CN111337062A - 基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法 - Google Patents

基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法 Download PDF

Info

Publication number
CN111337062A
CN111337062A CN202010269700.6A CN202010269700A CN111337062A CN 111337062 A CN111337062 A CN 111337062A CN 202010269700 A CN202010269700 A CN 202010269700A CN 111337062 A CN111337062 A CN 111337062A
Authority
CN
China
Prior art keywords
detection
optical fiber
blind ditch
distributed
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010269700.6A
Other languages
English (en)
Inventor
薛元
张东卿
周波
刘菀茹
冯子亮
肖朝乾
张建文
陈海军
张硕
张涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Eryuan Engineering Group Co Ltd CREEC
Original Assignee
China Railway Eryuan Engineering Group Co Ltd CREEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Eryuan Engineering Group Co Ltd CREEC filed Critical China Railway Eryuan Engineering Group Co Ltd CREEC
Priority to CN202010269700.6A priority Critical patent/CN111337062A/zh
Publication of CN111337062A publication Critical patent/CN111337062A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35361Sensor working in reflection using backscattering to detect the measured quantity using elastic backscattering to detect the measured quantity, e.g. using Rayleigh backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35367Sensor working in reflection using reflected light other than backscattered to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

本发明涉及地下排水领域,特别是一种基于分布式光纤的渗水盲沟破损检测系统及方法,其中检测系统包括分布式检测光纤和光时域检测仪,所述分布式检测光纤沿轴向设置于盲沟集水管外壁,所述分布式检测光纤包括多根检测光纤和多个光纤接头,多根所述检测光纤通过所述光纤接头串联,所述光时域检测仪向所述分布式检测光纤发射光检测信号,并接收从所述分布式检测光纤返回的光信号。本发明采用将检测光纤设置在盲沟集水管上,通过光时域检测仪可以快速定位到渗水盲沟的破损位置,为维修提供指引,避免大面积的施工寻找破损点,有效的降低了施工成本,提高了施工效率。

Description

基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法
技术领域
本发明涉及地下排水领域,特别是一种基于分布式光纤的渗水盲沟破损检测系统及方法。
背景技术
盲沟作为一种地下排水设施,用以排除地下水,降低地下水位,广泛应用于铁路、公路路基排水中。目前广泛采用的传统盲沟是在路基或地基内设置的充填碎、砾石等粗粒材料并在其中埋设透水管。盲沟在使用过程中均容易受上部荷载、基底膨胀力、地基不均匀沉降等作用影响而开裂破损,形成漏水点,一方面降低盲沟排水效率,另一方面在破损点处漏出的地下水容易劣化周边土体,形成病害。盲沟属于地下隐蔽工程,一旦发生破损后,难以确定破损位置和破损程度,进行维修时需要大面积开挖以寻找漏水点,工程量大,且影响既有铁路、公路运营。
申请号201810969044.3的发明专利公布了“基于OFDR(Optical FrequencyDomain Reflectometer,光频域反射计)分布式光纤的排水管道在线监测系统及方法”,其基于OFDR技术,在排水管道内部不同充满度位置布设多个光纤监测组,能够监测到排水管局部断裂破损,但仍存在局限性:(1)该发明申请所涉及的光纤采用环氧树脂粘贴于排水管道内壁,而渗水盲沟单根集水管长度通常大于6m,直径为30-40cm,内部空间狭小,无法进入粘贴光纤;(2)需要采用多个光纤检测组,涉及温度光纤和应变光纤,系统较为复杂;(3)OFDR技术虽然测量灵敏性和空间分辨率高,但其测量距离短(最大检测长度约100m),且存在大量噪声,测量结果难以分析,不适用于实际岩土工程。
发明内容
本发明的目的在于:针对现有技术存在的问题,提供一种基于分布式光纤的渗水盲沟破损检测系统及方法。
为了实现上述目的,本发明采用的技术方案为:
一种基于分布式光纤的渗水盲沟破损检测系统,包括分布式检测光纤和光时域检测仪,
所述分布式检测光纤沿轴向设置于盲沟集水管外壁,所述分布式检测光纤包括多根检测光纤和多个光纤接头,多根所述检测光纤两端均设置有所述光纤接头,相邻两根所述检测光纤在盲沟集水井处通过所述光纤接头串联,所述光时域检测仪通过所述光纤接头与所述检测光纤相连接,形成检测回路,所述光时域检测仪向所述分布式检测光纤发射光检测信号,并接收从所述分布式检测光纤返回的光信号。
所述光时域反射仪采用OTDR(optical time-domain reflectometer)技术,所述光时域反射仪具有发射探测光脉冲及接受背向瑞丽散射和反射光信号的功能,并能够将接受到的光信号转换处理为背向散射光功率曲线。当渗水盲沟发生轻微变形或者破损导致检测光纤发生微弯时,该位置背向瑞丽散射光光强会发生较大衰减;当渗水盲沟发生较大变形导致检测光纤发生断裂时,该位置会发生端面反射;通过测定背向散射光到达的时间和功率损耗,便可确定缺陷及扰动的位置和损伤程度,并且OTDR信号噪声比OFDR小,便于分析,所述光时域反射仪仅在检测时与检测光纤连接,无需长时间放置于检测现场。
本发明所述的一种基于分布式光纤的渗水盲沟破损检测系统,通过采用分布式光纤,将多根检测光纤分别布置在盲沟集水管上,相邻盲沟集水井之间的检测光纤能够构成一个检测单元,相邻检测单元的检测光纤可通过光纤接头连接,形成更长的检测回路,单个检测单元受损之后,不会影响其他的检测单元的功能,单个检测单元损坏后,检测装置可以分别与损坏单元两端连接来确定检测盲沟的破损位置,不需要使用复杂的光纤检测组,结构简单,成本低廉。
本发明将分布式检测光纤直接设置在盲沟集水管外壁,解决了光纤安装的难题,便于光纤的安装。
优选的,所述光时域检测仪设置在所述分布式检测光纤的起始端,向所述分布式检测光纤末端发送光检测信号,并接收所述分布式检测光纤返回的光信号。
优选的,所述光纤接头设置于盲沟集水井处,便于施工人员快速找到检测光纤。
优选的,所述光时域检测仪动态范围大于26dB,空间分辨率小于5m,防止检测精度太低,不能确定小面积的盲沟破损的情况。
优选的,所述检测光纤外表面设置有米标,所述米标用于确定所述检测光纤的长度,便于施工人员准确找到破损位置。
优选的,还包括玻璃钢胶,所述玻璃钢胶用于将所述分布式检测光纤固定于所述盲沟集水管外壁,所述玻璃钢胶可以在不损伤集水管的同时保证检测光纤和盲沟集水管的协同变形。
在上述内容的基础上,本发明还提供一种基于分布式光纤的渗水盲沟破损检测系统的施工方法,包括以下步骤:
步骤S1:根据施工图纸开挖盲沟基坑、盲沟集水井和盲沟底座,在所述盲沟基坑预埋盲沟集水管;
步骤S2:在所述盲沟集水管外壁上表面设置检测光纤;
步骤S3:回填所述盲沟基坑;
步骤S4:在检测光纤两端设置光纤接头,将所述光纤接头设置于所述盲沟集水井井壁,相邻两根所述检测光纤通过所述光纤接头串联;
步骤5:将所述检测光纤与光时域反射仪相连接。
本发明所述的一种基于分布式光纤的渗水盲沟破损检测系统的施工方法,只需要在预埋盲沟集水管的时候在盲沟集水管上壁固定光纤即可完成安装,布设便捷,成本较低。
优选的,所述步骤S2具体步骤包括:
步骤S21:对检测光纤施加轴向方向的力,使所述检测光纤保持直线状态;
步骤S22:利用玻璃钢胶将所述检测光纤固定于渗水盲沟集水管上部外表面。
基于上述技术特征的一种基于分布式光纤的渗水盲沟破损检测系统的施工方法通过在安装检测光纤的时候施加轴向方向的力,可以保证光纤的折弯减少,保证光纤光路通畅,使散射光损失的功率减少。
在上述内容的基础上,本发明还提供一种基于分布式光纤的渗水盲沟破损检测方法,包括以下步骤:
步骤S101:建立如权利要求1所述的一种基于分布式光纤的渗水盲沟破损检测系统;
步骤S102:通过所述光时域检测仪获取返回的光信号,并生成第二背向瑞利散射光功率曲线B2;
步骤S103:将第二背向瑞利散射光功率曲线B2与预存的第一背向瑞利散射光功率曲线B1进行比较,确定盲沟集水管受损的情况,并根据光路里程和检测光纤的对应关系确定盲沟受损位置的实际物理位置。
本发明所述的一种基于分布式光纤的渗水盲沟破损检测方法利用背向瑞利散射光功率曲线的光路里程与实际检测光纤的对应的关系,可以快速的找到盲沟破损或者变形的位置。
优选的,所述预存的第一背向瑞利散射光功率曲线B1为初始时记录的沿着检测光纤各点处的背向瑞利散射光功率曲线,所述第二背向瑞利散射光功率曲线B2为实际测量时记录的沿着检测光纤各点处的背向瑞利散射光功率曲线。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明采用将检测光纤设置在盲沟集水管上,通过光时域检测仪可以快速定位到渗水盲沟的破损位置,为维修提供指引,避免大面积的施工寻找破损点,有效的降低了施工成本,提高了施工效率。
2、本发明采用普通的检测光纤即可实现渗水盲沟破损位置和破损程度的检测,不需要布设温度补偿光纤,成本低廉,施工便捷。
3.本发明通过采用分单元设置分布式光纤,单个检测单元损坏了不影响其他检测单元的正常使用,可以提高系统的容错率。
4.本发明通过采用玻璃钢胶将所述分布式检测光纤固定于所述盲沟集水管外壁,所述玻璃钢胶可以在不损伤集水管的同时保证检测光纤和盲沟集水管的协同变形。
5.本发明所采用的光时域反射仪仅在检测时与检测光纤连接,无需长时间放置于检测现场,可提高设备使用寿命和利用率。
附图说明
图1是本发明的局部结构俯视图;
图2是本发明单个检测单元的截面图;
图3是本发明单个检测单元截面图的局部放大图;
图4是本发明所述的背向瑞利散射光功率曲线变化情况图。
图标:1-检测光纤,2-光时域检测仪,3-光纤接头,4-盲沟集水管,5-盲沟集水井,6-盲沟底座,7-盲沟回填土体,8-玻璃钢胶。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1、图2和图3所示,本实施例提供一种基于分布式光纤的渗水盲沟破损检测系统,包括分布式检测光纤和光时域检测仪2,所述分布式检测光纤沿轴向设置于盲沟集水管外壁,在一些具体的实施例中还包括玻璃钢胶8,所述玻璃钢胶8用于将所述分布式检测光纤固定于所述盲沟集水管4外壁,所述盲沟集水管4位于盲沟底座6上方,采用玻璃钢胶8将检测光纤固定于盲沟集水管外壁,可以在不损伤集水管的同时保证检测光纤和盲沟集水管的协同变形,所述分布式检测光纤包括多根检测光纤1和多个光纤接头3,在一些具体的实施例中,所述光时域检测仪的动态范围大于26dB,空间分辨率小于5m,在一些具体的实施例中所述检测光纤包括光纤纤芯、包层、涂覆层和保护套,在一些具体的实施例中所述检测光纤为单模光纤。所述检测光纤外表面设置有米标,所述米标可以确定光纤的长度,便于施工人员确定盲沟破损位置。在一些具体的实施例中所述光纤芯由石英玻璃光纤或者树脂塑料光纤制成。相邻盲沟集水井之间的检测光纤能够构成一个检测单元,每根所述检测光纤1两端均设置有所述光纤接头3,多根所述检测光纤1通过所述光纤接头3串联,所述光纤接头3设置于盲沟集水井5处,在一些具体的实施例中光纤接头设置于盲沟集水井5的井壁出,相邻两根所述检测光纤通过所述光纤接头串联,所述光时域检测仪向所述分布式检测光纤发射光检测信号,并接收从所述分布式检测光纤返回的光信号,光时域反射仪仅在检测时与检测光纤连接,无需长时间放置于检测现场,可提高设备使用寿命和利用率。
本实施例还提供一种基于分布式光纤的渗水盲沟破损检测系统的施工方法,包括以下步骤:
步骤S1:根据施工图纸开挖盲沟基坑、盲沟集水井5和盲沟底座6,在所述盲沟基坑预埋盲沟集水管4;
步骤S2:在所述盲沟集水管4外壁上表面安装检测光纤1,安装时需要对检测光纤施加轴向方向的力,使所述检测光纤保持直线状态,再利用玻璃钢胶8将所述检测光纤1固定于渗水盲沟集水管4外壁上表面;
步骤S3:将盲沟回填土体7回填到所述盲沟基坑;
步骤S4:在检测光纤1两端设置光纤接头3,将所述光纤接头3设置于所述盲沟集水井5井壁,相邻两根所述检测光纤通过所述光纤接头串联;
步骤5:将所述检测光纤与光时域反射仪相连接。
本实施例还提供一种基于分布式光纤的渗水盲沟破损检测方法,包括以下步骤:
步骤S101:建立上述的一种基于分布式光纤的渗水盲沟破损检测系统;
步骤S102:通过所述光时域检测仪获取返回的光信号,并生成第二背向瑞利散射光功率曲线B2;
步骤S103:将第二背向瑞利散射光功率曲线B2与预存的第一背向瑞利散射光功率曲线B1进行比较,确定盲沟集水管受损的情况,并根据光路里程和检测光纤的对应关系确定盲沟受损位置的实际物理位置。
如图4所示,在一些具体的实施例中,当渗水盲沟发生轻微变形或者破损导致检测光纤发生微弯时,该位置背向瑞丽散射光光强会发生较大衰减;当渗水盲沟发生较大变形导致检测光纤发生断裂时,该位置会发生端面反射;本实施例中将所述盲沟集水管受损的情况分为三种:
第一种:检测时的背向散射光功率曲线(B2)与初始时背向散射光功率曲线(B1)相比有小幅下降(如图4中B处所示),表示在该处光纤发生了微弯,渗水盲沟有轻微变形;
第二种:检测时的背向散射光功率曲线(B2)与初始时背向散射光功率曲线(B1)相比有峰值突起(如图4中C处所示),表示在该处光纤发生断裂,但断裂处两侧光纤仍紧密贴合,渗水盲沟在此处发生了轻微断裂;
第三种:检测时的背向散射光功率曲线(B2)与初始时背向散射光功率曲线(B1)相比有明显下降,背向散射光功率曲线(B2)呈现为噪声信号(如图4中D处所示),表示在该处光纤发生断裂,且断裂处两侧光纤已分离,渗水盲沟在此处发生了严重断裂;
根据光路里程和检测光纤的的对应关系,即可确定盲沟发生破损位置的物理位置,如图4中B处表示在光路里程400m处渗水盲沟有轻微变形;图4中C处表示在光路里程660m处渗水盲沟有轻微损坏;图4中D处表示在光路里程1540m处渗水盲沟有轻微损坏。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于分布式光纤的渗水盲沟破损检测系统,其特征在于,包括分布式检测光纤和光时域检测仪,
所述分布式检测光纤沿轴向设置于盲沟集水管外壁,所述分布式检测光纤包括多根检测光纤和多个光纤接头,相邻两根所述检测光纤通过所述光纤接头串联,所述光时域检测仪通过所述光纤接头与所述检测光纤相连接,形成检测回路,所述光时域检测仪向所述分布式检测光纤发射光检测信号,并接收从所述分布式检测光纤返回的光信号。
2.根据权利要求1所述的一种基于分布式光纤的渗水盲沟破损检测系统,其特征在于,所述光时域检测仪设置在所述分布式检测光纤的起始端,向所述分布式检测光纤末端发送光检测信号,并接收所述分布式检测光纤返回的光信号。
3.根据权利要求1所述的一种基于分布式光纤的渗水盲沟破损检测系统,其特征在于,所述光纤接头设置于盲沟集水井处。
4.根据权利要求1所述的一种基于分布式光纤的渗水盲沟破损检测系统,其特征在于,所述光时域检测仪动态范围大于26dB,空间分辨率小于5m。
5.根据权利要求1所述的一种基于分布式光纤的渗水盲沟破损检测系统,其特征在于,所述检测光纤外表面设置有米标。
6.根据权利要求1-5任一所述的一种基于分布式光纤的渗水盲沟破损检测系统,其特征在于,还包括玻璃钢胶,所述玻璃钢胶用于将所述分布式检测光纤固定于所述盲沟集水管外壁。
7.一种基于分布式光纤的渗水盲沟破损检测系统的施工方法,其特征在于,包括以下步骤:
步骤S1:根据施工图纸开挖盲沟基坑、盲沟集水井和盲沟底座,在所述盲沟基坑预埋盲沟集水管;
步骤S2:在所述盲沟集水管外壁上表面设置分布式检测光纤,所述分布式检测光纤沿轴向设置于盲沟集水管外壁,所述分布式检测光纤包括多根检测光纤和多个光纤接头,将相邻两根所述检测光纤通过所述光纤接头串联;
步骤S3:回填所述盲沟基坑;
步骤S4:在检测光纤两端设置光纤接头,将所述光纤接头设置于所述盲沟集水井井壁;
步骤S5:将所述检测光纤与光时域反射仪相连接。
8.根据权利要求7所述的一种基于分布式光纤的渗水盲沟破损检测系统的施工方法,其特征在于,所述步骤S2包括:
步骤S21:对检测光纤施加轴向方向的力,使所述检测光纤保持直线状态;
步骤S22:利用玻璃钢胶将所述检测光纤固定于渗水盲沟集水管上部外表面。
9.一种基于分布式光纤的渗水盲沟破损检测方法,其特征在于,包括以下步骤:
步骤S101:建立如权利要求1所述的一种基于分布式光纤的渗水盲沟破损检测系统;
步骤S102:通过所述光时域检测仪获取返回的光信号,并生成第二背向瑞利散射光功率曲线B2;
步骤S103:将第二背向瑞利散射光功率曲线B2与预存的第一背向瑞利散射光功率曲线B1进行比较,确定盲沟集水管受损的情况,并根据光路里程和检测光纤的对应关系,确定盲沟受损位置的实际物理位置。
10.根据权利要求9所述的一种基于分布式光纤的渗水盲沟破损检测方法,其特征在于,所述预存的第一背向瑞利散射光功率曲线B1为初始时记录的沿着检测光纤各点处的背向瑞利散射光功率曲线,所述第二背向瑞利散射光功率曲线B2为实际测量时记录的沿着检测光纤各点处的背向瑞利散射光功率曲线。
CN202010269700.6A 2020-04-08 2020-04-08 基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法 Pending CN111337062A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010269700.6A CN111337062A (zh) 2020-04-08 2020-04-08 基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010269700.6A CN111337062A (zh) 2020-04-08 2020-04-08 基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法

Publications (1)

Publication Number Publication Date
CN111337062A true CN111337062A (zh) 2020-06-26

Family

ID=71184548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010269700.6A Pending CN111337062A (zh) 2020-04-08 2020-04-08 基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法

Country Status (1)

Country Link
CN (1) CN111337062A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067632A (zh) * 2021-04-02 2021-07-02 褚氏工业科技(上海)有限公司 一种施工现场的质量、安全检测装置和方法
CN115060187A (zh) * 2022-08-18 2022-09-16 天津市计量监督检测科学研究院 一种分布式光纤应变传感性能检测系统与方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067632A (zh) * 2021-04-02 2021-07-02 褚氏工业科技(上海)有限公司 一种施工现场的质量、安全检测装置和方法
CN113067632B (zh) * 2021-04-02 2023-06-16 西安西交费普瑞系统技术有限公司 一种施工现场的质量、安全检测装置和方法
CN115060187A (zh) * 2022-08-18 2022-09-16 天津市计量监督检测科学研究院 一种分布式光纤应变传感性能检测系统与方法
CN115060187B (zh) * 2022-08-18 2022-12-02 天津市计量监督检测科学研究院 一种分布式光纤应变传感性能检测系统与方法

Similar Documents

Publication Publication Date Title
Mohamad et al. Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement
CN106524936B (zh) 一种隧道管棚变形监测方法
CN1888330B (zh) 灌注桩基础分布式光纤传感检测方法
Zhu et al. A novel distributed optic fiber transduser for landslides monitoring
CN107907065B (zh) 一种滑移面感知锚杆及其监测方法
CN103821507A (zh) 立井井壁变形分布式光纤检测方法
CN105022131B (zh) 一种用于长距离隧道/管道渗漏监测的传感光缆
CN102735996A (zh) 一种海底电缆故障点准确定位方法
CN111337062A (zh) 基于分布式光纤的渗水盲沟破损检测系统及施工、检测方法
CN103884290A (zh) 一种基于分布式光纤定点传感技术的地裂缝变形监测装置
CN1265183C (zh) 光缆线路故障点精确定位方法
CN108252288A (zh) 一种基于ofdr技术的深基坑变形分布式监测系统
Zheng et al. Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system
CN211602089U (zh) 一种基于分布式光纤的渗水盲沟积水检测系统
Ma et al. A review of previous studies on the applications of fiber optic sensing technologies in geotechnical monitoring
CN111549832A (zh) 基于高精度分布式光纤监测的能量桩试验系统及试验方法
CN211504169U (zh) 基于分布式光纤的渗水盲沟破损检测系统
CN105157999A (zh) 基于分布式光纤传感技术桩完整性和横向位移的评估方法
CN215908883U (zh) 一种适用于长距离海管泄漏监测的传感器
CN201561828U (zh) 光纤光栅地质灾害监测仪
Zhao et al. PPP-BOTDA distributed optical fiber sensing technology and its application to the Baishuihe landslide
Zhang et al. Distributed fiber optic sensors for tunnel monitoring: A state-of-the-art review
CN210625584U (zh) 基于光纤传感技术的地表沉降准分布式监测装置
CN103439630A (zh) 电力电缆故障点定位方法与系统
CN203083529U (zh) 布里渊光传感式连续多点位移计测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination