CN111349559B - 一种小型宽带微波生物效应照射装置 - Google Patents

一种小型宽带微波生物效应照射装置 Download PDF

Info

Publication number
CN111349559B
CN111349559B CN202010174011.7A CN202010174011A CN111349559B CN 111349559 B CN111349559 B CN 111349559B CN 202010174011 A CN202010174011 A CN 202010174011A CN 111349559 B CN111349559 B CN 111349559B
Authority
CN
China
Prior art keywords
hollow
waveguide
inner conductor
transition
radio frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010174011.7A
Other languages
English (en)
Other versions
CN111349559A (zh
Inventor
赵雪龙
王长振
周红梅
刘琦
董国福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Military Medical Sciences AMMS of PLA
Original Assignee
Academy of Military Medical Sciences AMMS of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Military Medical Sciences AMMS of PLA filed Critical Academy of Military Medical Sciences AMMS of PLA
Priority to CN202010174011.7A priority Critical patent/CN111349559B/zh
Publication of CN111349559A publication Critical patent/CN111349559A/zh
Application granted granted Critical
Publication of CN111349559B publication Critical patent/CN111349559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种小型宽带微波生物效应照射装置,包括载物台、激励器和射频接头;载物台上开设有凹槽,在凹槽的底部开设有透光孔;激励器包括外导体和内导体;外导体包括空心波导,自空心波导的两端沿轴向延伸而成的两过渡空心波导,以及自两过渡空心波导的端部沿轴向延伸而成的两空心圆波导;外导体的底部中心开设有敞口,敞口的端面与载物台的顶面紧贴,并将载物台上的凹槽包围于其中;空心波导的顶部开设有第一检测孔;内导体包括第一内导体以及自第一内导体的两端沿轴向延伸而成的两过渡内导体,第一内导体上开设有第二检测孔;两射频接头分别插置在两空心圆波导内,每一射频接头的内导体与过渡内导体连接。

Description

一种小型宽带微波生物效应照射装置
技术领域
本发明涉及一种小型宽带微波生物效应照射装置,属于微波生物效应领域。
背景技术
随着现代社会的快速发展,电子产品越来越多地出现在人们的生活中,为生活带来巨大便利的同时,其辐射的电磁波也对人体健康构成了不可忽视的影响。大量的研究结果表明,高强度微波辐照会使生物组织温度升高,而低强度微波辐照对于生物体的非热效应影响如何,目前还存在争议。细胞、组织作为生物体及生命活动的基本组成和功能单位,是一切生命现象的基础。所以微波对于生物体的影响,首先要着眼于微波对组成生物体的细胞、组织的影响。已经有利用多种照射装置对微波照射下细胞、组织变化研究的文献报道,综合文献分析发现,已有的照射装置存在以下问题:1、装置不够紧凑;2、工作带宽较窄;3、电磁屏蔽性能较差。
发明内容
针对上述问题,本发明的目的是提供一种结构较为紧凑、工作带宽较宽、电磁屏蔽性能较好的小型宽带微波生物效应照射装置。
为实现上述目的,本发明采用以下技术方案:一种小型宽带微波生物效应照射装置,包括:
载物台,所述载物台上开设有用于放置样品的凹槽,在所述凹槽的底部开设有透光孔;
激励器,包括外导体和内导体;所述外导体包括空心波导,自所述空心波导的两端沿轴向向外延伸而成的两过渡空心波导,以及自两所述过渡空心波导的端部沿轴向向外延伸而成的两第一空心圆波导,所述空心波导、过渡空心波导和第一空心圆波导的中心轴线重合;在所述外导体的空心波导以及两过渡空心波导的底部开设敞口,所述外导体放置在所述载物台上,所述敞口的端面与所述载物台的顶面紧贴,并将所述载物台上的所述凹槽包围于其中;所述空心波导的顶部开设有第一检测孔;所述内导体包括第一内导体以及自所述第一内导体的两端沿轴向向外延伸而成的两过渡内导体,所述内导体设置在所述外导体内,所述内导体的中心轴线与第一空心圆波导的中心轴线重合,所述第一内导体上开设有第二检测孔,所述第二检测孔、第一检测孔和透光孔同轴分布;
射频接头;两所述射频接头分别插置在所述外导体上的两所述第一空心圆波导内,每一所述射频接头上的内导体伸入所述外导体内并与所述内导体的过渡内导体连接。
进一步地,所述空心波导采用空心圆波导,所述过渡空心波导采用空心圆锥波导;所述空心圆波导的底部开设有第一切口,所述空心圆锥波导的底部开设有第二切口,所述第一切口与其两侧的两所述第二切口共同围成所述敞口。
进一步地,所述空心波导采用空心正多边形波导,边数n≥4;所述过渡空心波导包括与所述第一空心圆波导的端部连接的圆形头端,与所述空心波导的端部连接的正多边形尾端,以及自所述圆形头端向所述正多边形尾端延伸形成的波导壁;所述空心正多边形波导的底部开设第三切口,所述过渡空心波导的波导壁的底部开设第四切口,所述第三切口与其两侧的两所述第四切口共同围成所述敞口。
进一步地,所述过渡内导体的自由端为圆形。
进一步地,所述第一内导体采用圆柱体,所述过渡内导体采用圆台;
或者,所述第一内导体为棱柱体,所述过渡内导体为锥台,所述锥台的自由端为圆形。
进一步地,在每一所述过渡内导体的自由端的端面中心开设与所述射频接头的内导体配合的圆孔。
优选地,在两所述第一空心圆波导的端部均设置第一法兰,所述射频接头插置在所述第一空心圆波导内,所述射频接头上的法兰与所述第一法兰之间通过紧固件固定连接。
进一步地,所述射频接头采用SMA型同轴射频接头或N型同轴射频接头;所述载物台、激励器均采用金属制成。
进一步地,所述外导体的轴向长度为L1,壁厚均为D1;两所述过渡空心波导的端部之间的距离为L2;所述第一法兰的壁厚为D2,直径为D3;所述空心波导的轴向长度为L3,所述空心波导的中心轴线到其内顶壁的距离为L4;所述过渡空心波导的长度为(L2-L3)/2;所述第一空心圆波导的内径与所述射频接头的尺寸相匹配;所述第一空心圆波导的长度为(L1-L2)/2-D2;所述敞口的端面到所述第一空心圆波导的中心轴线的距离为L5;所述第一检测孔的直径为L6;其中,0<L6<L3<L2<(L1-2×D2),所述第一空心圆波导的外半径<L5<L4,所述第一法兰的直径D3大于等于所述射频接头上的法兰最大尺寸;
所述内导体长为L13,所述第一内导体的截面尺寸为L14;所述第二检测孔的直径为L15;所述过渡内导体的自由端直径L17;所述圆孔的直径为L17,所述圆孔的深度为L16;其中,L13≤L2,L14<2×L4,0<L15<L14,0<L16<(L13-L5)/2,L17大于射频接头上的内导体直径。
进一步地,所述载物台为长度为L7、宽度为L8、高度为L9的矩形体,所述凹槽的长度为L10、宽度为L10、高度为L11;所述透光孔的直径为L12;0<L12<L10≤L3,L7>L10,L8>L10,L7大于敞口的最大尺寸,L8大于2×(L42-L52)1/2,0<L11<L9。
本发明采用以上技术方案,其具有如下优点:本发明包括载物台、激励器和射频接头;激励器包括外导体和内导体,两个射频接头分别固定在外导体上的两第一空心圆波导上,内导体设置在外导体内,外导体置于载物台上,形成结构紧凑的微波生物效应照射装置;照射装置上开有检测孔和透光孔,其余部分均为封闭状态,故整个微波生物效应照射装置处于近封闭状态,使得整个装置具有较好的电磁屏蔽性能;装置内部结构可使微波工作模式由TEM模式转换为准TEM模式,而这种工作模式没有截止频率,所以具有较宽的工作频率范围;因此,整个微波生物效应照射装置具有结构较为紧凑、工作带宽较宽、电磁屏蔽性能较好的优点,比较适用于应用空间较为有限、工作频率范围较宽、对电磁场较为敏感的微波生物效应研究及应用场合。
附图说明
图1是本发明的整体结构示意图;
图2是本发明的剖面示意图;
图3是本发明外导体的结构剖面示意图;
图4是本发明载物台的结构示意图;
图5是本发明内导体的剖面示意图;
图中,1、载物台;11、凹槽;12、透光孔;2、激励器;21、外导体;211、空心波导;212;过渡空心波导;213、第一空心圆波导;214、敞口;215、第一检测孔;216、第一法兰;22、内导体;221、第一内导体;222、过渡内导体;223、第二检测孔;224、圆孔;3、射频接头。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
如图1~4所示,本发明提供的一种小型宽带微波生物效应照射装置,包括:载物台1、激励器2和射频接头3;
其中,载物台1,其上开设有用于放置样品的凹槽11,在凹槽11的底部开设有透光孔12;
激励器2,包括外导体21和内导体22;外导体21包括空心波导211,自空心波导211的两端沿轴向向外延伸而成的两过渡空心波导212,以及自两过渡空心波导212的端部沿轴向向外延伸而成的两第一空心圆波导213,空心波导211、过渡空心波导212和第一空心圆波导213的中心轴线重合;在外导体21的空心波导211以及两过渡空心波导212的底部开设敞口214,外导体21放置在载物台1上,敞口214的端面与载物台1的顶面紧贴,并将载物台1上的凹槽11包围于其中;空心波导211的顶部开设有第一检测孔215;内导体22包括第一内导体221以及自第一内导体221的两端沿轴向向外延伸而成的两过渡内导体222,内导体22设置在外导体21内,内导体22的中心轴线与第一空心圆波导213的中心轴线重合,第一内导体221上开设有第二检测孔223,第二检测孔223、第一检测孔215和透光孔12同轴分布;
射频接头3;两射频接头3分别插置在外导体21上的两第一空心圆波导213内,每一射频接头3上的内导体伸入外导体21内并与内导体22的过渡内导体222连接。
在一个优选实施例中,如图3所示,空心波导211可采用空心圆波导,过渡空心波导212可采用空心圆锥波导;空心圆波导的底部开设有第一切口,空心圆锥波导的底部开设有第二切口,第一切口与其两侧的两第二切口共同围成敞口214。
在一个优选实施例中,空心波导211可采用空心正多边形波导,其边数记为n,n≥4;过渡空心波导212包括与第一空心圆波导213的端部连接的圆形头端,与空心波导211的端部连接的正多边形尾端,以及自圆形头端向正多边形尾端延伸形成的波导壁;空心正多边形波导的底部开设第三切口,过渡空心波导212的波导壁的底部开设第四切口,第三切口与其两侧的两第四切口共同围成敞口214。
在一个优选实施例中,空心波导211可为空心方形波导,过渡空心波导212可为头圆尾方的空心波导。
在一个优选实施例中,过渡内导体222的自由端为圆形,以避免微波遇到过渡内导体222的自由端出现反射等问题。
在一个优选实施例中,如图5所示,第一内导体221可为圆柱体,过渡内导体222可为圆台。
在一个优选实施例中,第一内导体221可为棱柱体,过渡内导体222为锥台,其中,锥台的自由端为圆形。
在一个优选实施例中,在两第一空心圆波导213的端部均设置第一法兰216,射频接头3插置在第一空心圆波导213内,射频接头3上的法兰与第一法兰216之间通过紧固件固定连接,进而将射频接头3固定在第一空心圆波导213上。
在一个优选实施例中,在每一过渡内导体222的自由端的端面中心开设与射频接头3的内导体配合的圆孔224,以方便射频接头3和内导体22的连接。
在一个优选实施例中,第一空心圆波导213的内径与射频接头3的尺寸相匹配。
在一个优选实施例中,如图3所示,外导体21的轴向长度为L1,壁厚为D1;两过渡空心波导212的端部之间的距离为L2;第一法兰216的壁厚为D2,直径为D3;空心波导211的轴向长度为L3,空心波导211的中心轴线到其内顶壁的距离为L4;过渡空心波导212的长度为(L2-L3)/2;第一空心圆波导213的长度为(L1-L2)/2-D2;敞口214的端面到第一空心圆波导213的中心轴线的距离为L5;第一检测孔215的直径为L6;其中,D1>0,D2>0,0<L6<L3<L2<(L1-2×D2),第一空心圆波导213外半径<L5<L4,第一法兰216的直径D3大于等于射频接头3上的法兰最大尺寸。需要说明的是,当空心波导211采用空心圆波导时,空心波导211的中心轴线到其内顶壁的距离L4即为空心圆波导的内半径,当空心波导211采用空心正多边形波导时,空心波导211的中心轴线到其内顶壁的距离L4即为空心正多边形波导的内截面的内接圆的半径。
在一个优选实施例中,如图4所示,载物台1可为长度为L7、宽度为L8、高度为L9的矩形体,凹槽11为设置在矩形体的中心位置的矩形槽,矩形槽的长度为L10、宽度为L10、高度为L11;透光孔12的直径为L12;其中L10与L11根据生物样品尺寸确定,0<L12<L10≤L3,L7>L10,L8>L10,L7大于敞口214的最大尺寸,L8大于2×(L42-L52)1/2,0<L11<L9;
在一个优选实施例中,如图5所示,内导体22长为L13,第一内导体221的截面尺寸为L14;第二检测孔223的直径为L15;过渡内导体222的自由端直径L17;圆孔224的直径为L17、深度为L16;其中,L13≤L2,L14<2×L4,0<L15<L14,0<L16<(L13-L5)/2,L17稍大于射频接头3上的内导体直径。需要说明的是,当第一内导体221采用圆柱体时,第一内导体221的截面尺寸即为圆柱体的直径;当第一内导体221采用棱柱体时,第一内导体221的截面尺寸即为棱柱体截面的内接圆直径。
在一个优选实施例中,射频接头3采用SMA型同轴射频接头或N型同轴射频接头;载物台1、激励器2均采用金属制成,金属优选为铜。
本发明的使用过程如下:
将放置生物样品置于载物台1的凹槽11内部;由照射装置的一侧的射频接头3注入微波,射频接头3内部的TEM模式微波经过一侧的过渡空心波导212、内导体22及载物台1围成的空间转换为准TEM模式,并向照射装置的另一侧传输,传输过程中会对置于载物台1的凹槽11中的生物样品进行照射,剩余微波能量会再经过另一侧的过渡空心波导212、内导体22以及载物台1围成的空间后,由准TEM模式转换为TEM模式,并经另一侧的射频接头3传出;在整个装置工作的同时,可以利用透光孔12作为光源窗口,使用外部检测设备通过第一检测孔215、第二检测孔223伸入整个装置内部,对生物样品的电磁参数、温度参数等信息进行监测。
由于载物台1的凹槽11的尺寸L10与L11根据生物样品尺寸确定,当L10与L11确定后,通过电磁仿真软件HFSS,由照射装置一侧的射频接头3注入TEM模式微波,设定注入的TEM模式微波传输到另一侧同轴射频接头3后,其传输效率在0-3GHz频率范围内均优于-10dB进行仿真优化,可以获得参数L1、L2、L3、L4、L5、L6、L7、L8、L9、L12、L13、L14、L15、L16、L17、D1、D2、D3的精确值,为后续微波生物效应照射装置的批量生产提供数据支持,有利于生产工艺的优化。
本发明仅以上述实施例进行说明,各部件的结构、设置位置及其连接都是可以有所变化的。在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进或等同变换,均不应排除在本发明的保护范围之外。

Claims (7)

1.一种小型宽带微波生物效应照射装置,其特征在于,包括:
载物台(1),所述载物台(1)上开设有用于放置样品的凹槽(11),在所述凹槽(11)的底部开设有透光孔(12);
激励器(2),包括外导体(21)和内导体(22);所述外导体(21)包括空心波导(211),自所述空心波导(211)的两端沿轴向向外延伸而成的两过渡空心波导(212),以及自两所述过渡空心波导(212)的端部沿轴向向外延伸而成的两第一空心圆波导(213),在两所述第一空心圆波导(213)的端部均设置第一法兰(216),所述空心波导(211)、过渡空心波导(212)和第一空心圆波导(213)的中心轴线重合;在所述外导体(21)的空心波导(211)以及两过渡空心波导(212)的底部开设敞口(214),所述外导体(21)放置在所述载物台(1)上,所述敞口(214)的端面与所述载物台(1)的顶面紧贴,并将所述载物台(1)上的所述凹槽(11)包围于其中;所述空心波导(211)的顶部开设有第一检测孔(215);所述内导体(22)包括第一内导体(221)以及自所述第一内导体(221)的两端沿轴向向外延伸而成的两过渡内导体(222),所述内导体(22)设置在所述外导体(21)内,所述内导体(22)的中心轴线与第一空心圆波导(213)的中心轴线重合,所述第一内导体(221)上开设有第二检测孔(223),所述第二检测孔(223)、第一检测孔(215)和透光孔(12)同轴分布;
射频接头(3),两所述射频接头(3)分别插置在所述外导体(21)上的两所述第一空心圆波导(213)内,每一所述射频接头(3)上的内导体伸入所述外导体(21)内并与所述内导体(22)的过渡内导体(222)连接,在每一所述过渡内导体(222)的自由端的端面中心开设与所述射频接头(3)的内导体配合的圆孔(224);
其中:
所述外导体(21)的轴向长度为L1,壁厚均为D1;两所述过渡空心波导(212)的端部之间的距离为L2;所述第一法兰(216)的壁厚为D2,直径为D3;所述空心波导(211)的轴向长度为L3,所述空心波导(211)的中心轴线到其内顶壁的距离为L4;所述过渡空心波导(212)的长度为(L2-L3)/2;所述第一空心圆波导(213)的内径与所述射频接头(3)的尺寸相匹配;所述第一空心圆波导(213)的长度为(L1-L2)/2-D2;所述敞口(214)的端面到所述第一空心圆波导(213)的中心轴线的距离为L5;所述第一检测孔(215)的直径为L6;其中,0<L6<L3<L2<(L1-2×D2),所述第一空心圆波导(213)的外半径<L5<L4,所述第一法兰(216)的直径D3大于等于所述射频接头(3)上的法兰最大尺寸;
所述内导体(22)长为L13,所述第一内导体(221)的截面最大尺寸为L14;所述第二检测孔(223)的直径为L15;所述过渡内导体(222)的自由端直径L17;所述圆孔(224)的直径为L17,所述圆孔(224)的深度为L16;其中,L13≤L2,L14<2×L4,0<L15<L14,0<L16<(L13-L5)/2,L17大于射频接头(3)上的内导体直径;
所述载物台(1)为长度为L7、宽度为L8、高度为L9的矩形体,所述凹槽(11)的长度为L10、宽度为L10、高度为L11;所述透光孔(12)的直径为L12;0<L12<L10≤L3,L7>L10,L8>L10,L7大于敞口(214)的最大尺寸,L8大于2×(L42-L52)1/2;0<L11<L9。
2.如权利要求1所述的一种小型宽带微波生物效应照射装置,其特征在于:
所述空心波导(211)采用空心圆波导,所述过渡空心波导(212)采用空心圆锥波导;所述空心圆波导的底部开设有第一切口,所述空心圆锥波导的底部开设有第二切口,所述第一切口与其两侧的两所述第二切口共同围成所述敞口(214)。
3.如权利要求1所述的一种小型宽带微波生物效应照射装置,其特征在于:
所述空心波导(211)采用空心正多边形波导,边数n≥4;所述过渡空心波导(212)包括与所述第一空心圆波导(213)的端部连接的圆形头端,与所述空心波导(211)的端部连接的正多边形尾端,以及自所述圆形头端向所述正多边形尾端延伸形成的波导壁;所述空心正多边形波导的底部开设第三切口,所述过渡空心波导(212)的波导壁的底部开设第四切口,所述第三切口与其两侧的两所述第四切口共同围成所述敞口(214)。
4.如权利要求1至3任一项所述的一种小型宽带微波生物效应照射装置,其特征在于:
所述过渡内导体(222)的自由端为圆形。
5.如权利要求1至3任一项所述的一种小型宽带微波生物效应照射装置,其特征在于:
所述第一内导体(221)采用圆柱体,所述过渡内导体(222)采用圆台;
或者,所述第一内导体(221)为棱柱体,所述过渡内导体(222)为锥台,所述锥台的自由端为圆形。
6.如权利要求1所述的一种小型宽带微波生物效应照射装置,其特征在于:
所述射频接头(3)插置在所述第一空心圆波导(213)内,所述射频接头(3)上的法兰与所述第一法兰(216)之间通过紧固件固定连接。
7.如权利要求1所述的一种小型宽带微波生物效应照射装置,其特征在于:
所述射频接头(3)采用SMA型同轴射频接头或N型同轴射频接头;
所述载物台(1)和激励器(2)均采用金属制成。
CN202010174011.7A 2020-03-13 2020-03-13 一种小型宽带微波生物效应照射装置 Active CN111349559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010174011.7A CN111349559B (zh) 2020-03-13 2020-03-13 一种小型宽带微波生物效应照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010174011.7A CN111349559B (zh) 2020-03-13 2020-03-13 一种小型宽带微波生物效应照射装置

Publications (2)

Publication Number Publication Date
CN111349559A CN111349559A (zh) 2020-06-30
CN111349559B true CN111349559B (zh) 2022-10-14

Family

ID=71194386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010174011.7A Active CN111349559B (zh) 2020-03-13 2020-03-13 一种小型宽带微波生物效应照射装置

Country Status (1)

Country Link
CN (1) CN111349559B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215415903U (zh) * 2021-02-08 2022-01-04 中国人民解放军军事科学院军事医学研究院 一种用于辐射剂量测量的指甲在体顺磁共振测量探头装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174390A (zh) * 2011-03-09 2011-09-07 中国人民解放军军事医学科学院放射与辐射医学研究所 一种实时检测电磁辐射生物发光效应的方法
CN203455414U (zh) * 2013-06-28 2014-02-26 四川大学 介电系数微波测量装置及其构成的介电系数微波测量系统
CN103776682A (zh) * 2014-02-18 2014-05-07 中国人民解放军军事医学科学院放射与辐射医学研究所 微波辐照腔、微波辐照系统及微波辐照和实时观测方法
CN203616266U (zh) * 2013-12-25 2014-05-28 厦门大学 一种生物效应测试装置
CN204718973U (zh) * 2015-06-24 2015-10-21 西南石油大学 一种原油微波测量装置
CN105914116A (zh) * 2016-05-10 2016-08-31 电子科技大学 一种超宽带微波管能量耦合结构
CN109777733A (zh) * 2019-02-26 2019-05-21 中国人民解放军军事科学院军事医学研究院 微波生物效应照射装置
CN110777073A (zh) * 2019-11-12 2020-02-11 大连海事大学 一种用于细胞实验的宽带电磁辐射装置
CN110819530A (zh) * 2019-11-21 2020-02-21 西安交通大学 一种用于细胞电磁场生物效应评估的辐射培养系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0117715D0 (en) * 2001-07-19 2001-09-12 Mrbp Res Ltd Microwave biochemical analysis
US9087840B2 (en) * 2010-11-01 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Slot-shielded coplanar strip-line compatible with CMOS processes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174390A (zh) * 2011-03-09 2011-09-07 中国人民解放军军事医学科学院放射与辐射医学研究所 一种实时检测电磁辐射生物发光效应的方法
CN203455414U (zh) * 2013-06-28 2014-02-26 四川大学 介电系数微波测量装置及其构成的介电系数微波测量系统
CN203616266U (zh) * 2013-12-25 2014-05-28 厦门大学 一种生物效应测试装置
CN103776682A (zh) * 2014-02-18 2014-05-07 中国人民解放军军事医学科学院放射与辐射医学研究所 微波辐照腔、微波辐照系统及微波辐照和实时观测方法
CN204718973U (zh) * 2015-06-24 2015-10-21 西南石油大学 一种原油微波测量装置
CN105914116A (zh) * 2016-05-10 2016-08-31 电子科技大学 一种超宽带微波管能量耦合结构
CN109777733A (zh) * 2019-02-26 2019-05-21 中国人民解放军军事科学院军事医学研究院 微波生物效应照射装置
CN110777073A (zh) * 2019-11-12 2020-02-11 大连海事大学 一种用于细胞实验的宽带电磁辐射装置
CN110819530A (zh) * 2019-11-21 2020-02-21 西安交通大学 一种用于细胞电磁场生物效应评估的辐射培养系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Compact, Wide Bandwidth Real-Time RF Exposure Setup Based on Microelectrode Array;Xuelong Zhao等;《IEEE Microwave and Wireless Components Letters》;20201231;第30卷(第12期);第1205-1208页 *

Also Published As

Publication number Publication date
CN111349559A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
Qian et al. Simulation and experiment of photonic band-gap structures for microstrip circuits
CN111349559B (zh) 一种小型宽带微波生物效应照射装置
Cruz et al. Bio-inspired printed monopole antenna applied to partial discharge detection
CN101788695B (zh) 一种高双折射亚波长多孔太赫兹光纤
CN104064422B (zh) 一种小型全金属慢波器件
CN104993203A (zh) 一种基于人工表面等离激元的陷波共面波导
CN104425860A (zh) 一种宽阻带特性的基片集成波导带通滤波器
Saleeb et al. A technique for the early detection of brain cancer using circularly polarized reconfigurable antenna array
CN107908021A (zh) 基于光子晶体波导的t字型光子晶体环行器
CN105044485A (zh) 高功率微波TM0n混合模式在线测量装置及测量方法
CN208093713U (zh) 一种新型的毫米波波导到微带的过渡结构
CN109471275A (zh) 一种三端口光子晶体环行器
Lindell Variational methods for nonstandard eigenvalue problems in waveguide and resonator analysis
CN109378589A (zh) 一种适用于近场平面波模拟器的宽带双极化低散射探头及阵列
JPS60198089A (ja) 生化学用供試体容器
Du et al. Influence of a metallic enclosure on the S-parameters of microstrip photonic bandgap structures
Shen et al. Integrated mode composite transmission line
CN109777733B (zh) 微波生物效应照射装置
CN203085714U (zh) 源和负载直接耦合的基片集成波导滤波器
CN213814022U (zh) 低损耗太赫兹光纤
CN104852113B (zh) 一种基于人工磁导体的同轴波导转换器
Chrétiennot et al. New efficient high power microwave applicator enabling optimal E-field coupling and homogeneity in biological sample
CN204375897U (zh) 基于同轴馈电探针微扰的多模腔体谐振器的宽带滤波器
CN106093512A (zh) 基于聚磁和蔽磁双功能导磁回路及磁流体的电流传感器
CN204067534U (zh) 一种采用单腔五模腔体谐振器的宽带滤波器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant