统具有相对较短的镜头总长。
第五透镜可具有负光焦度,其物侧面和像侧面均可为凹面。
第六透镜可具有正光焦度,其物侧面和像侧面均可为凸面。
在示例性实施方式中,可在例如第三透镜与第四透镜之间设置用于限制光束的光阑,以进一步提高镜头的成像质量。当将光阑置于第三透镜与第四透镜之间时,可有效收束进入光学系统的光线,减小光学系统镜片的口径,增大镜头的光圈,同时可使得镜头结构对称,有利于减小畸变。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。
在示例性实施方式中,根据需要,根据本申请的光学镜头还可包括设置在第六透镜与成像面之间的滤光片,以对具有不同波长的光线进行过滤;以及还可包括设置在滤光片与成像面之间的保护玻璃,以防止光学镜头的内部元件(例如,芯片)被损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,可通过将第五透镜的像侧面与第六透镜的物侧面胶合,而将第五透镜和第六透镜组合成胶合透镜。在该胶合透镜中,第五透镜可具有负光焦度以及第六透镜可具有正光焦度,这样的设置可将经第五透镜的光线再次汇聚至成像面,减小总长。另外,光学系统的各种像差可得到充分校正,在结构紧凑的前提下,可提高分辨率,优化畸变、CRA等光学性能。该双胶合的透镜组可有效减小两个镜片间的空气间隔,减小系统总长;可减少两个镜片之间的组立部件,减少组装工序,降低成本;可降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题;可减少镜片间反射引起光量损失,提升照度;此外,胶合透镜自身可以消色差,可进一步减小场曲,可矫正系统的轴外点像差。该胶合透镜的使用,分担了系统的整体色差矫正,可有效校正像差,以提高解像,且使得光学系统整体紧凑,满足小型化要求。
在示例性实施方式中,光学镜头的光学总长度TTL、光学镜头的最大视场角FOV以及光学镜头最大视场角所对应的像高H之间可满足:TTL/H/FOV≤0.035,更理想地,可进一步满足TTL/H/FOV≤0.03。满足条件式TTL/H/FOV≤0.03,可保证小型化特性。
在示例性实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜物侧面的最大通光口径D以及光学镜头的最大视场角所对应的像高H之间可满足:D/H/FOV≤0.04,更理想地,可进一步满足D/H/FOV≤0.035。满足条件式D/H/FOV≤0.04,可保证前端小口径,实现小型化特性。
在示例性实施方式中,光学镜头的最大视场角度FOV、光学镜头的整组焦距值F以及光学镜头最大视场角所对应的像高H之间可满足:(FOV×F)/H≤70,更理想地,可进一步满足(FOV×F)/H≤65。满足条件式(FOV×F)/H≤70,可实现小畸变特性。
在示例性实施方式中,第五透镜的焦距值F5与第六透镜的焦距值F6之间可满足:0.5≤|F5/F6|≤0.82,更理想地,可进一步满足0.52≤|F5/F6|≤0.8。通过设置使得第五透镜与第六透镜的焦距数值相接近,可有助于光线的平缓过渡,矫正色差。
在示例性实施方式中,第二透镜至第六透镜中的、除第五透镜之外的任一透镜的中心厚度dn(n=3、5、8、11)与第二透镜至第六透镜中的、除第五透镜之外的任一透镜的中心厚度dm(m=3、5、8、11)之间可满足:max{dn/dm}≤2.5,更理想地,可进一步满足max{dn/dm}≤2。通过设置使得第二透镜至第六透镜中的、除第五透镜之外的镜片的中心厚度相接近,可有助于高低温下整体光学镜头的光线偏折变化小,温度性能佳。
在示例性实施方式中,第一透镜的物侧面的中心曲率半径R1与其像侧面的中心曲率半径R2之间可满足:1≤R1/R2≤13,更理想地,可进一步满足4≤R1/R2≤10。满足条件式1≤R1/R2≤13时,第一透镜可收集大视场光线,有利于增加通光量。
在示例性实施方式中,第五透镜的物侧面的中心曲率半径R10与其像侧面的中心曲率半径R11之间可满足:-240≤R10/R11≤-160,更理想地,可进一步满足-230≤R10/R11≤-170。通过第五透镜的特殊形状设置,可有利于减小畸变,提升成像品质。
在示例性实施方式中,第二透镜和第三透镜之间的空气间隔d4与光学镜头的光学总长度TTL之间可满足:0.03≤d4/TTL≤0.25,更理想地,可进一步满足0.08≤d4/TTL≤0.2。通过合理设置第二透镜与第三透镜之间的空气间隔,可有利于优化温度性能。
在示例性实施方式中,第四透镜和第五透镜之间的空气间隔d9与光学镜头的光学总长度TTL之间可满足:0.01≤d9/TTL≤0.06,更理想地,可进一步满足0.025≤d9/TTL≤0.045。通过合理设置第四透镜与第五透镜之间的空气间隔,可有利于优化温度性能。
在示例性实施方式中,第三透镜的焦距值F3与光学镜头的整组焦距值F之间可满足:0.5≤F3/F≤4.5,更理想地,可进一步满足1≤F3/F≤4。通过将第三透镜的焦距设置在一定范围内,可有助于光线的平稳过渡,矫正色差。
在示例性实施方式中,根据本申请的光学镜头可具有至少两个可非球面镜片。例如,第二透镜、第三透镜和第四透镜均可采用非球面镜片。非球面镜片的特点是:从镜片中心到周边曲率是连续变化的。与从镜片中心到周边有恒定曲率的球面镜片不同,非球面镜片具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面镜片后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。应理解的是,为了提高成像质量,根据本申请的光学镜头还可增加非球面镜片的数量。例如,可选地,第一透镜可采用非球面镜片,以进一步提高解像质量。在重点关注镜头的解像质量的情况下,第一透镜至第六透镜均可采用非球面镜片。
在示例性实施方式中,光学镜头所采用的镜片可以是塑料材质的镜片,还可以是玻璃材质的镜片。塑料材质的镜片热膨胀系数较大,当镜头所使用的环境温度变化较大时,塑料材质的透镜会引起镜头的光学后焦变化量较大。采用玻璃材质的镜片,可减小温度对镜头光学后焦的影响,但是成本较高。
根据本申请的上述实施方式的光学镜头通过合理的镜片形状的设置及光焦度的设置,使用6片架构就能够实现高解像,同时能够兼顾镜头体积小、敏感度低、生产良率高的低成本要求。该光学镜头CRA较小,可避免光线后端出射时打到镜筒上产生杂光,又可以很好的匹配例如车载芯片,不会产生偏色和暗角现象。该光学镜头畸变较小,可避免周边光线成像缺陷,不会产生周边图像失真的情况。该光学镜头采用6片镜片,使得温度性能佳,高低温下成像效果变化小,像质稳定。因此,根据本申请的上述实施方式的光学镜头能够具有高解像、低成本、小型化、前端小口径、小畸变、温度性能佳等有益效果中的至少一个,可更好地符合例如车载镜头的应用要求。
本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学镜头不限于包括六个透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面。
第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8和像侧面S9均为凸面。
第五透镜L5为具有负光焦度的双凹透镜,其物侧面S10和像侧面S11均为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11和像侧面S12均为凸面。其中,第五透镜L5和第六透镜L6互相胶合形成胶合透镜。
其中,第二透镜L2、第三透镜L3和第四透镜L4均为非球面镜片,它们各自的物侧面和像侧面均为非球面。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护透镜L7’。滤光片L7可用于校正色彩偏差。保护透镜L7’可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S14并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第三透镜L3与第四透镜L4之间设置光阑STO以提高成像质量。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表1
Figure BDA0001918070040000111
Figure BDA0001918070040000121
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型,各透镜的中心厚度以及各透镜间的空气间隔,可使镜头具有高解像、低成本、小型化、前端小口径、小畸变、温度性能佳等有益效果中的至少一个。各非球面面型Z由以下公式限定:
Figure BDA0001918070040000122
其中,Z为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数conic;A、B、C、D、E均为高次项系数。下表2示出了可用于实施例1中的非球面透镜表面S3-S6和S8-S9的圆锥系数k以及高次项系数A、B、C、D和E。
表2
面号 K A B C D E
3 0.1508 3.8780E-03 8.2484E-05 -1.6664E-05 1.7040E-06 -7.2843E-08
4 -1.9930 1.9008E-03 -1.9809E-05 -2.5266E-06 -3.8048E-08 -8.9948E-09
5 -49.3298 5.7759E-04 -1.8960E-05 -2.5500E-06 4.7234E-07 -3.7788E-08
6 1.5970 4.5559E-04 2.4536E-05 1.6395E-06 -1.2535E-07 2.9875E-09
8 -0.0011 -4.6417E-04 3.1352E-05 -3.3013E-06 3.3515E-07 -1.3471E-08
9 0.0002 4.5439E-04 2.1789E-05 -4.0676E-06 5.2020E-07 -1.6188E-08
下表3给出了实施例1的光学镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面IMA的轴上距离);光学镜头的整组焦距值F;光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D;光学镜头的最大视场角所对应的像高H;光学镜头的最大视场角FOV;第三透镜L3的焦距值F3;第五透镜L5至第六透镜L6的焦距值F5-F6;第二透镜L2至第四透镜L4的中心厚度d3、d5和d8;第六透镜L6的中心厚度d11;第二透镜L2与第三透镜L3之间的空气间隔d4;第四透镜L4与第五透镜L5之间的空气间隔d9;第一透镜L1的物侧面S1和像侧面S2的中心曲率半径R1-R2;以及第五透镜L5的物侧面S10和像侧面S11的中心曲率半径R10-R11。
表3
TTL(mm) 25.0449 d5(mm) 1.8057
F(mm) 3.6061 d8(mm) 2.2369
D(mm) 10.4738 d9(mm) 0.8469
H(mm) 7.6220 d11(mm) 2.6932
FOV(°) 119.7852 R1(mm) 12.5126
F3(mm) 10.8470 R2(mm) 3.3553
F5(mm) -5.2164 R10(mm) -762.4353
F6(mm) 7.1191 R11(mm) 4.1505
d3(mm) 1.9573
d4(mm) 2.7206
在本实施例中,光学镜头的光学总长度TTL、光学镜头的最大视场角FOV以及光学镜头最大视场角所对应的像高H之间满足TTL/H/FOV=0.0274;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.0115;光学镜头的最大视场角度FOV、光学镜头的整组焦距值F以及光学镜头最大视场角所对应的像高H之间满足(FOV×F)/H=56.6720;第五透镜L5的焦距值F5与第六透镜L6的焦距值F6之间满足|F5/F6|=0.7327;第二透镜L2至第六透镜L6中的、除第五透镜L5之外的任一透镜的中心厚度dn(n=3、5、8、11)与第二透镜L2至第六透镜L6中的、除第五透镜L5之外的任一透镜的中心厚度dm(m=3、5、8、11)之间满足max{dn/dm}=1.4915;第一透镜L1的物侧面S1的中心曲率半径R1与其像侧面S2的中心曲率半径R2之间满足R1/R2=3.7292;第五透镜L5的物侧面S10的中心曲率半径R10与其像侧面S11的中心曲率半径R11之间满足R10/R11=-183.6960;第二透镜L2和第三透镜L3之间的空气间隔d4与光学镜头的光学总长度TTL之间满足d4/TTL=0.1086;第四透镜L4和第五透镜L5之间的空气间隔d9与光学镜头的光学总长度TTL之间满足d9/TTL=0.0338;以及第三透镜L3的焦距值F3与光学镜头的整组焦距值F之间满足F3/F=3.0080。
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面。
第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8和像侧面S9均为凸面。
第五透镜L5为具有负光焦度的双凹透镜,其物侧面S10和像侧面S11均为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11和像侧面S12均为凸面。其中,第五透镜L5和第六透镜L6互相胶合形成胶合透镜。
其中,第二透镜L2、第三透镜L3和第四透镜L4均为非球面镜片,它们各自的物侧面和像侧面均为非球面。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护透镜L7’。滤光片L7可用于校正色彩偏差。保护透镜L7’可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S14并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第三透镜L3与第四透镜L4之间设置光阑STO以提高成像质量。
下表4示出了实施例2的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表5示出了可用于实施例2中非球面透镜表面S3-S6和S8-S9的圆锥系数k以及高次项系数A、B、C、D和E。下表6给出了实施例2的光学镜头的光学总长度TTL;光学镜头的整组焦距值F;光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D;光学镜头的最大视场角所对应的像高H;光学镜头的最大视场角FOV;第三透镜L3的焦距值F3;第五透镜L5至第六透镜L6的焦距值F5-F6;第二透镜L2至第四透镜L4的中心厚度d3、d5和d8;第六透镜L6的中心厚度d11;第二透镜L2与第三透镜L3之间的空气间隔d4;第四透镜L4与第五透镜L5之间的空气间隔d9;第一透镜L1的物侧面S1和像侧面S2的中心曲率半径R1-R2;以及第五透镜L5的物侧面S10和像侧面S11的中心曲率半径R10-R11。
表4
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
1 17.6868 1.3572 1.77 49.61
2 4.7006 5.3239
3 -6.3695 2.7362 1.59 61.16
4 -8.7680 3.8117
5 39.4185 2.5413 1.59 61.25
6 -11.4479 0.0442
STO 无穷 3.4922
8 14.2417 3.1037 1.62 63.88
9 -12.8056 1.2840
10 -988.3081 0.6576 1.78 25.72
11 5.8023 3.7652 1.50 81.59
12 -26.9813 0.6028
13 无穷 1.0412 1.52 64.21
14 无穷 5.2934
IMA 无穷
表5
面号 K A B C D E
3 0.1586 1.4084E-03 1.4603E-05 -1.6274E-06 8.4029E-08 -1.7595E-09
4 -2.0048 6.9355E-04 -3.8841E-06 -2.4553E-07 -1.6913E-09 -2.0297E-10
5 -48.2225 2.1240E-04 -3.4663E-06 -2.4969E-07 2.3442E-08 -6.3159E-10
6 1.6140 1.7360E-04 4.4652E-06 1.3979E-07 -5.5193E-09 9.2482E-11
8 -0.0447 -1.6767E-04 5.9150E-06 -3.1120E-07 1.6616E-08 -3.0610E-10
9 -0.0042 1.6518E-04 3.9993E-06 -3.7263E-07 2.1004E-08 -3.9813E-10
表6
TTL(mm) 35.0547 d5(mm) 2.5413
F(mm) 5.0464 d8(mm) 3.1037
D(mm) 14.9087 d9(mm) 1.2840
H(mm) 10.2660 d11(mm) 3.7652
FOV(°) 115.8192 R1(mm) 17.6868
F3(mm) 11.3238 R2(mm) 4.7006
F5(mm) -7.2891 R10(mm) -988.3081
F6(mm) 9.9639 R11(mm) 5.8023
d3(mm) 2.7362
d4(mm) 3.8117
在本实施例中,光学镜头的光学总长度TTL、光学镜头的最大视场角FOV以及光学镜头最大视场角所对应的像高H之间满足TTL/H/FOV=0.0295;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.0125;光学镜头的最大视场角度FOV、光学镜头的整组焦距值F以及光学镜头最大视场角所对应的像高H之间满足(FOV×F)/H=56.9330;第五透镜L5的焦距值F5与第六透镜L6的焦距值F6之间满足|F5/F6|=0.7316;第二透镜L2至第六透镜L6中的、除第五透镜L5之外的任一透镜的中心厚度dn(n=3、5、8、11)与第二透镜L2至第六透镜L6中的、除第五透镜L5之外的任一透镜的中心厚度dm(m=3、5、8、11)之间满足max{dn/dm}=1.4816;第一透镜L1的物侧面S1的中心曲率半径R1与其像侧面S2的中心曲率半径R2之间满足R1/R2=3.7627;第五透镜L5的物侧面S10的中心曲率半径R10与其像侧面S11的中心曲率半径R11之间满足R10/R11=-170.3302;第二透镜L2和第三透镜L3之间的空气间隔d4与光学镜头的光学总长度TTL之间满足d4/TTL=0.1087;第四透镜L4和第五透镜L5之间的空气间隔d9与光学镜头的光学总长度TTL之间满足d9/TTL=0.0366;以及第三透镜L3的焦距值F3与光学镜头的整组焦距值F之间满足F3/F=2.2439。
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面。
第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8和像侧面S9均为凸面。
第五透镜L5为具有负光焦度的双凹透镜,其物侧面S10和像侧面S11均为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11和像侧面S12均为凸面。其中,第五透镜L5和第六透镜L6互相胶合形成胶合透镜。
其中,第二透镜L2、第三透镜L3和第四透镜L4均为非球面镜片,它们各自的物侧面和像侧面均为非球面。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护透镜L7’。滤光片L7可用于校正色彩偏差。保护透镜L7’可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S14并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第三透镜L3与第四透镜L4之间设置光阑STO以提高成像质量。
下表7示出了实施例3的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表8示出了可用于实施例3中非球面透镜表面S3-S6和S8-S9的圆锥系数k以及高次项系数A、B、C、D和E。下表9给出了实施例3的光学镜头的光学总长度TTL;光学镜头的整组焦距值F;光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D;光学镜头的最大视场角所对应的像高H;光学镜头的最大视场角FOV;第三透镜L3的焦距值F3;第五透镜L5至第六透镜L6的焦距值F5-F6;第二透镜L2至第四透镜L4的中心厚度d3、d5和d8;第六透镜L6的中心厚度d11;第二透镜L2与第三透镜L3之间的空气间隔d4;第四透镜L4与第五透镜L5之间的空气间隔d9;第一透镜L1的物侧面S1和像侧面S2的中心曲率半径R1-R2;以及第五透镜L5的物侧面S10和像侧面S11的中心曲率半径R10-R11。
表7
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
1 16.3420 1.4176 1.77 49.61
2 4.2991 4.8715
3 -5.8020 2.4971 1.57 56.06
4 -8.0000 3.4758
5 34.8396 2.2541 1.59 61.25
6 -10.4489 0.1962
STO 无穷 3.2473
8 12.9010 2.8590 1.62 63.41
9 -11.7957 1.0843
10 -1227.6600 0.6030 1.78 25.72
11 5.4112 3.4472 1.50 81.59
12 -23.1876 0.5558
13 无穷 0.9500 1.52 64.21
14 无穷 4.8131
IMA 无穷
表8
面号 K A B C D E
3 0.1573 1.8383E-03 2.4372E-05 -2.7261E-06 1.9160E-07 -4.6304E-09
4 -2.0168 9.1192E-04 -6.6301E-06 -4.7217E-07 -3.3916E-09 -6.1475E-10
5 -46.7258 2.8239E-04 -6.2654E-06 -5.1596E-07 4.7787E-08 -2.0744E-09
6 1.6165 2.1559E-04 6.9678E-06 2.5495E-07 -1.4607E-08 7.0787E-11
8 -0.0519 -2.2501E-04 9.2362E-06 -5.7945E-07 3.8729E-08 -8.6957E-10
9 -0.0381 2.1819E-04 6.6615E-06 -7.0780E-07 4.7511E-08 -1.0526E-09
表9
TTL(mm) 32.2719 d5(mm) 2.2541
F(mm) 4.5993 d8(mm) 2.8590
D(mm) 14.1172 d9(mm) 1.0843
H(mm) 9.5820 d11(mm) 3.4472
FOV(°) 118.2084 R1(mm) 16.3420
F3(mm) 10.3978 R2(mm) 4.2991
F5(mm) -6.8083 R10(mm) -1227.6600
F6(mm) 9.1723 R11(mm) 5.4112
d3(mm) 2.4971
d4(mm) 3.4758
在本实施例中,光学镜头的光学总长度TTL、光学镜头的最大视场角FOV以及光学镜头最大视场角所对应的像高H之间满足TTL/H/FOV=0.0285;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.0125;光学镜头的最大视场角度FOV、光学镜头的整组焦距值F以及光学镜头最大视场角所对应的像高H之间满足(FOV×F)/H=56.7389;第五透镜L5的焦距值F5与第六透镜L6的焦距值F6之间满足|F5/F6|=0.7423;第二透镜L2至第六透镜L6中的、除第五透镜L5之外的任一透镜的中心厚度dn(n=3、5、8、11)与第二透镜L2至第六透镜L6中的、除第五透镜L5之外的任一透镜的中心厚度dm(m=3、5、8、11)之间满足max{dn/dm}=1.5293;第一透镜L1的物侧面S1的中心曲率半径R1与其像侧面S2的中心曲率半径R2之间满足R1/R2=3.8013;第五透镜L5的物侧面S10的中心曲率半径R10与其像侧面S11的中心曲率半径R11之间满足R10/R11=-226.8729;第二透镜L2和第三透镜L3之间的空气间隔d4与光学镜头的光学总长度TTL之间满足d4/TTL=0.1077;第四透镜L4和第五透镜L5之间的空气间隔d9与光学镜头的光学总长度TTL之间满足d9/TTL=0.0336;以及第三透镜L3的焦距值F3与光学镜头的整组焦距值F之间满足F3/F=2.2607。
综上,实施例1至实施例3分别满足以下表10所示的关系。
表10
条件式/实施例 1 2 3
TTL/H/FOV 0.0274 0.0295 0.0285
D/H/FOV 0.0115 0.0125 0.0125
(FOV×F)/H 56.6720 56.9330 56.7389
|F5/F6| 0.7327 0.7316 0.7423
MAX{dn/dm} 1.4915 1.4816 1.5293
R1/R2 3.7292 3.7627 3.8013
R10/R11 -183.6960 -170.3302 -226.8729
d4/TTL 0.1086 0.1087 0.1077
d9/TTL 0.0338 0.0366 0.0336
F3/F 3.0080 2.2439 2.2607
本申请还提供了一种成像设备,该成像设备可包括根据本申请上述实施方式的光学镜头和用于将光学镜头形成的光学图像转换为电信号的成像元件。该成像元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。该成像设备可以是诸如探测距离相机的独立成像设备,也可以是集成在诸如探测距离设备上的成像模块。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (16)

1.光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
其特征在于,
所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;
所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;
所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;
所述第五透镜具有负光焦度,其物侧面和像侧面均为凹面;以及
所述第六透镜具有正光焦度,其物侧面和像侧面均为凸面。
2.根据权利要求1所述的光学镜头,其特征在于,所述第五透镜和所述第六透镜互相胶合形成胶合透镜。
3.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头具有至少两个非球面镜片。
4.根据权利要求3所述的光学镜头,其特征在于,所述第二透镜、所述第三透镜和所述第四透镜均为非球面镜片。
5.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述光学镜头的光学总长度TTL、所述光学镜头的最大视场角FOV以及所述光学镜头的最大视场角所对应的像高H之间满足:TTL/H/FOV≤0.035。
6.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角所对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头的最大视场角所对应的像高H之间满足:D/H/FOV≤0.04。
7.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角度FOV、所述光学镜头的整组焦距值F以及所述光学镜头的最大视场角所对应的像高H之间满足:(FOV×F)/H≤70。
8.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第五透镜的焦距值F5与所述第六透镜的焦距值F6之间满足:0.5≤|F5/F6|≤0.82。
9.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第二透镜至所述第六透镜中的、除所述第五透镜之外的任一透镜的中心厚度dn(n=3、5、8、11)与所述第二透镜至所述第六透镜中的、除所述第五透镜之外的任一透镜的中心厚度dm(m=3、5、8、11)之间满足:max{dn/dm}≤2.5。
10.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的中心曲率半径R1与所述第一透镜的像侧面的中心曲率半径R2之间满足:1≤R1/R2≤13。
11.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第五透镜的物侧面的中心曲率半径R10与所述第五透镜的像侧面的中心曲率半径R11之间满足:-240≤R10/R11≤-160。
12.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第二透镜和所述第三透镜之间的空气间隔d4与所述光学镜头的光学总长度TTL之间满足:0.03≤d4/TTL≤0.25。
13.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜之间的空气间隔d9与所述光学镜头的光学总长度TTL之间满足:0.01≤d9/TTL≤0.06。
14.根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第三透镜的焦距值F3与所述光学镜头的整组焦距值F之间满足:0.5≤F3/F≤4.5。
15.光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
其特征在于,
所述第一透镜、所述第二透镜和所述第五透镜均具有负光焦度;
所述第三透镜、所述第四透镜和所述第六透镜均具有正光焦度;
所述第五透镜和所述第六透镜互相胶合形成胶合透镜;以及
所述光学镜头的光学总长度TTL、所述光学镜头的最大视场角FOV以及所述光学镜头的最大视场角所对应的像高H之间满足:TTL/H/FOV≤0.035。
16.一种成像设备,其特征在于,包括权利要求1或15所述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
CN201811581619.0A 2018-12-24 2018-12-24 光学镜头及成像设备 Active CN111352214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811581619.0A CN111352214B (zh) 2018-12-24 2018-12-24 光学镜头及成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811581619.0A CN111352214B (zh) 2018-12-24 2018-12-24 光学镜头及成像设备

Publications (2)

Publication Number Publication Date
CN111352214A true CN111352214A (zh) 2020-06-30
CN111352214B CN111352214B (zh) 2021-07-30

Family

ID=71193765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811581619.0A Active CN111352214B (zh) 2018-12-24 2018-12-24 光学镜头及成像设备

Country Status (1)

Country Link
CN (1) CN111352214B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305715A (zh) * 2020-11-13 2021-02-02 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN113219637A (zh) * 2021-03-16 2021-08-06 上海峰梅光学科技有限公司 一种车载adas广角镜头
WO2023143235A1 (zh) * 2022-01-26 2023-08-03 江西联创电子有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919353A (zh) * 2013-04-22 2015-09-16 奥林巴斯株式会社 广角物镜光学系统
US20150277088A1 (en) * 2014-04-01 2015-10-01 Sintai Optical (Shenzhen) Co., Ltd. Wide-angle lens assembly
CN107817596A (zh) * 2016-09-13 2018-03-20 先进光电科技股份有限公司 光学成像系统
CN207516626U (zh) * 2017-11-01 2018-06-19 东莞市宇瞳光学科技股份有限公司 一种超广角定焦镜头
CN108983396A (zh) * 2018-09-04 2018-12-11 江西凤凰光学科技有限公司 一种鱼眼镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919353A (zh) * 2013-04-22 2015-09-16 奥林巴斯株式会社 广角物镜光学系统
US20150277088A1 (en) * 2014-04-01 2015-10-01 Sintai Optical (Shenzhen) Co., Ltd. Wide-angle lens assembly
CN107817596A (zh) * 2016-09-13 2018-03-20 先进光电科技股份有限公司 光学成像系统
CN207516626U (zh) * 2017-11-01 2018-06-19 东莞市宇瞳光学科技股份有限公司 一种超广角定焦镜头
CN108983396A (zh) * 2018-09-04 2018-12-11 江西凤凰光学科技有限公司 一种鱼眼镜头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305715A (zh) * 2020-11-13 2021-02-02 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN113219637A (zh) * 2021-03-16 2021-08-06 上海峰梅光学科技有限公司 一种车载adas广角镜头
CN113219637B (zh) * 2021-03-16 2023-03-14 上海峰梅光学科技有限公司 一种车载adas广角镜头
WO2023143235A1 (zh) * 2022-01-26 2023-08-03 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
CN111352214B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN109445077B (zh) 光学镜头及成像设备
CN112180538B (zh) 光学镜头及成像设备
CN109557644B (zh) 光学镜头及成像设备
CN111474673B (zh) 光学镜头及成像设备
CN111781701B (zh) 光学镜头及成像设备
CN111830672B (zh) 光学镜头及成像设备
CN111367058B (zh) 光学镜头及成像设备
CN112068291A (zh) 光学镜头及成像设备
CN112147759B (zh) 光学镜头及电子设备
CN111352214B (zh) 光学镜头及成像设备
CN112014946B (zh) 光学镜头及成像设备
CN111983779B (zh) 光学镜头及成像设备
CN109683291B (zh) 光学镜头及成像设备
CN111239962B (zh) 光学镜头及成像设备
CN111103672A (zh) 光学镜头
CN112014945B (zh) 光学镜头及成像设备
CN111999863B (zh) 光学镜头及成像设备
CN110967806B (zh) 光学镜头
CN111198429B (zh) 光学镜头及成像设备
CN111239964B (zh) 光学镜头及成像设备
CN111221099B (zh) 光学镜头及成像设备
CN111983778B (zh) 光学镜头及成像设备
CN112147751B (zh) 光学镜头及电子设备
CN111061032B (zh) 光学镜头
CN110794551B (zh) 光学镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant