CN111337751A - 一种换流站交流侧阻抗在线测试方法 - Google Patents

一种换流站交流侧阻抗在线测试方法 Download PDF

Info

Publication number
CN111337751A
CN111337751A CN202010244070.7A CN202010244070A CN111337751A CN 111337751 A CN111337751 A CN 111337751A CN 202010244070 A CN202010244070 A CN 202010244070A CN 111337751 A CN111337751 A CN 111337751A
Authority
CN
China
Prior art keywords
converter station
frequency
disturbance
impedance
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010244070.7A
Other languages
English (en)
Other versions
CN111337751B (zh
Inventor
丁津津
孙辉
高博
郑国强
李远松
张峰
汪勋婷
谢民
王同文
叶远波
俞斌
邵庆祝
于洋
张骏
何开元
陈洪波
王丽君
李圆智
谢毓广
陈凡
肖华锋
汤汉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Priority to CN202010244070.7A priority Critical patent/CN111337751B/zh
Publication of CN111337751A publication Critical patent/CN111337751A/zh
Application granted granted Critical
Publication of CN111337751B publication Critical patent/CN111337751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明的一种换流站交流侧阻抗在线测试方法,可解决现有阻抗测试方法复杂且准确率低的技术问题。包括以下步骤:S1、生成测试频率序列;S2、在换流站交流侧串联第一组三相扰动电压;S3、提取换流站的第一组三相响应电流;S4、在换流站交流侧串联第二组三相扰动电压;S5、提取换流站的第二组三相响应电流;S6、计算换流站交流侧在测试频率点的阻抗值。本发明的换流站交流侧阻抗在线测试方法可以高效获取具有实时性的HVDC换流站交流侧阻抗特性数据,该数据可应用于换流站‑电网互联系统的稳定性在线分析,为高压直流输电系统的运行提供指导。

Description

一种换流站交流侧阻抗在线测试方法
技术领域
本发明涉及交流电网阻抗测试技术领域,具体涉及一种换流站交 流侧阻抗在线测试方法。
背景技术
高压直流输电(High Voltage Direct Current Transmission, HVDC)具有迅速灵活的功率调节能力和实现区域电网异步互联的功能, 是新能源的集约化开发和资源优化配置的关键技术之一。随着电力系 统“源-网-荷”各环节中电力电子变流器渗透率不断提高,尤其输配 电线路较长、区域电网中隔离变压器较多时,在HVDC换流站交流侧的 连接点,电网呈现以低短路比为显著特征的弱电网特性。换流站的变 流器与弱电网的动态交互作用易引发谐振和宽频谐振,甚至在稳定裕 度不足时导致变流器-弱电网互联系统发生振荡失稳,危害系统稳定运 行。
近年来,国内外学者针对电力电子化系统的宽频带振荡问题展开 了广泛的研究,阻抗法已成为分析该系统稳定性问题的有效工具。实 时且准确的阻抗特性数据是应用阻抗法分析稳定性的基础,故阻抗在 线测试是稳定性在线分析的关键环节,阻抗在线测试方法的研究具有 重要意义。国内外已有阻抗测试方法主要面向于低电压、小容量新能 源发电装备及微电网系统,而HVDC换流站具有高压大容量的特点,内 部电路结构复杂多样,且存在耦合的多时间尺度控制机制,导致了外 部阻抗特性的复杂化。已有研究缺乏对于HVDC换流站交流侧阻抗在线 测试方法的讨论和设计,如何兼顾换流站阻抗测试的快速性和准确性 是换流站-电网互联系统稳定性分析及应用中亟待解决的问题。
发明内容
本发明提出的一种换流站交流侧阻抗在线测试方法,可解决现有 阻抗测试方法复杂且准确率低的技术问题。
为实现上述目的,本发明采用了以下技术方案:
一种换流站交流侧阻抗在线测试方法,包括以下步骤:
S1、生成测试频率序列;
S2、在换流站交流侧串联第一组三相扰动电压;
S3、提取换流站的第一组三相响应电流;
S4、在换流站交流侧串联第二组三相扰动电压;
S5、提取换流站的第二组三相响应电流;
S6、计算换流站交流侧在测试频率点的阻抗值;
进一步的,
步骤S1、生成测试频率序列的具体实现过程包括:
S11-测试频率序列的初步确定:根据测试频率密度需求,令同步旋 转坐标系下的测试频率值在水平对数坐标轴等间距分布;
S12-并网电流频谱分析:记录时长1秒的换流站入网电流波形, 并变换至与电网电压同步的旋转坐标系下,通过离散傅里叶变换输出 电流频谱。首先,记录频谱中直流分量幅值,即abc坐标系下并网电 流基波分量幅值IF0;其次,记录系统谐波谐振频率fr,即并网电流频 谱中除去直流分量和基波频率整数倍分量后幅值尖峰所在频率。
S13-测试频率调整:将初步确定的测试频率值均调整为整数,若 频率值为基波频率整数倍或系统谐波谐振频率,则将该频率值替换为 相近整数,最终生成由n个测试点组成的测试频率序列(f=[f1,f2… fm…fn]);
进一步的,
步骤S2、在换流站交流侧串联第一组三相扰动电压,该电压为等 效d通道扰动电压,其形式为三个周期性二进制序列,具体实现过程 包括:
S21-给定扰动量幅值,基于静止-旋转坐标系间转换关系,根据步 骤S1所得的频率序列依次计算用于合成各频率d通道扰动umd(1≤m≤ n)的两组三相量(um1a,um1b,um1c)、(um2a,um2b,um2c);其中,扰动量幅 值可设置为基波电压幅值的3%至10%。
S22-叠加合成三相扰动电压,具体表达式分别为:
Figure BDA0002433499320000031
S23-应用软件算法拟合,生成与三相扰动电压(uda,udb,udc)频谱 相近的三个二进制序列(Vda,Vdb,Vdc),该序列中频率fm(1≤m≤n)扰动 电压分量在同步旋转坐标系下的复数表示为(um1d,um1q)。
进一步的,
步骤S3、提取换流站的第一组三相响应电流的具体实现过程包括:
S31-提取响应电流的基波幅值IF1,并计算基波电流幅值偏移率l1
Figure BDA0002433499320000032
若扰动电压引入的基波电流幅值偏移率l1超过允许值α%,则说明选取的 扰动量幅值过大,需将扰动量的幅值降低比例β%重新进行扰动注入与响应提 取,α和β的具体值可结合实际系统需要灵活设置。
S32-依次提取频率fm(1≤m≤n)的响应电流分量,根据同步旋转坐 标系下的谐波幅值和相位以复数形式记录为(im1d,im1q);
进一步的,
步骤S4、在换流站交流侧串联第二组三相扰动电压,该电压为等 效q通道扰动电压,形式为三个周期性二进制序列,具体实现过程包 括:
S41-给定扰动量幅值,基于静止-旋转坐标系间转换关系,根据步 骤S1所得的频率序列依次计算用于合成各频率q通道扰动umq(1≤m≤ n)的两组三相量(um3a,um3b,um3c)、(um4a,um4b,um4c);其中,扰动量幅 值可设置为基波电压幅值的3%至10%。
S42-叠加合成三相扰动电压,具体表达式分别为:
Figure BDA0002433499320000041
S43-通过软件算法拟合,生成与三相扰动电压(uqa,uqb,uqc)频谱 相近的三个二进制序列(Vqa,Vqb,Vqc),该序列中频率fm(1≤m≤n)扰动 电压分量在同步旋转坐标系下的复数表示为(um2d,um2q)。
进一步的,
步骤S5、提取换流站的第二组三相响应电流具体实现过程包括:
S51-提取响应电流的基波幅值IF2,并计算基波电流幅值偏移率l2
Figure BDA0002433499320000042
若扰动电压引入的基波电流幅值偏移率l2超过允许值α%,则将扰 动量的幅值降低比例β%重新进行扰动注入与响应提取。
S52-依次提取频率fm(1≤m≤n)的响应电流分量,根据同步旋转坐 标系下的谐波幅值和相位以复数形式记录为(im2d,im2q);
进一步的,
步骤S6、计算换流站交流侧在测试频率点阻抗值的具体实现过程 中采用不同通道阻抗独立计算的形式;首先,d通道阻抗包括Zdd(m) 和Zdq(m),计算方法为联立以下两个等式:
Figure BDA0002433499320000051
d通道阻抗计算结果为:
Figure BDA0002433499320000052
q通道阻抗包括Zqd(m)和Zqq(m),计算方法为联立以下两个等式:
Figure BDA0002433499320000053
q通道阻抗计算结果为:
Figure BDA0002433499320000054
由上述技术方案可知,本发明的换流站交流侧阻抗在线测试方法 可以高效获取具有实时性的HVDC换流站交流侧阻抗特性数据,该数据 可应用于换流站-电网互联系统的稳定性在线分析,为高压直流输电系 统的运行提供指导。
附图说明
图1为本发明提出的阻抗测试方法流程示意图;
图2为本发明实施例特高压直流输电系统结构图;
图3为本发明实施例扰动合成示意图;
图4为本发明实施例静止-旋转坐标系频率转换关系示意图;
图5为本发明实施例扰动注入主电路示意图;
图6为本发明实施例换流站交流侧阻抗测试结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结 合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是 全部的实施例。
如图1所示,本实施例所述的换流站交流侧阻抗在线测试方法, 主要包括以下步骤:S1、生成测试频率序列;S2、在换流站交流侧串 联第一组三相扰动电压;S3、提取换流站的第一组三相响应电流; S4、在换流站交流侧串联第二组三相扰动电压;S5、提取换流站的第 二组三相响应电流;S6、计算换流站交流侧在测试频率点的阻抗值;
以下结合具体应用具体说明:
昌吉-古泉±1100kV特高压直流输电工程系统结构如图2所示,该 工程线路全长3284km,额定直流电流5455A,额定容量12000MW, 采用双极输电的方式,整流站和逆变站中每极含有2个串联的12脉波 换流器,每个12脉波换流器两端的直流电压为550kV。新疆昌吉换流 站(整流站)接入750kV交流电网,安徽古泉换流站(逆变站)采用 分层接入的方式,高端换流变接入500kV交流电网,低端换流变接入 1000kV交流电网,换流站交流母线均配置交流滤波器组。本实施例根 据该高压直流输电系统的工程参数,在Matlab/Simulink中搭建仿真模 型,并应用提出的一种换流站交流侧阻抗测试方法在500kV交流电网 的接入点进行逆变站交流侧阻抗测试。
步骤S1、生成测试频率序列的具体实现过程包括:
S11-测试频率序列的初步确定:本实施例将测试频率范围设置为 1Hz-2000Hz,对数坐标系下每十倍频程等间距分布10个频率点。
S12-并网电流频谱分析:记录时长1秒的换流站入网电流波形, 并变换至与电网电压同步的旋转坐标系下,通过离散傅里叶变换输出 电流频谱。首先,记录频谱中直流分量幅值,即abc坐标系下并网电 流基波分量幅值IF0,该值为9240A。其次,记录谐波谐振频率fr,即 并网电流频谱中除去直流分量和基波频率整数倍分量后幅值尖峰所在 频率;当电网阻抗等效电感分量和等效电阻分量分别为5mH和0.06Ω 时,记录的系统谐波谐振频率fr=12Hz。
S13-测试频率调整:将初步确定的测试频率值均调整为整数,若 频率值为基波整数倍频或系统谐波谐振频率,则将该频率值替换为相 近的整数频率点,最终生成由33个测试点组成的测试频率序列(f=[1 2 3 4 5 6 7 8 9 10 13 16 20 25 32 40 52 63 79102 126 159 198 253 316 398 502 631 794 995 1260 1585 1995]);
步骤S2、在换流站交流侧串联第一组三相扰动电压;该电压为等 效d通道扰动电压,合成方法如图3第一个子图所示,三相谐波电压 经坐标变换在同步旋转坐标系下为旋转矢量,若同时注入关于d轴对 称的正向旋转矢量vp1和反向旋转矢量vn1,由于矢量旋转速度相同且方 向相反,q轴分量保持为零,系统中仅存在d通道的扰动电压。
根据静止-旋转坐标系坐标变换公式,以电网基波频率f0=50Hz为 例,频率大于50Hz的正序谐波在旋转坐标系下为正向旋转矢量,频率 小于50Hz的正序谐波和所有频率的负序谐波在旋转坐标系下为反向 旋转矢量,同步旋转坐标系下正负序谐波对应的旋转矢量与abc坐标 系下正负序量的频率转换关系如图4所示。
扰动电压注入时形式为三个周期性二进制序列,具体实现过程包 括:
S21-将扰动量幅值设置为交流侧电网电压的5%,结合图3所示的 扰动合成方法和图4所示的静止-旋转坐标系频率转换关系,依次计算 用于合成各频率d通道扰动umd(1≤m≤33)的两组三相量(um1a,um1b, um1c)、(um2a,um2b,um2c);
S22-叠加合成三相扰动电压,具体表达式分别为:
Figure BDA0002433499320000081
S23-应用软件算法拟合,生成与三相扰动电压(uda,udb,udc)频谱 相近的三个二进制序列(Vda,Vdb,Vdc),该序列中频率fm(1≤m≤33)扰 动电压分量在同步旋转坐标系下的复数表示为(um1d,um1q)。二进制序 列扰动电压注入方式如图5所示,令扰动电压在换流站的并网点与电 网电压串联;进一步提取换流站并网点的响应电流可实现换流站交流 侧阻抗值的测量。
步骤S3、提取换流站的第一组三相响应电流的具体实现过程包括:
S31-提取响应电流的基波幅值IF1,并计算基波电流幅值偏移率l1
Figure BDA0002433499320000082
若扰动电压引入的基波电流幅值偏移率l1超过允许值%,则说明 选取的扰动量幅值过大,需将扰动量的幅值降低比例%重新进行扰动 注入与响应提取。本实施例将值设置为3,值设置为30,即:若 当扰动注入引起的基波电流幅值偏移率l1超过3%,则将扰动电压的幅 值降低30%重新进行扰动注入与响应提取。
S32-依次提取频率fm(1≤m≤n)的响应电流分量,根据同步旋转坐 标系下的谐波幅值和相位以复数形式记录为(im1d,im1q);
步骤S4、在换流站交流侧串联第二组三相扰动电压,该电压为等 效q通道扰动电压,形式为三个周期性二进制序列,具体实现过程包 括:
S41-将扰动量幅值设置为交流侧电网电压的5%,结合图3第二个 子图所示的扰动合成方法和图4所示的静止-旋转坐标系频率转换关 系,依次计算用于合成各频率q通道扰动umq(1≤m≤33)的两组三相量 (um3a,um3b,um3c)、(um4a,um4b,um4c);
S42-叠加合成三相扰动电压,具体表达式分别为:
Figure BDA0002433499320000091
S43-通过软件算法拟合,生成与三相扰动电压(uqa,uqb,uqc)频谱 相近的三个二进制序列(Vqa,Vqb,Vqc),该序列中频率fm(1≤m≤33)扰 动电压分量在同步旋转坐标系下的复数表示为(um2d,um2q)。
步骤S5、提取换流站的第二组三相响应电流具体实现过程包括:
S51-提取响应电流的基波幅值IF2,并计算基波电流幅值偏移率l2
Figure BDA0002433499320000092
若扰动电压引入的基波电流幅值偏移率l2超过允许值%,则将扰 动量的幅值降低%重新进行扰动注入与响应提取。
S52-依次提取频率fm(1≤m≤33)的响应电流分量,根据同步旋转坐 标系下的谐波幅值和相位以复数形式记录为(im2d,im2q);
步骤S6、计算换流站交流侧在测试频率点阻抗值的具体实现过程 中采用不同通道阻抗独立计算的形式;首先,d通道阻抗包括Zdd(m) 和Zdq(m),计算方法为联立以下两个等式:
Figure BDA0002433499320000101
d通道阻抗计算结果为:
Figure BDA0002433499320000102
q通道阻抗包括Zqd(m)和Zqq(m),计算方法为联立以下两个等式:
Figure BDA0002433499320000103
q通道阻抗计算结果为:
Figure BDA0002433499320000104
根据测试的33个频率点阻抗计算结果绘制的阻抗曲线如图6所 示,阻抗Zdd在低频段存在负阻特性区间,而弱电网存在不可忽略的阻 感性电网阻抗,两种阻抗特性的交互作用是换流站-电网互联系统主要 的致振诱因;此外,由于换流站交流滤波器组的存在,随着频率的升 高阻抗幅值整体呈现下降趋势。
综上所述,本发明实施例的换流站交流侧阻抗在线测试方法可以 高效获取具有实时性的HVDC换流站交流侧阻抗特性数据,该数据可应 用于换流站-电网互联系统的稳定性在线分析,为高压直流输电系统的 运行提供指导。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管 参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员 应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种换流站交流侧阻抗在线测试方法,其特征在于:包括以下步骤:
S1、生成测试频率序列;
S2、在换流站交流侧串联第一组三相扰动电压;
S3、提取换流站的第一组三相响应电流;
S4、在换流站交流侧串联第二组三相扰动电压;
S5、提取换流站的第二组三相响应电流;
S6、计算换流站交流侧在测试频率点的阻抗值。
2.根据权利要求1所述的换流站交流侧阻抗在线测试方法,其特征在于:所述S1生成测试频率序列时具体包括以下步骤:
S11、测试频率序列的初步确定;
根据测试频率密度需求,令同步旋转坐标系下的测试频率值在水平对数坐标轴等间距分布;
S12、并网电流频谱分析;
记录时长1秒的换流站入网电流波形并变换至同步旋转坐标系下,通过离散傅里叶变换所得电流频谱记录电流基波分量幅值IF0和系统谐波谐振频率fr
S13、测试频率调整;
将初步确定的测试频率值均调整为整数,若频率值为基波频率整数倍或系统谐波谐振频率,则将该频率值替换为相近整数,最终生成由n个测试点组成的测试频率序列(f=[f1,f2…fm…fn])。
3.根据权利要求1所述的换流站交流侧阻抗在线测试方法,其特征在于:所述步骤S2中串联的第一组三相扰动电压为等效d通道扰动电压,其形式为三个周期性二进制序列,二进制序列合成过程具体包括以下步骤:
S21、给定扰动量幅值,并结合步骤S1所得的频率序列,依次计算用于合成各频率d通道扰动umd(1≤m≤n)的两组三相量(um1a,um1b,um1c)、(um2a,um2b,um2c);
S22、叠加合成三相扰动电压,具体表达式分别为:
Figure FDA0002433499310000011
S23、应用软件算法拟合,生成与三相扰动电压(uda,udb,udc)频谱相近的三个二进制序列(Vda,Vdb,Vdc),该序列中频率fm(1≤m≤n)扰动电压分量在同步旋转坐标系下的复数表示为(um1d,um1q)。
4.根据权利要求1所述的换流站交流侧阻抗在线测试方法,其特征在于:所述步骤S3提取电流响应时具体包括以下步骤:
S31、提取响应电流的基波幅值IF1,并计算基波电流幅值偏移率l1
Figure FDA0002433499310000021
若扰动电压引入的基波电流幅值偏移率l1超过允许值α%,则将扰动量的幅值降低比例β%重新进行扰动注入与响应提取;
S32、提取各测试频率fm(1≤m≤n)的响应电流分量,根据同步旋转坐标系下的谐波幅值和相位以复数形式记录为(im1d,im1q)。
5.根据权利要求1所述的换流站交流侧阻抗在线测试方法,其特征在于:步骤S4中串联的第二组三相扰动电压为等效q通道扰动电压,其形式为三个周期性二进制序列;
该二进制序列合成过程中具体包括以下步骤:
S41、给定扰动量幅值,并结合步骤S1所得的频率序列,依次计算用于合成各频率q通道扰动umq(1≤m≤n)的两组三相量(um3a,um3b,um3c)、(um4a,um4b,um4c);
S42、叠加合成三相扰动电压,具体表达式分别为:
Figure FDA0002433499310000022
S43、通过软件算法拟合,生成与三相扰动电压(uqa,uqb,uqc)频谱相近的三个二进制序列(Vqa,Vqb,Vqc),该序列中频率fm(1≤m≤n)扰动电压分量在同步旋转坐标系下的复数表示为(um2d,um2q)。
6.根据权利要求1所述的换流站交流侧阻抗在线测试方法,其特征在于:
步骤S5提取电流响应时具体包括以下步骤:
S51、提取响应电流的基波幅值IF2,并计算基波电流幅值偏移率l2
Figure FDA0002433499310000031
若扰动电压引入的基波电流幅值偏移率l2超过允许值α%,则将扰动量的幅值降低比例β%重新进行扰动注入与响应提取;
S52、提取各测试频率fm(1≤m≤n)的响应电流分量,根据同步旋转坐标系下的谐波幅值和相位以复数形式记录为(im2d,im2q)。
7.根据权利要求1所述的换流站交流侧阻抗在线测试方法,其特征在于:
步骤S6计算换流站交流侧在各测试频率点fm的阻抗值时采用不同通道阻抗独立计算的形式,d通道阻抗包括Zdd(m)和Zdq(m),计算方法为联立以下两个等式:
Figure FDA0002433499310000032
q通道阻抗包括Zqd(m)和Zqq(m),计算方法为联立以下两个等式:
Figure FDA0002433499310000033
CN202010244070.7A 2020-03-31 2020-03-31 一种换流站交流侧阻抗在线测试方法 Active CN111337751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010244070.7A CN111337751B (zh) 2020-03-31 2020-03-31 一种换流站交流侧阻抗在线测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010244070.7A CN111337751B (zh) 2020-03-31 2020-03-31 一种换流站交流侧阻抗在线测试方法

Publications (2)

Publication Number Publication Date
CN111337751A true CN111337751A (zh) 2020-06-26
CN111337751B CN111337751B (zh) 2022-05-24

Family

ID=71180519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010244070.7A Active CN111337751B (zh) 2020-03-31 2020-03-31 一种换流站交流侧阻抗在线测试方法

Country Status (1)

Country Link
CN (1) CN111337751B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116718837A (zh) * 2023-08-11 2023-09-08 四川大学 一种基于主动式宽频带的多维阻抗测量方法
CN117347571A (zh) * 2023-12-04 2024-01-05 国网安徽省电力有限公司电力科学研究院 一种混合气体测量装置的多参数自校准方法、装置及系统
WO2024045569A1 (zh) * 2022-08-31 2024-03-07 国网河北省电力有限公司电力科学研究院 逆变器阻抗测量方法、装置、终端设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662217A (zh) * 2009-07-13 2010-03-03 华南理工大学 高压直流输电系统换流器等值阻抗频率特性的求解方法
CN106093573A (zh) * 2016-05-30 2016-11-09 中国西电电气股份有限公司 超、特高压直流输电tcu换流阀组件晶闸管级阻抗测试系统
CN108196127A (zh) * 2018-01-22 2018-06-22 华北电力大学 高压直流输电系统谐波阻抗扫描方法和装置
CN110598253A (zh) * 2019-08-08 2019-12-20 上海交通大学 一种模块化多电平变流器多输入多输出频域阻抗建模方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662217A (zh) * 2009-07-13 2010-03-03 华南理工大学 高压直流输电系统换流器等值阻抗频率特性的求解方法
CN106093573A (zh) * 2016-05-30 2016-11-09 中国西电电气股份有限公司 超、特高压直流输电tcu换流阀组件晶闸管级阻抗测试系统
CN108196127A (zh) * 2018-01-22 2018-06-22 华北电力大学 高压直流输电系统谐波阻抗扫描方法和装置
CN110598253A (zh) * 2019-08-08 2019-12-20 上海交通大学 一种模块化多电平变流器多输入多输出频域阻抗建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐轩: "" 多直流输电系统的谐波阻抗与谐波交互影响研究"", 《中国优秀硕士学位论文全文数据库(工程科技II辑)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045569A1 (zh) * 2022-08-31 2024-03-07 国网河北省电力有限公司电力科学研究院 逆变器阻抗测量方法、装置、终端设备及存储介质
CN116718837A (zh) * 2023-08-11 2023-09-08 四川大学 一种基于主动式宽频带的多维阻抗测量方法
CN116718837B (zh) * 2023-08-11 2023-11-07 四川大学 一种基于主动式宽频带的多维阻抗测量方法
CN117347571A (zh) * 2023-12-04 2024-01-05 国网安徽省电力有限公司电力科学研究院 一种混合气体测量装置的多参数自校准方法、装置及系统
CN117347571B (zh) * 2023-12-04 2024-03-12 国网安徽省电力有限公司电力科学研究院 一种混合气体测量装置的多参数自校准方法、装置及系统

Also Published As

Publication number Publication date
CN111337751B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN105071405B (zh) 带不对称非线性负载的微电网系统及功率均衡控制方法
CN111337751B (zh) 一种换流站交流侧阻抗在线测试方法
Peng et al. Coordinated control strategy of PMSG and cascaded H-bridge STATCOM in dispersed wind farm for suppressing unbalanced grid voltage
CN107332261A (zh) 一种微电网电能质量分布式协调治理方法
CN114070115A (zh) 一种多交流端口高压直挂储能电力变换系统及其控制方法
CN108418226A (zh) 开绕组双逆变器光伏发电系统的无功补偿控制方法
CN114325097A (zh) 一种基于二次侧扰动注入的双馈型发电设备阻抗测量方法
CN114709848A (zh) 一种考虑电能质量补偿的多相配电网储能优化调度方法
Zhang et al. Stability modeling of a three-terminal MMC-HVDC transmission system
CN111157798A (zh) 一种基于实时仿真机和实物控制器的阻抗测量系统
Li et al. PLL synchronization stability of grid-connected VSCs under asymmetric AC faults
CN114465271A (zh) 基于ga-svm调制的物联网光伏发电能源控制系统及控制方法
Fang et al. Response time of reactive power based on different definitions and algorithms
Yin Influence of reactive power support control strategy on short-circuit current calculation and fault analysis method of DFIG
CN114465270A (zh) 基于te-svm调制的一站式智能兆瓦箱系统及其智能控制器、控制方法
CN114509628A (zh) 一种大容量新能源与储能单元并网性能检测方法和系统
de Toledo et al. Frequency domain model of an HVDC link with a line-commutated current-source converter. Part I: fixed overlap
Hu Sequence impedance and equivalent circuit of HVDC systems
Wasynczuk Analysis of line-commutated converters during unbalanced operating conditions
Guowei et al. The control for grid connected inverter of distributed generation under unbalanced grid voltage
Ma et al. Harmonie evaluation of grid with multiple harmonic sources based on DIgSILENT
CN110912130A (zh) 一种双交流母线并网变换器的电路结构及其谐波补偿方法
Zhang Analysis and control of resonances in HVDC connected DFIG-based offshore wind farm
Geng et al. Optimal power flow for AC and DC grids based on power electronic transformer
Wang et al. Sequence Impedance Modeling of DFIG Wind Farm Via LCC-HVDC Transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant