CN111331320A - 一种高精度阀芯及其制备方法与应用 - Google Patents
一种高精度阀芯及其制备方法与应用 Download PDFInfo
- Publication number
- CN111331320A CN111331320A CN202010193969.0A CN202010193969A CN111331320A CN 111331320 A CN111331320 A CN 111331320A CN 202010193969 A CN202010193969 A CN 202010193969A CN 111331320 A CN111331320 A CN 111331320A
- Authority
- CN
- China
- Prior art keywords
- valve core
- workpiece
- connecting rod
- core shell
- carburizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/001—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/58—Oils
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
- C23C8/22—Carburising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/40—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
- C23C8/42—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
- C23C8/44—Carburising
- C23C8/46—Carburising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/60—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
- C23C8/62—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
- C23C8/64—Carburising
- C23C8/66—Carburising of ferrous surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K51/00—Other details not peculiar to particular types of valves or cut-off apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Magnetically Actuated Valves (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
本发明实施例公开了一种高精度阀芯及其制备方法与应用,所述高精度阀芯的制备方法,包括步骤一、将原材料表面多余材料切除;步骤二、使渗碳介质中分解出的活性碳原子渗入原材料表层;步骤三、利用枪钻对步骤二处理后的工件进行深孔加工;步骤四、对深孔加工后的工件进一步加工;步骤五、根据铣床对步骤四处理后的工件加工,对阀芯外壳与连接杆的连接处用高频感应加热淬火;步骤六、对步骤五处理后的工件进行镗孔处理;步骤七、对镗孔后的工件进行打磨。本发明提供的高精度阀芯的制备方法通过在阀芯外壳与连接杆的连接处用高频感应加热淬火,在不损坏阀芯外壳的情况下,提高产品强度,克服两个阀芯外壳装配间隙容易损坏的问题,从而降低报废率。
Description
技术领域
本发明涉及工程液压设备领域,具体涉及一种高精度阀芯及其制备方法与应用。
背景技术
工程液压设备工作时,需要控制液压油流量大小来保证设备作业部分有效持久运作。深孔阀芯在阀体内高速来回运动,通过其轴向孔和径向孔控制液压油在两个或多个阀腔之间互相流动,所以阀芯对整个设备运作起着很关键的作用。
在多路阀装配过程中往往需要至少两个零部件组装成一个阀芯结构,目前该类阀芯存在制造成本很高,装配间隙容易损坏,报废率高的问题。
发明内容
为此,本发明实施例提供一种高精度阀芯及其制备方法与应用,以解决现有技术中在多路阀装配过程中存在制造成本很高,装配间隙容易损坏,报废率高的问题。
为了实现上述目的,本发明实施例提供如下技术方案:
根据本发明实施例的第一方面,提供一种高精度阀芯的制备方法,包括以下步骤:
步骤一、选取原材料,将原材料表面多余材料切除,备用;
步骤二、将步骤一处理后的原材料置入具有活性渗碳介质中,使渗碳介质中分解出的活性碳原子渗入原材料表层,获得工件;
步骤三、利用枪钻对步骤二处理后的工件进行深孔加工;
步骤四、对深孔加工后的工件进一步加工,使工件符合产品要求;
步骤五、根据铣床对步骤四处理后的工件加工,获得阀芯零件,所述阀芯零件包括阀芯外壳和设置在阀芯外壳端部的连接杆,阀芯外壳和连接杆一体成型,对阀芯外壳端部与连接杆的连接处用高频感应加热淬火;
步骤六、对步骤五处理后的工件进行镗孔处理;
步骤七、对镗孔后的工件进行打磨。
进一步的,所述步骤二包括将步骤一处理后的原材料置入具有活性渗碳介质中,之后加热到930—960℃,直至渗碳介质中分解出的活性碳原子渗入钢件表层。
进一步的,所述渗碳介质包括气体渗碳介质、固体渗碳介质和液体渗碳介质。
进一步的,所述气体渗碳介质包括甲烷和/或乙烷,所述液体渗剂包括煤油、苯、酒精、丙酮中的任意一种或两种以上的组合。
进一步的,所述步骤五包括对阀芯外壳端部与连接杆的连接处用高频感应加热到840—880℃,保温1—2h,之后放入冷却剂中。
进一步的,所述冷却剂为100℃时运动粘度为18—20mm2/sec的石蜡基矿物油。
进一步的,所述冷却剂为100℃时运动粘度为18.6mm2/sec的石蜡基矿物油。
进一步的,所述步骤五中频感应高的电流频率为10~14kHz。
根据本发明实施例的第二方面,提供一种高精度阀芯,包括至少一个阀芯外壳和至少一个连接杆,所述连接杆设置在阀芯外壳的一端,且阀芯外壳与连接杆一体成型。
根据本发明实施例的第三方面,提供一种高精度阀芯在多路阀装配过程中的应用。
本发明实施例具有如下优点:本发明实施例提供一种高精度阀芯及其制备方法与应用,所述高精度阀芯的制备方法将阀芯外壳和连接杆一体成型,能够大大方便两个或多个阀芯外壳装配,在提高装配效率的同时,能够克服装配间隙容易损坏的问题,降低报废率;通过对阀芯外壳和连接杆的连接处加热淬火,在不损坏阀芯外壳的情况下,提高产品强度,克服了将连接杆直接安装在阀芯外壳端部容易出现损坏的问题。此外,本申请提供的高精度阀芯设计合理,减少了人工装配时间,降低制造产成本,并保留了其原有的使用性能,还使设备运作顺畅,使用寿命更长,提升了该类产品的市场竞争力。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
图1为本发明实施例1提供的高精度阀芯的结构示意图;
图中标记:1—阀芯外壳;2—连接杆。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义,下述实施例中的实验材料,若无特别说明,均是来源于商业途径,所述的实验方法,若无特别说明,均为通用实验方法。
针对现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
实施例1
本实施例提供了一种高精度阀芯的制备方法,包括以下步骤:
步骤一、选取原材料,将原材料表面多余材料切除,备用;
步骤二、将步骤一处理后的原材料置入具有活性渗碳介质中,之后加热到930℃,直至渗碳介质中分解出的活性碳原子渗入钢件表层,获得工件;
步骤三、利用枪钻对步骤二处理后的工件进行深孔加工;
步骤四、对深孔加工后的工件进一步加工,使工件符合产品要求;
步骤五、根据铣床对步骤四处理后的工件加工,获得阀芯零件,所述阀芯零件包括阀芯外壳和设置在阀芯外壳端部的连接杆,阀芯外壳和连接杆一体成型,对阀芯外壳端部与连接杆的连接处用高频感应加热到840℃,保温1h,之后放入冷却剂中淬火;步骤六、对步骤五处理后的工件进行镗孔处理;
步骤七、对镗孔后的工件进行打磨。
优选的,所述渗碳介质包括气体渗碳介质、固体渗碳介质和液体渗碳介质。其中,所述气体渗碳介质包括甲烷和/或乙烷,所述液体渗剂包括煤油、苯、酒精、丙酮中的任意一种或两种以上的组合。
优选的,所述冷却剂为100℃时运动粘度为18mm2/sec的石蜡基矿物油。
优选的,所述步骤五中频感应高的电流频率为10kHz。
实施例2
本实施例提供了一种高精度阀芯的制备方法,包括以下步骤:
步骤一、选取原材料,将原材料表面多余材料切除,备用;
步骤二、将步骤一处理后的原材料置入具有活性渗碳介质中,之后加热到960℃,直至渗碳介质中分解出的活性碳原子渗入钢件表层,获得工件;
步骤三、利用枪钻对步骤二处理后的工件进行深孔加工;
步骤四、对深孔加工后的工件进一步加工,使工件符合产品要求;
步骤五、根据铣床对步骤四处理后的工件加工,获得阀芯零件,所述阀芯零件包括阀芯外壳和设置在阀芯外壳端部的连接杆,阀芯外壳和连接杆一体成型,对阀芯外壳端部与连接杆的连接处用高频感应加热到880℃,保温2h,之后放入冷却剂中淬火;
步骤六、对步骤五处理后的工件进行镗孔处理;
步骤七、对镗孔后的工件进行打磨。
优选的,所述渗碳介质包括气体渗碳介质、固体渗碳介质和液体渗碳介质。其中,所述气体渗碳介质包括甲烷和/或乙烷,所述液体渗剂包括煤油、苯、酒精、丙酮中的任意一种或两种以上的组合。
优选的,所述冷却剂为100℃时运动粘度为20mm2/sec的石蜡基矿物油。
优选的,所述步骤五中频感应高的电流频率为14kHz。
实施例3
本实施例提供了一种高精度阀芯的制备方法,包括以下步骤:
步骤一、选取原材料,将原材料表面多余材料切除,备用;
步骤二、将步骤一处理后的原材料置入具有活性渗碳介质中,之后加热到945℃,直至渗碳介质中分解出的活性碳原子渗入钢件表层,获得工件;
步骤三、利用枪钻对步骤二处理后的工件进行深孔加工;
步骤四、对深孔加工后的工件进一步加工,使工件符合产品要求;
步骤五、根据铣床对步骤四处理后的工件加工,获得阀芯零件,所述阀芯零件包括阀芯外壳和设置在阀芯外壳端部的连接杆,阀芯外壳和连接杆一体成型,对阀芯外壳端部与连接杆的连接处用高频感应加热到860℃,保温1.5h,之后放入冷却剂中淬火;
步骤六、对步骤五处理后的工件进行镗孔处理;
步骤七、对镗孔后的工件进行打磨。
优选的,所述渗碳介质包括气体渗碳介质、固体渗碳介质和液体渗碳介质。其中,所述气体渗碳介质包括甲烷和/或乙烷,所述液体渗剂包括煤油、苯、酒精、丙酮中的任意一种或两种以上的组合。
其中,所述冷却剂为100℃时运动粘度为18.6mm2/sec的石蜡基矿物油时效果最好。
优选的,所述步骤五中频感应高的电流频率为12kHz。
实施例4
本实施例提供一种高精度阀芯,包括至少一个阀芯外壳1和至少一个连接杆2,所述连接杆2设置在阀芯外壳1的一端,且阀芯外壳1与连接杆2一体成型。此外,还提供一种高精度阀芯在多路阀装配过程中的应用。
实验一
将实施例1—3制备的高精度阀芯分别作为A、B、C三组,将实施例1中步骤五不对阀芯外壳和连接杆的连接处进行高频感应淬火作为D组,采用常规方法制备高精度阀芯作为E组,统计产品的报废率如下表所示:
组别 | 报废率(%) |
A | 2.0 |
B | 1.7 |
C | 1.6 |
D | 3.2 |
E | 4.0 |
上述结果表明,本发明的制备方法通过在阀芯外壳端部的内螺纹部用高频感应加热淬火,在不损坏阀芯外壳的情况下,提高产品强度,克服两个阀芯外壳装配间隙容易损坏的问题,从而降低报废率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。
Claims (10)
1.一种高精度阀芯的制备方法,其特征在于,包括以下步骤:
步骤一、选取原材料,将原材料表面多余材料切除,备用;
步骤二、将步骤一处理后的原材料置入具有活性渗碳介质中,使渗碳介质中分解出的活性碳原子渗入原材料表层,获得工件;
步骤三、利用枪钻对步骤二处理后的工件进行深孔加工;
步骤四、对深孔加工后的工件进一步加工,使工件符合产品要求;
步骤五、根据铣床对步骤四处理后的工件加工,获得阀芯零件,所述阀芯零件包括阀芯外壳和设置在阀芯外壳端部的连接杆,阀芯外壳和连接杆一体成型,对阀芯外壳端部与连接杆的连接处用高频感应加热淬火;
步骤六、对步骤五处理后的工件进行镗孔处理;
步骤七、对镗孔后的工件进行打磨。
2.根据权利要求1所述高精度阀芯的制备方法,其特征在于:所述步骤二包括将步骤一处理后的原材料置入具有活性渗碳介质中,之后加热到930—960℃,直至渗碳介质中分解出的活性碳原子渗入钢件表层。
3.根据权利要求1或2所述高精度阀芯的制备方法,其特征在于:所述渗碳介质包括气体渗碳介质、固体渗碳介质和液体渗碳介质。
4.根据权利要求3所述高精度阀芯的制备方法,其特征在于:所述气体渗碳介质包括甲烷和/或乙烷,所述液体渗剂包括煤油、苯、酒精、丙酮中的任意一种或两种以上的组合。
5.根据权利要求1所述高精度阀芯的制备方法,其特征在于:所述步骤五包括对阀芯外壳端部与连接杆的连接处用高频感应加热到840—880℃,保温1—2h,之后放入冷却剂中。
6.根据权利要求5所述高精度阀芯的制备方法,其特征在于:所述冷却剂为100℃时运动粘度为18—20mm2/sec的石蜡基矿物油。
7.根据权利要求6所述高精度阀芯的制备方法,其特征在于:所述冷却剂为100℃时运动粘度为18.6mm2/sec的石蜡基矿物油。
8.根据权利要求1所述高精度阀芯的制备方法,其特征在于:所述步骤五中频感应高的电流频率为10~14kHz。
9.一种如权利要求1—8中任一项制备方法制得的高精度阀芯,其特征在于:包括至少一个阀芯外壳和至少一个连接杆,所述连接杆设置在阀芯外壳的一端,且阀芯外壳与连接杆一体成型。
10.一种如权利要求9所述高精度阀芯在多路阀装配过程中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010193969.0A CN111331320B (zh) | 2020-03-19 | 2020-03-19 | 一种高精度阀芯及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010193969.0A CN111331320B (zh) | 2020-03-19 | 2020-03-19 | 一种高精度阀芯及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111331320A true CN111331320A (zh) | 2020-06-26 |
CN111331320B CN111331320B (zh) | 2022-02-15 |
Family
ID=71176600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010193969.0A Active CN111331320B (zh) | 2020-03-19 | 2020-03-19 | 一种高精度阀芯及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111331320B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115156921A (zh) * | 2022-08-19 | 2022-10-11 | 浙江宏明水暖科技有限公司 | 一种阀芯加工工艺 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5293685A (en) * | 1991-09-19 | 1994-03-15 | Mannesmann Aktiengesellschaft | Method of making slide valves with tappets and the slide valves |
US5493776A (en) * | 1992-04-14 | 1996-02-27 | K-Line Industries, Inc. | Method of installing valve guide insert |
CN101344169A (zh) * | 2008-08-15 | 2009-01-14 | 应云富 | 长行程气动液压缸缸体及其加工方法 |
CN102581563A (zh) * | 2012-03-05 | 2012-07-18 | 山东常林机械集团股份有限公司 | 一种液压多路阀滑阀的加工工艺 |
CN103464968A (zh) * | 2012-06-06 | 2013-12-25 | 广州市蕴泰精密机械有限公司 | 多路阀阀芯的加工方法 |
CN105195991A (zh) * | 2015-10-16 | 2015-12-30 | 汪廷云 | 一种410材质球阀阀芯的制造工艺 |
CN108907631A (zh) * | 2018-08-23 | 2018-11-30 | 江苏华太电力仪表有限公司 | 一种耐高温无泄漏球阀阀芯的制备工艺 |
CN110814647A (zh) * | 2019-11-04 | 2020-02-21 | 中国万宝工程有限公司 | 一种控制阀芯及其加工方法 |
-
2020
- 2020-03-19 CN CN202010193969.0A patent/CN111331320B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5293685A (en) * | 1991-09-19 | 1994-03-15 | Mannesmann Aktiengesellschaft | Method of making slide valves with tappets and the slide valves |
US5493776A (en) * | 1992-04-14 | 1996-02-27 | K-Line Industries, Inc. | Method of installing valve guide insert |
CN101344169A (zh) * | 2008-08-15 | 2009-01-14 | 应云富 | 长行程气动液压缸缸体及其加工方法 |
CN102581563A (zh) * | 2012-03-05 | 2012-07-18 | 山东常林机械集团股份有限公司 | 一种液压多路阀滑阀的加工工艺 |
CN103464968A (zh) * | 2012-06-06 | 2013-12-25 | 广州市蕴泰精密机械有限公司 | 多路阀阀芯的加工方法 |
CN105195991A (zh) * | 2015-10-16 | 2015-12-30 | 汪廷云 | 一种410材质球阀阀芯的制造工艺 |
CN108907631A (zh) * | 2018-08-23 | 2018-11-30 | 江苏华太电力仪表有限公司 | 一种耐高温无泄漏球阀阀芯的制备工艺 |
CN110814647A (zh) * | 2019-11-04 | 2020-02-21 | 中国万宝工程有限公司 | 一种控制阀芯及其加工方法 |
Non-Patent Citations (4)
Title |
---|
叶文华: "《机械制造工艺与装备》", 28 February 2011 * |
波尔赫维奇诺夫: "《金属学和热处理 高等学校教学用书 下》", 30 November 1954 * |
王引真: "《材料工程基础》", 31 May 2015 * |
王顺兴: "《金属热处理原理与工艺》", 31 January 2019 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115156921A (zh) * | 2022-08-19 | 2022-10-11 | 浙江宏明水暖科技有限公司 | 一种阀芯加工工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN111331320B (zh) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111331320B (zh) | 一种高精度阀芯及其制备方法与应用 | |
CN103506822B (zh) | 一种耐高温聚酰亚胺复合材料保持架的加工方法 | |
CN104625614A (zh) | 不锈钢深孔薄壁零件加工方法 | |
CN103691958B (zh) | 一种粉末冶金齿轮加工工艺 | |
CN110814647B (zh) | 一种控制阀芯及其加工方法 | |
CN105986919A (zh) | 一种改进的发动机缸体及其制造工艺 | |
CN102658467A (zh) | 一种金属壳体舱段缠绕防热层的车削方法及其装置 | |
CN111940537A (zh) | 一种s31254无缝钢管的热挤压制管生产方法 | |
CN110576299A (zh) | 一种精密短行程整体活塞加工方法 | |
CN105643206A (zh) | 一种超精密阀套内孔的加工方法 | |
CN112719667B (zh) | 一种柱塞泵马达转子双金属结构工艺方法 | |
CN110587219A (zh) | 一种应用于液压支架立柱的包覆焊方法 | |
CN110911843B (zh) | 一种环形内沟槽结构馈源的制作方法 | |
CN115213641B (zh) | 变速器输入轴的加工方法 | |
CN110241348B (zh) | 一种无磁金属陶瓷及其制备方法和应用 | |
CN111649071A (zh) | 一种轴承外圈加工工艺 | |
CN106425304B (zh) | 一种滑油喷嘴的加工工艺 | |
CN113941678A (zh) | 一种温锻、冷挤压的锻造工艺及其模具 | |
CN202883144U (zh) | 一种新型活塞销 | |
CN110408882B (zh) | 一种防渗碳处理方法 | |
CN110614362B (zh) | 一种粉末冶金的复合丝锥制造方法 | |
CN106563831B (zh) | 用于静压膨胀芯轴的变径套 | |
CN102601850B (zh) | 碳化硅球阀阀芯加工方法 | |
CN117245152B (zh) | 一种内胀套组件及用于高精度定位零件的内胀套制作方法 | |
CN219837624U (zh) | 一种阀芯孔精密加工刀具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: No. 11, Wenlin Huannan Road, Zhutang Town, Jiangyin City, Wuxi City, Jiangsu Province Applicant after: Wuxi Yingbei Precision Hydraulic Co., Ltd Address before: No. 11, Wenlin Huannan Road, Zhutang Town, Jiangyin City, Wuxi City, Jiangsu Province Applicant before: WUXI YINGBEI PRECISION BEARING Co.,Ltd. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |