CN111323387A - 甲烷值在线实时监测系统 - Google Patents

甲烷值在线实时监测系统 Download PDF

Info

Publication number
CN111323387A
CN111323387A CN202010204328.0A CN202010204328A CN111323387A CN 111323387 A CN111323387 A CN 111323387A CN 202010204328 A CN202010204328 A CN 202010204328A CN 111323387 A CN111323387 A CN 111323387A
Authority
CN
China
Prior art keywords
laser
gas
system part
tunable
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010204328.0A
Other languages
English (en)
Inventor
董全
张钰钦
宋恩哲
姚崇
杨立平
孙军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202010204328.0A priority Critical patent/CN111323387A/zh
Publication of CN111323387A publication Critical patent/CN111323387A/zh
Priority to US17/203,893 priority patent/US11493438B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明一种甲烷值在线实时监测系统,包括激光可调谐系统部分、气体成分检测系统部分和数据处理系统部分;所述激光可调谐系统部分包括计算机、激光器驱动、可调谐激光器、激光合束器、准直器和扩束器且依次相连;所述气体成分检测系统部分包括燃气供给系统管路、软管、阀门和气体室,所述数据处理系统部分包括探测器、锁相放大器、示波器和数据采集卡切依次相连;本发明在工作过程中,通过对天然气发动机燃气供给系统管路通往燃烧室中天然气的采集,实现在线实时监测气体质量即甲烷值变化,克服由于气体质量快速变化相关的爆震问题,整个系统操作简单、成本低、恶劣环境适应能力强、维护成本低、安全无污染、实时测量、可靠性高等优点。

Description

甲烷值在线实时监测系统
技术领域
本发明涉及到气体燃料发动机领域,是一种对天然气甲烷值在线实时监测的系统。
背景技术
当今世界节约能源与保护环境的呼声越来越高,排放法规的要求也日益严格,节能减排已然成为内燃机行业发展的重点之一。气体燃料内燃机由于其良好的热效率以及低排放的特点受到越来越多的重视。随着我国天然气发动机的发展,我们对天然气发动机的研究也愈发深入。研究表明甲烷值是表征内燃机抗爆性的重要指标,甲烷值高的天然气(80-90)从火花点火开始可以提供平稳的燃烧,而甲烷值低的天然气(55-65)在燃烧室内某些部位通过自燃增加爆震的风险。爆震造成发动机内部活塞敲击汽缸,发动机功率下降,温度升高,发动机内部零件负荷增加和磨损加剧,发动机内部积炭形成量增加,发动机内部零件因温度升高而变形等等。种种由于爆震产生的危害,是我们所不愿见到的,因此,需要发明一种能够对表征抗爆性指标即甲烷值进行在线实时监测的系统。
发明内容
本发明的目的就是为了克服气体质量快速变化相关的爆震问题,提供了一种在线、实时、精度高、反应迅速、非接触的甲烷值监测系统。
本发明是这样实现的:
一种甲烷值在线实时监测系统,包括激光可调谐系统部分、气体成分检测系统部分和数据处理系统部分;所述激光可调谐系统部分包括计算机、激光器驱动、可调谐激光器、激光合束器、准直器和扩束器且依次相连;所述气体成分检测系统部分包括燃气供给系统管路、软管、阀门和气体室,所述燃气共给系统管路通过软管与气体室连接,且软管上设置阀门;所述数据处理系统部分包括探测器、锁相放大器、示波器和数据采集卡切依次相连;所述气体室一端与扩束器连接,另一端与探测器连接,所述计算机一端与激光驱动器连接,另一端与数据采集卡连接。
所述可调谐激光器包括甲烷激光器、乙烷激光器、丙烷激光器、丁烷激光器、二氧化碳激光器和氮气激光器;
所述可调谐激光器和激光驱动器一一对应。
本发明有益效果:
本发明的甲烷值在线实时监测系统,在工作过程中,通过对天然气发动机燃气供给系统管路通往燃烧室中天然气的采集,实现在线实时监测气体质量即甲烷值变化,克服由于气体质量快速变化相关的爆震问题,整个系统操作简单、成本低、恶劣环境适应能力强、维护成本低、安全无污染、实时测量、可靠性高等优点。
附图说明
图1为本发明甲烷值在线实时监测系统的激光可调谐部分。
图2为本发明甲烷值在线实时监测系统的气体检测部分。
图3为本发明甲烷值在线实时监测系统的数据处理部分。
图4为本发明甲烷值在线实时监测系统的总体布置图。
图中:1计算机、2激光器驱动、3可调谐激光器、4激光合束器、5准直器、6扩束器、7燃气供给系统管路、8阀门、9塑料软管、10气体室、11探测器、12锁相放大器、13示波器、14数据采集卡。
具体实施方式
以下结合附图和具体实施案例,对本发明进行详细说明。
图1、图2和图3为本发明甲烷值在线实时监测系统的三个部分,1计算机、2激光器驱动、3可调谐激光器、4激光合束器、5准直器、6扩束器、7燃气供给系统管路、8阀门、9塑料软管、10气体室、11探测器、12锁相放大器、13示波器、14数据采集卡。图2为气体检测部分,首先将燃气供给系统管路里面的天然气通过塑料软管经过燃气供给系统管路阀门后充入气体室。图1为可调谐激光部分,从图中可以看出,甲烷激光器、乙烷激光器、丙烷激光器、丁烷激光器、二氧化碳激光器、氮气激光器,分别由各自的激光器驱动控制,首先将不同激光器调谐到各自检测气体敏感波长,具体操作如下:波长的调谐由温度和电流控制,温度实现粗调谐,电流实现精调谐,先调谐温度,在示波器中找到气体吸收峰值的大致波长,在控制温度保持不变的情况下,对电流进行精调谐,实现对气体检测峰值波长的锁定(若想知道检测气体精确敏感波长,则可以将激光器接到波长计中,便可得知敏感波长)。锁定敏感波长后,激光在合束器处,实现激光合束(合束的目的一是降低成本,二是简化气体检测部分,实现共用一个气体室)。激光在气体室里经过多次折射后被末尾处的探测器检测到(激光在气体室里多次折射的目的是延长光在检测气体的路程,提高精度和避免由于气体的非均匀分布引起的误差),探测器将探测到的信号传递到各自气体对应的锁相放大器处,锁相放大器实现对各次谐波信号的提取,提取到的二次谐波信号带有与所测浓度成正比的电压幅值信号,实时监测前,已完成对电压幅值信号与浓度之间关系的反演,将经过锁相放大器处理后的二次谐波电压幅值信号,传递到计算机中,在经过浓度与甲烷值关系式的计算,即可实现对天然气甲烷值的在线实时监测。
一种甲烷值在线实时监测系统,包括激光可调谐系统部分、气体成分检测系统部分和数据处理系统部分;所述激光可调谐系统部分包括计算机、激光器驱动、可调谐激光器、激光合束器、准直器和扩束器且依次相连;所述气体成分检测系统部分包括燃气供给系统管路、软管、阀门和气体室,所述燃气共给系统管路通过软管与气体室连接,且软管上设置阀门;所述数据处理系统部分包括探测器、锁相放大器、示波器和数据采集卡切依次相连;所述气体室一端与扩束器连接,另一端与探测器连接,所述计算机一端与激光驱动器连接,另一端与数据采集卡连接;所述可调谐激光器包括甲烷激光器、乙烷激光器、丙烷激光器、丁烷激光器、二氧化碳激光器和氮气激光器;所述可调谐激光器和激光驱动器一一对应。
本发明甲烷值在线实时监测系统,它主要由计算机、激光器驱动、可调谐激光器、激光合束器、准直器、扩束器、燃气供给系统管路、阀门、塑料软管、气体室、探测器、锁相放大器、示波器、数据采集卡、夹具等组成。其特征是:计算机、可调谐激光器、激光器驱动、激光合束器、准直器、扩束器、构成激光可调谐系统部分。燃气供给系统管路、塑料软管、阀门、气体室构成气体成分检测系统部分。探测器、锁相放大器、示波器、数据采集卡、计算机组成数据处理系统部分。燃气供给系统管路中的天然气通过气阀,经过塑料软管充入气体室中,连接好可调谐激光器、激光器驱动、激光合束器、准直器、扩束器、探测器、示波器、计算机、锁相放大器后,先对温度进行粗调谐,控制温度不变,对电流进行精确的调谐,找到气体吸收峰值处所对应的波长。由于甲烷值的监测涉及到甲烷、乙烷、丙烷、丁烷、二氧化碳、氮气六种成分,故需要对上述六种组分进行调谐,使调谐后的波长为该气体吸收峰值处波长。可调谐激光在经过气体室吸收能量后,被探测器捕捉信号,再经过锁相放大器调制解调之后,输出与所测气体浓度成正比的二次谐波电压幅值信号,在经过计算机反演电压幅值信号,得到所测浓度,将各个组分浓度信号进行采集,输入到甲烷值与各浓度计算表达式中,在计算机上显示出所测甲烷值。由于共用一个气体室,故在实现各个组分气体浓度监测时采用将不同波长激光合束,共用一个探测器即可,即实现分时检测,这样的操作不仅实现了对监测系统的简化,也将降低了成本。
综上所述:本发明提供的是甲烷值在线实时监测系统,包括甲烷激光器、乙烷激光器、丙烷激光器、丁烷激光器、二氧化碳激光器、氮气激光器、各自可调谐激光器的驱动、激光合束器、气体室、燃气供给系统管路、塑料软管、气阀、探测器、锁相放大器、计算机、示波器、准直器、扩束器、夹具等。本发明在工作过程中,可实现对天然气甲烷值的在线实时监控,反应速率快。满足天然气发动机工作的要求,本发明方便携带,可实现对不同发动机的实时监测,本发明无需后处理,操作简单,无需后期维护,成本低。本发明恶劣环境适应能力强,安全可靠。

Claims (3)

1.一种甲烷值在线实时监测系统,其特征是,包括激光可调谐系统部分、气体成分检测系统部分和数据处理系统部分;所述激光可调谐系统部分包括计算机、激光器驱动、可调谐激光器、激光合束器、准直器和扩束器且依次相连;所述气体成分检测系统部分包括燃气供给系统管路、软管、阀门和气体室,所述燃气共给系统管路通过软管与气体室连接,且软管上设置阀门;所述数据处理系统部分包括探测器、锁相放大器、示波器和数据采集卡切依次相连;所述气体室一端与扩束器连接,另一端与探测器连接,所述计算机一端与激光驱动器连接,另一端与数据采集卡连接。
2.根据权利要求1所述的甲烷值在线实时监测系统,其特征是,所述可调谐激光器包括甲烷激光器、乙烷激光器、丙烷激光器、丁烷激光器、二氧化碳激光器和氮气激光器。
3.根据权利要求1或2所述的甲烷值在线实时监测系统,其特征是,所述可调谐激光器和激光驱动器一一对应。
CN202010204328.0A 2020-03-21 2020-03-21 甲烷值在线实时监测系统 Pending CN111323387A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010204328.0A CN111323387A (zh) 2020-03-21 2020-03-21 甲烷值在线实时监测系统
US17/203,893 US11493438B2 (en) 2020-03-21 2021-03-17 Methane value online real-time monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010204328.0A CN111323387A (zh) 2020-03-21 2020-03-21 甲烷值在线实时监测系统

Publications (1)

Publication Number Publication Date
CN111323387A true CN111323387A (zh) 2020-06-23

Family

ID=71173502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010204328.0A Pending CN111323387A (zh) 2020-03-21 2020-03-21 甲烷值在线实时监测系统

Country Status (2)

Country Link
US (1) US11493438B2 (zh)
CN (1) CN111323387A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255194A (zh) * 2020-10-16 2021-01-22 哈尔滨工程大学 天然气发动机尾气甲烷浓度在线实时监测系统
CN112630152A (zh) * 2020-12-18 2021-04-09 中国科学院广州能源研究所 一种在线检测沼气输送管道中甲烷含量的系统
CN113406023A (zh) * 2021-05-24 2021-09-17 哈尔滨工程大学 天然气可燃气体组分浓度在线测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008226A1 (en) * 1992-10-05 1994-04-14 Shell Internationale Research Maatschappij B.V. An apparatus for fuel quality monitoring
CN101303301A (zh) * 2008-06-23 2008-11-12 东北电力大学 烟气粉尘和特性气体同时在线监测方法及装置
US20100141949A1 (en) * 2007-07-09 2010-06-10 Integrated Optoelectronics As Measuring of fuel composition by using laser
US20120154813A1 (en) * 2010-12-17 2012-06-21 General Electric Company System and method for real-time measurement of equivalence ratio of gas fuel mixture
US20140326049A1 (en) * 2013-05-06 2014-11-06 Serguei Zelepouga Method and apparatus for real-time measurement of fuel gas compositions and heating values
CN107991268A (zh) * 2018-01-11 2018-05-04 中国石油大学(华东) 基于多频调制和多频解调的多气体组份检测方法及装置
CN207379917U (zh) * 2017-11-16 2018-05-18 中北大学 航空发动机燃气成分及浓度监测系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576827A (en) * 1994-04-15 1996-11-19 Micromeritics Instrument Corporation Apparatus and method for determining the size distribution of particles by light scattering
US6542227B2 (en) * 2001-09-04 2003-04-01 Rosemount Aerospace, Inc. System and method of measuring flow velocity in three axes
US9778237B2 (en) * 2014-02-27 2017-10-03 Cummins, Inc. Systems and methods for determining combustion properties of wellhead gas
US10081775B2 (en) * 2015-02-19 2018-09-25 ProSep, Inc. Methods for hydrocarbon dew point reduction using an organosilica media

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008226A1 (en) * 1992-10-05 1994-04-14 Shell Internationale Research Maatschappij B.V. An apparatus for fuel quality monitoring
US20100141949A1 (en) * 2007-07-09 2010-06-10 Integrated Optoelectronics As Measuring of fuel composition by using laser
CN101303301A (zh) * 2008-06-23 2008-11-12 东北电力大学 烟气粉尘和特性气体同时在线监测方法及装置
US20120154813A1 (en) * 2010-12-17 2012-06-21 General Electric Company System and method for real-time measurement of equivalence ratio of gas fuel mixture
US20140326049A1 (en) * 2013-05-06 2014-11-06 Serguei Zelepouga Method and apparatus for real-time measurement of fuel gas compositions and heating values
CN207379917U (zh) * 2017-11-16 2018-05-18 中北大学 航空发动机燃气成分及浓度监测系统
CN107991268A (zh) * 2018-01-11 2018-05-04 中国石油大学(华东) 基于多频调制和多频解调的多气体组份检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐蒙 等: "ISO/TR22302《天然气-甲烷值计算》的解读", 《石油与天然气化工》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255194A (zh) * 2020-10-16 2021-01-22 哈尔滨工程大学 天然气发动机尾气甲烷浓度在线实时监测系统
CN112630152A (zh) * 2020-12-18 2021-04-09 中国科学院广州能源研究所 一种在线检测沼气输送管道中甲烷含量的系统
CN113406023A (zh) * 2021-05-24 2021-09-17 哈尔滨工程大学 天然气可燃气体组分浓度在线测量装置

Also Published As

Publication number Publication date
US11493438B2 (en) 2022-11-08
US20210199573A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US11493438B2 (en) Methane value online real-time monitoring system
Heufer et al. Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube
Kopecek et al. Laser ignition of methane-air mixtures at high pressures and diagnostics
Snelling et al. In-Situ Real-Time Characterization of Particuiate Emissions from a Diesel Engine Exhaust by Laser-Induced Incandescence
CN105548072A (zh) 一种同时测量高温气体二维瞬态温度场和浓度场的方法
Heisey et al. Aqueous alcohol fumigation of a single-cylinder DI diesel engine
Şöhret et al. A comparison of gasoline, liquid petroleum gas, and hydrogen utilization in an spark ignition engine in terms of environmental and economic indicators
Chaichan Characterization of Lean Misfire Limits of Mixture Alternative Gaseous Fuels Used for Spark Ignition Engines
CN104764719A (zh) 一种基于吸收峰锁定模式的内燃机排放气体成分测量装置
Shivapuji et al. In-cylinder investigations and analysis of a SI gas engine fuelled with H2 and CO rich syngas fuel: Sensitivity analysis of combustion descriptors for engine diagnostics and control
Kang et al. Experimental study of ion current signals and characteristics in an internal combustion rankine cycle engine based on water injection
Azeem et al. Comparative Analysis of Different Methodologies to Calculate Lambda (λ) Based on Extensive And systemic Experimentation on a Hydrogen Internal Combustion Engine
CN112255194A (zh) 天然气发动机尾气甲烷浓度在线实时监测系统
Vučetić et al. Real Driving Emission from Vehicle Fuelled by Petrol and Liquefied Petroleum Gas (LPG)
CN113406023A (zh) 天然气可燃气体组分浓度在线测量装置
Wang et al. The exhaust emission online detection on the diesel engine
Saccone et al. Hydrogen/Air Supersonic Combustion Modelling and Validation for Scramjet Applications
Czarnigowski et al. The influence of the ignition control on the performance of an aircraft radial piston engine
Yang et al. Simulation and experimental study of diesel engine emission temperature based on tunable diode laser absorption spectroscopy
Zhan et al. Speed of sound for ethanol in vicinity of the critical point from Rayleigh-Brillouin light scattering spectroscopy
Hou et al. Experimental study on in-cylinder pressure oscillations of homogenous charge compression ignition–direct injection combustion engine fueled with dimethyl ether
Li et al. The lean mixture operational limits of a spark ignition engine when operated on fuel mixtures
Karnaukhov et al. Reducing fuel consumption by using correcting parameters system for heavy duty vehicles
Varde et al. Burn rates in natural gas fueled single cylinder spark ignition engine
Karthikeyan et al. Performance and emission characteristics of turpentine–diesel dual fuel engine and knock suppression using water diluents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination