CN111321158B - 甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用 - Google Patents

甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用 Download PDF

Info

Publication number
CN111321158B
CN111321158B CN202010283840.9A CN202010283840A CN111321158B CN 111321158 B CN111321158 B CN 111321158B CN 202010283840 A CN202010283840 A CN 202010283840A CN 111321158 B CN111321158 B CN 111321158B
Authority
CN
China
Prior art keywords
ibbam1a
sweet potato
amylase gene
plants
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010283840.9A
Other languages
English (en)
Other versions
CN111321158A (zh
Inventor
隋炯明
朱虹
杨雪
王霞
李恩广
赵春梅
杜国宁
王晶珊
刘洪明
乔利仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN202010283840.9A priority Critical patent/CN111321158B/zh
Publication of CN111321158A publication Critical patent/CN111321158A/zh
Application granted granted Critical
Publication of CN111321158B publication Critical patent/CN111321158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2425Beta-amylase (3.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01002Beta-amylase (3.2.1.2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种甘薯β‑淀粉酶基因IbBAM1a、其编码的蛋白及应用,属于生物化学与分子生物学技术领域。本发明甘薯β‑淀粉酶基因IbBAM1a序列如SEQ ID No:1所示,其编码的蛋白氨基酸序列如SEQ ID No:2所示。将本发明的β‑淀粉酶基因IbBAM1a转入拟南芥中,在拟南芥中异源表达可显著提高拟南芥的β‑淀粉酶活性和麦芽糖含量,拟南芥的抗旱性和耐盐性也显著增强。本发明的基因及其编码蛋白对于提高植物的麦芽糖含量、改良植物抗旱性和耐盐性具有重要的理论及实际意义,将在植物的品质改良和抗逆基因工程改良中发挥重要作用,应用前景广阔。

Description

甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用
技术领域
本发明属于生物化学与分子生物学技术领域,具体涉及一种甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用。
背景技术
甘薯是重要的粮食、饲料、工业原料及新型生物能源作物,具有广阔的发展前景。β-淀粉酶作为甘薯块根中的重要蛋白质,参与淀粉的降解,影响甘薯的生长发育,在植株抵御逆境胁迫中也起着重要作用。
植物在逆境胁迫下会导致渗透压的改变,这与低温的严重程度和受胁迫的持续时间有关。渗透压的改变破坏了细胞膜的完整性,使细胞代谢功能出现障碍甚至死亡。为了适应寒冷环境或在低温胁迫下生存,植物会产生各种响应机制,其中之一就是渗透调节。β-淀粉酶通过参与淀粉的水解,将淀粉转化为麦芽糖,麦芽糖在其它糖苷酶的作用下又能转化为葡萄糖等可溶性糖。可溶性糖是一种有效的渗透调节剂,它们可以在干旱或高盐等非生物胁迫下平衡或降低渗透势,能够保护生物大分子的稳定性,从而稳定细胞内生化反应,防止细胞膜的破坏。β-淀粉酶的产物—可溶性糖除了作为渗透调节物质起作用外,还可以作为抗氧化剂发挥功能。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白以及在提高植物麦芽糖含量、抗旱性和耐盐性中的应用,本发明通过将甘薯β-淀粉酶基因IbBAM1a转入拟南芥中,可以显著提高拟南芥的麦芽糖含量、抗旱性和耐盐性。
为了达到上述目的,本发明采用如下技术方案:
甘薯β-淀粉酶基因IbBAM1a,其序列如SEQ ID No:1所示。
克隆上述甘薯β-淀粉酶基因IbBAM1a的引物对,所述引物对的序列如下:
P1:5′-GGATAATATGGCAATGAGTTTACCG-3′;
P2:5′-TGATCATCGTGGAGCTCTTCTT-3′。
所述P1和P2分别与IbBAM1a基因第1-25碱基、第1731-1752碱基对应。
含有上述甘薯β-淀粉酶基因IbBAM1a序列的载体。
含有上述甘薯β-淀粉酶基因IbBAM1a序列的表达盒。
含有上述甘薯β-淀粉酶基因IbBAM1a序列的重组菌。
上述甘薯β-淀粉酶基因IbBAM1a表达的蛋白,所述蛋白的氨基酸序列如SEQ IDNo:2所示。
上述甘薯β-淀粉酶基因IbBAM1a在提高植物麦芽糖含量中的应用。
上述甘薯β-淀粉酶基因IbBAM1a在提高植物抗旱性和/或耐盐性中的应用。
一种提高植物麦芽糖含量的方法,将上述甘薯β-淀粉酶基因IbBAM1a序列构建到植物表达载体中,通过农杆菌介导转化植物细胞,使其在植物细胞中表达,获得高麦芽糖含量的植株。
一种提高植物抗旱性和/或耐盐性的方法,将上述甘薯β-淀粉酶基因IbBAM1a序列构建到植物表达载体中,通过农杆菌介导转化植物细胞,使其在植物细胞中表达,获得抗旱性和/或耐盐性的植株。
本发明技术方案的优点
1、本发明从甘薯中克隆获得β-淀粉酶基因IbBAM1a。
2、将甘薯β-淀粉酶基因IbBAM1a构建到植物表达载体,通过农杆菌介导转化拟南芥,在拟南芥中异源表达,胁迫处理后转基因拟南芥的麦芽糖含量比未转基因对照提高50%以上;转基因拟南芥幼苗可耐300mM甘露醇或125mM NaCl。
附图说明
图1是过表达株系和野生型植株分别在MS培养基(A)以及含有300mM mannitol(B)或125mM NaCl(C)的MS培养基上培养2w后的生长状况;
图2是过表达株系与野生型植株的抗旱耐盐盆栽鉴定;
图3是盐或干旱胁迫下转基因拟南芥和野生型植株的SOD活性测定,其中WT:野生型拟南芥,OE-1和OE-2为2个过表达IbBAM1a的转基因拟南芥株系;
图4是盐或干旱胁迫下转基因拟南芥和野生型植株的MDA含量测定;其中WT:野生型拟南芥,OE-1和OE-2为2个过表达IbBAM1a的转基因拟南芥株系;
图5盐或干旱胁迫下转基因拟南芥和野生型植株β-淀粉酶活性测定,其中WT:野生型拟南芥,OE-1和OE-2为2个过表达IbBAM1a的转基因拟南芥株系;
图6盐或干旱胁迫下转基因拟南芥和野生型植株麦芽糖含量测定,其中WT:野生型拟南芥,OE-1和OE-2为2个过表达IbBAM1a的转基因拟南芥株系;
图7盐或干旱胁迫下转基因拟南芥和野生型植株总淀粉含量测定,其中WT:野生型拟南芥,OE-1和OE-2为2个过表达IbBAM1a的转基因拟南芥株系。
具体实施方式
在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。
下面结合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。
实施例1
1、甘薯IbBAM1a基因植物表达载体的构建
(1)扩增甘薯IbBAM1a基因
克隆所述甘薯IbBAM1a基因的引物名称与序列如下:
P1:5′-GGATAATATGGCAATGAGTTTACCG-3′(SEQ ID No:3);
P2:5′-TGATCATCGTGGAGCTCTTCTT-3′(SEQ ID No:4),
所述P1和P2分别与IbBAM1a基因第1-25碱基、第1731-1752碱基对应。
提取甘薯块根RNA,以反转录的cDNA为模板,用上述IbBAM1b基因特异性引物进行RT-PCR扩增,获得甘薯IbBAM1a基因序列表如SEQ ID No:1所示,其编码的蛋白氨基酸序列如SEQ ID No:2所示。采用的甘薯样品来源于品“烟薯25”由青岛农业大学甘薯中心保存,由烟台农科院甘薯所选育。
SEQ ID No:1
Figure BDA0002447752140000031
Figure BDA0002447752140000041
SEQ ID No:2
MAMSLPHQLTAISGTPIAVEAGTVSGEGPAKASVVTSAFWKNPAGNLRVSVQKSGAEVDRVSPSPPLSPVRGGLRPDLTAACQALMEAPTVEREYKVGDLGHEKGKGVPVFVMMPLDSVKMDHTVNRRKAMNASLQALKSAGVEGVMMDVWWGLVEKDSPGEYNWGGYAELLEMAKKHGLKVQAVMSFHQCGGNVGDSCTIPLPRWVVEEMEKDPDLAYTDQWGRRNYEYVSLGCDTLPVLKGRTPVQCYSDFMRGFRDRFEHLLGDTIVEIQVGMGPAGELRYPSYPEQNGTWKFPGIGAFQCFDKYMISSLRATAESIGKPEWGHSGPTDAGHYNNWPEDTNFFRKEGGWTTPYGEFFLSWYSQMLLDHGERILQSANAIFDNTGVKISVKIAGIHWHYGTRSHAPELTAGYYNTRFRDGYLPIAQMLARHGAIFNFTCIEMRDHEQPQDAQCAPEKLVRQVALATQEAQVPLAGENALPRYDDYAHEQILRASALSVDEKSGDREMCAFTYLRMNPNLFQADNWRRFVAFVKKMKEGKDAHKCWEEMEREAEHFVHITQPLVHEAAAALMH*
在上述引物序列的5′分别添加Hind III和Xba I的酶切位点,用于构建植物表达载体的特异性引物对,添加酶切位点的引物对序列如下:
P3:5′-AAGCTTGGATAATATGGCAATGAGTTTACCG-3′(Hind III)(SEQ ID No:5);
P4:5′-TCTAGATGATCATCGTGGAGCTCTTCTT-3′(Xba I)(SEQ ID No:6);
(2)IbBAM1a基因与克隆载体pMD18-T及植物表达载体pCAMBIA1301的连接
用含有酶切位点的IbBAM1a基因特异性引物进行RT-PCR扩增,回收PCR产物,并在T4 DNA连接酶作用下与克隆载体pMD18-T(购买于TaKaRa)进行连接,连接产物转化大肠杆菌DH5α获得了抗氨苄青霉素的菌落。提取重组质粒,用Hind III和Xba I进行双酶切,回收含IbBAM1a基因的酶切片段,并连接到植物表达载体pCAMBIA1301的对应酶切位点中,获得该基因的植物表达载体pCAMBIA1301-IbBAM1a。
2、将表达载体转化拟南芥,包括以下步骤:
a、农杆菌重组菌株的制备、活化及菌液制备:将pCAMBIA1301-IbBAM1a重组质粒利用液氮冻融法转化农杆菌菌株GV3101感受态细胞,筛选出含有重组质粒的重组菌株。挑取重组菌株单菌落,接种到YEB(利福平50mg/L,卡那霉素50mg/L)液体培养基中,28℃、180rpm培养至OD600=0.5~0.8时,取2mL菌液转移到50mL YEB(利福平50mg/L,卡那霉素50mg/L)培养基中,培养到OD600=0.6~0.8。将菌液于5000rpm离心15min后,用相同体积的液体MSB5悬浮备用。
b、农杆菌介导的遗传转化:将正在抽苔开花的拟南芥提前一天浇足水,小盆倒置,将所有花序置于农杆菌悬浮液中侵染30s-60s,7d后按上述方法重复转化一次,共侵染3次,收获成熟种子。
3、转基因拟南芥的筛选
a、将消毒后的转基因拟南芥成熟种子在4℃冰箱内春化3d,然后点播在MS培养基平板上(含50mg/L潮霉素),平板密封后置于22℃的恒温培养箱中,8-15d后观察出苗情况。
b、将长势健壮的阳性苗移栽到基质土中,覆盖保鲜膜以保证其生长前期所需的湿度,到苗正常生长后揭去,最终获得T2代转基因种子。
4、转基因植株的分子鉴定
以转基因拟南芥的DNA为模板,用潮霉素序列的引物进行PCR扩增,所用引物序列为:
HGY-F:5′-GTGCTTTCAGCTTCGATG-3′(SEQ ID No:7);
HGY-R:5′-AACCAAGCTCTGATAGAG-3′(SEQ ID No:8);
PCR扩增程序如下:95℃5min;95℃50s,53℃50s,72℃40s,30个循环;72℃10min。预期产物片段大小约为750bp。
实施例2
1、转基因植株的耐盐和耐旱性分析
将野生型和实施例1步骤4筛选出的过表达IbBAM1a的转基因拟南芥种子种在培养基上,待拟南芥子叶完全展开后,选择长势良好且一致的野生型植株和转基因植株,小心地转移到含有125mM NaCl或300mM甘露醇的MS培养基上,直立培养2w后观察叶片的生长状态和根的发育情况。由图1可知:在正常MS培养基上,野生型拟南芥与转基因植株均长势良好,并无明显差别;在含有300mM甘露醇的MS培养基上,模拟干旱胁迫,从图1中可观察到野生型地上部有的已干枯发黄,而转基因株系叶片仍然生长良好,野生型的茎长和根系长度也明显小于转基因株系;在含有125mM NaCl的MS培养基上,野生型受高盐胁迫地上部有轻微的花青素积累,根系也明显短小,转基因株系的叶片虽然也有变黄的迹象,但相对于野生型来说受盐胁迫影响较小,并且根系也长于野生型,转基因株系整体生长状况优于野生型(图1)。
将子叶完全展开,长势良好且一致的拟南芥野生型和过表达IbBAM1a的转基因株系转移到基质土中,一次浇足水,正常生长10d后开始进行自然干旱和300mM NaCl溶液胁迫处理,胁迫处理2w后观察植株的生长状态。由图2可知,正常情况下,拟南芥野生型植株和转基因株系均能正常生长,且生长状态并无明显差异;在自然干旱2w后,野生型植株叶片干枯变黄,而转基因株系叶片虽有轻微发黄,但长势仍比野生型健壮;用300mM NaCl溶液灌溉拟南芥野生型和转基因株系,发现野生型植株叶片全部变为紫色,甚至枯萎死亡,转基因植株叶片虽有轻微发黄、变紫,但长势总体优于野生型(图2)。
2、转基因植株在盐和干旱胁迫后生理生化指标和品质性状的测定
将实施例1步骤4鉴定出的过表达IbBAM1a(OE-1和OE-2)和野生型(WT)拟南芥苗栽种到基质土中,种植2w后用300mM NaCl溶液处理幼苗,待幼苗出现明显表型变化后(约2-3w)取叶片测定其SOD、β-淀粉酶活性和MDA、麦芽糖含量。将鉴定出的转基因苗和野生型拟南芥苗栽种到基质土中,一次浇足水,待基质土变干幼苗开始缺水时计时,待幼苗出现明显表型变化后(约2-3w)取叶片测定其SOD、β-淀粉酶活性和MDA、麦芽糖含量。之后再对干旱胁迫处理后的幼苗覆水2-3次,观察植株的表型变化。
由图3和图4可知:对正常生长和干旱、盐胁迫2w的拟南芥野生型植株(WT)和转基因株系(OE-1和OE-2)进行SOD活性与MDA含量测定,结果显示,在正常情况下野生型拟南芥和转基因株系的SOD活性与MDA含量均没有显著性差异;盐胁迫处理后,转基因株系的SOD活性显著高于野生型,MDA含量显著低于野生型。
对盐和干旱胁迫下的野生型拟南芥(WT)和转基因株系(OE-1和OE-2)进行β-淀粉酶活性、麦芽糖含量和总淀粉含量检测,由图5~7可知,在正常情况下,野生型拟南芥和转基因株系的β-淀粉酶活性和麦芽糖含量均较低,总淀粉含量较高,且无显著性差异。当受到盐和干旱胁迫后,转基因株系的β-淀粉酶活性显著增加,总淀粉含量下降,相应的麦芽糖含量显著升高。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
SEQUENCELISTING
<110>青岛农业大学
<120>甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用
<130>2020
<160>8
<170>PatentInversion3.5
<210>1
<211>1752
<212>DNA
<213>甘薯(Dioscoreaesculenta(Lour.)Burkill)
<400>1
ggataatatggcaatgagtttaccgcaccaactgactgcaatttccggaacaccgatagc 60
agtggaggcgggaacagtctccggggagggaccggcgaaggcgtcggtggtaacatcggc 120
gttctggaagaatccagcggggaatctccgagtttcggtgcagaaatcgggagcagaggt 180
ggacagagtgtcaccgtcgccgccgcttagtccggtgaggggaggtttgcggccggatct 240
gacagcggcgtgccaggcgttaatggaggcgccgacggtggagagagagtataaggttgg 300
ggatttggggcatgagaaggggaaaggggttccagtgttcgtgatgatgccgttggactc 360
agttaagatggatcacacggtgaaccggaggaaggcgatgaatgctagcttacaggcgct 420
gaagagcgccggagttgagggggtgatgatggacgtgtggtggggcctggtggagaagga 480
ctcgcccggcgagtacaattggggcggctatgctgagttactggaaatggctaagaagca 540
tggcctcaaggttcaggccgttatgtccttccaccagtgcggcggaaacgtcggagattc 600
ttgcacgattcctctcccgaggtgggttgttgaggagatggagaaggatccggaccttgc 660
atacacagatcaatgggggaggaggaattatgagtatgtgtcacttggttgtgataccct 720
tccagtcctaaaaggaagaacacctgtccagtgttattctgacttcatgaggggtttcag 780
agacagatttgagcacttgctgggtgacactatagtggaaattcaagttggcatgggtcc 840
agctggagagctccgttacccttcatatccagagcagaatggaacatggaagttccctgg 900
aattggggcttttcagtgctttgataagtacatgattagcagcctgagagccacagcaga 960
atcaattggaaagccagaatggggacatagtggcccgacagacgctggccactacaacaa 1020
ctggcctgaagacacaaactttttcaggaaagaaggcggttggaccactccctacggcga 1080
attcttcctctcttggtactcccagatgctcctggaccatggcgagagaatcctgcaatc 1140
agccaacgccatattcgacaacacaggcgtcaaaatctcagtaaaaatcgcaggaatcca 1200
ctggcactacggaacccgatcccacgccccggagctcaccgcaggctactacaacacccg 1260
tttccgagacggctatctccccatcgcccaaatgctcgcccgtcacggcgccatcttcaa 1320
cttcacctgcatcgagatgcgcgatcacgagcagccccaggacgcccagtgcgccccgga 1380
gaaattggtcaggcaagtagccttagccacccaagaagcccaggttcccctcgccgggga 1440
gaacgcactgccacgctacgacgattatgcccacgaacagatactcagagcatcggcgtt 1500
gagcgtcgacgaaaaatcgggtgatcgagaaatgtgtgcatttacctacttaagaatgaa 1560
cccaaatttgttccaggctgataattggagaagatttgtggcgttcgtgaagaaaatgaa 1620
ggaaggtaaagatgcgcataagtgttgggaggaaatggagcgggaagctgagcattttgt 1680
gcacataactcagccattggtgcacgaagctgccgccgccctcatgcattaagaagagct 1740
ccacgatgatca 1752
<210>2
<211>574
<212>PRT
<213>甘薯(Dioscoreaesculenta(Lour.)Burkill)
<400>2
Met Ala Met Ser Leu Pro His Gln Leu Thr Ala Ile Ser Gly Thr Pro
1 5 10 15
Ile Ala Val Glu Ala Gly Thr Val Ser Gly Glu Gly Pro Ala Lys Ala
20 25 30
Ser Val Val Thr Ser Ala Phe Trp Lys Asn Pro Ala Gly Asn Leu Arg
35 40 45
Val Ser Val Gln Lys Ser Gly Ala Glu Val Asp Arg Val Ser Pro Ser
50 55 60
Pro Pro Leu Ser Pro Val Arg Gly Gly Leu Arg Pro Asp Leu Thr Ala
65 70 75 80
Ala Cys Gln Ala Leu Met Glu Ala Pro Thr Val Glu Arg Glu Tyr Lys
85 90 95
Val Gly Asp Leu Gly His Glu Lys Gly Lys Gly Val Pro Val Phe Val
100 105 110
Met Met Pro Leu Asp Ser Val Lys Met Asp His Thr Val Asn Arg Arg
115 120 125
Lys Ala Met Asn Ala Ser Leu Gln Ala Leu Lys Ser Ala Gly Val Glu
130 135 140
Gly Val Met Met Asp Val Trp Trp Gly Leu Val Glu Lys Asp Ser Pro
145 150 155 160
Gly Glu Tyr Asn Trp Gly Gly Tyr Ala Glu Leu Leu Glu Met Ala Lys
165 170 175
Lys His Gly Leu Lys Val Gln Ala Val Met Ser Phe His Gln Cys Gly
180 185 190
Gly Asn Val Gly Asp Ser Cys Thr Ile Pro Leu Pro Arg Trp Val Val
195 200 205
Glu Glu Met Glu Lys Asp Pro Asp Leu Ala Tyr Thr Asp Gln Trp Gly
210 215 220
Arg Arg Asn Tyr Glu Tyr Val Ser Leu Gly Cys Asp Thr Leu Pro Val
225 230 235 240
Leu Lys Gly Arg Thr Pro Val Gln Cys Tyr Ser Asp Phe Met Arg Gly
245 250 255
Phe Arg Asp Arg Phe Glu His Leu Leu Gly Asp Thr Ile Val Glu Ile
260 265 270
Gln Val Gly Met Gly Pro Ala Gly Glu Leu Arg Tyr Pro Ser Tyr Pro
275 280 285
Glu Gln Asn Gly Thr Trp Lys Phe Pro Gly Ile Gly Ala Phe Gln Cys
290 295 300
Phe Asp Lys Tyr Met Ile Ser Ser Leu Arg Ala Thr Ala Glu Ser Ile
305 310 315 320
Gly Lys Pro Glu Trp Gly His Ser Gly Pro Thr Asp Ala Gly His Tyr
325 330 335
Asn Asn Trp Pro Glu Asp Thr Asn Phe Phe Arg Lys Glu Gly Gly Trp
340 345 350
Thr Thr Pro Tyr Gly Glu Phe Phe Leu Ser Trp Tyr Ser Gln Met Leu
355 360 365
Leu Asp His Gly Glu Arg Ile Leu Gln Ser Ala Asn Ala Ile Phe Asp
370 375 380
Asn Thr Gly Val Lys Ile Ser Val Lys Ile Ala Gly Ile His Trp His
385 390 395 400
Tyr Gly Thr Arg Ser His Ala Pro Glu Leu Thr Ala Gly Tyr Tyr Asn
405 410 415
Thr Arg Phe Arg Asp Gly Tyr Leu Pro Ile Ala Gln Met Leu Ala Arg
420 425 430
His Gly Ala Ile Phe Asn Phe Thr Cys Ile Glu Met Arg Asp His Glu
435 440 445
Gln Pro Gln Asp Ala Gln Cys Ala Pro Glu Lys Leu Val Arg Gln Val
450 455 460
Ala Leu Ala Thr Gln Glu Ala Gln Val Pro Leu Ala Gly Glu Asn Ala
465 470 475 480
Leu Pro Arg Tyr Asp Asp Tyr Ala His Glu Gln Ile Leu Arg Ala Ser
485 490 495
Ala Leu Ser Val Asp Glu Lys Ser Gly Asp Arg Glu Met Cys Ala Phe
500 505 510
Thr Tyr Leu Arg Met Asn Pro Asn Leu Phe Gln Ala Asp Asn Trp Arg
515 520 525
Arg Phe Val Ala Phe Val Lys Lys Met Lys Glu Gly Lys Asp Ala His
530 535 540
Lys Cys Trp Glu Glu Met Glu Arg Glu Ala Glu His Phe Val His Ile
545 550 555 560
Thr Gln Pro Leu Val His Glu Ala Ala Ala Ala Leu Met His
565 570
<210>3
<211>25
<212>DNA
<213>人工序列(Dioscoreaesculenta(Lour.)Burkill)
<400>3
ggataatatggcaatgagtttaccg25
<210>4
<211>22
<212>DNA
<213>人工序列(Dioscoreaesculenta(Lour.)Burkill)
<400>4
tgatcatcgtggagctcttctt22
<210>5
<211>31
<212>DNA
<213>人工序列(Dioscoreaesculenta(Lour.)Burkill)
<400>5
aagcttggataatatggcaatgagtttaccg31
<210>6
<211>28
<212>DNA
<213>人工序列(Dioscoreaesculenta(Lour.)Burkill)
<400>6
tctagatgatcatcgtggagctcttctt28
<210>7
<211>18
<212>DNA
<213>人工序列(Streptomyceshygroscopious)
<400>7
gtgctttcagcttcgatg18
<210>8
<211>18
<212>DNA
<213>人工序列(Streptomyceshygroscopious)
<400>8
aaccaagctctgatagag18

Claims (10)

1.甘薯β-淀粉酶基因IbBAM1a,其特征在于,其序列如SEQ ID No:1所示。
2.克隆权利要求1所述甘薯β-淀粉酶基因IbBAM1a的引物对,其特征在于,所述引物对的序列如下:
P1:5′-GGATAATATGGCAATGAGTTTACCG-3′;
P2:5′-TGATCATCGTGGAGCTCTTCTT-3′。
3.含有权利要求1所述甘薯β-淀粉酶基因IbBAM1a序列的载体。
4.含有权利要求1所述甘薯β-淀粉酶基因IbBAM1a序列的表达盒。
5.含有权利要求1所述甘薯β-淀粉酶基因IbBAM1a序列的重组菌。
6.权利要求1所述甘薯β-淀粉酶基因IbBAM1a表达的蛋白,其特征在于,所述蛋白的氨基酸序列如SEQ ID No:2所示。
7.权利要求1所述甘薯β-淀粉酶基因IbBAM1a在提高植物麦芽糖含量中的应用。
8.权利要求1所述甘薯β-淀粉酶基因IbBAM1a在提高植物抗旱性和/或耐盐性中的应用。
9.一种提高植物麦芽糖含量的方法,其特征在于,将权利要求1所述甘薯β-淀粉酶基因IbBAM1a序列构建到植物表达载体中,通过农杆菌介导转化植物细胞,使其在植物细胞中表达,获得高麦芽糖含量的植株。
10.一种提高植物抗旱性和/或耐盐性的方法,其特征在于,将权利要求1所述甘薯β-淀粉酶基因IbBAM1a序列构建到植物表达载体中,通过农杆菌介导转化植物细胞,使其在植物细胞中表达,获得抗旱性和/或耐盐性的植株。
CN202010283840.9A 2020-04-13 2020-04-13 甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用 Active CN111321158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010283840.9A CN111321158B (zh) 2020-04-13 2020-04-13 甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010283840.9A CN111321158B (zh) 2020-04-13 2020-04-13 甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用

Publications (2)

Publication Number Publication Date
CN111321158A CN111321158A (zh) 2020-06-23
CN111321158B true CN111321158B (zh) 2021-08-27

Family

ID=71173500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010283840.9A Active CN111321158B (zh) 2020-04-13 2020-04-13 甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用

Country Status (1)

Country Link
CN (1) CN111321158B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109337915A (zh) * 2018-11-23 2019-02-15 中国农业科学院油料作物研究所 芝麻抗旱与耐盐基因SiMYB75及其编码的蛋白与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109337915A (zh) * 2018-11-23 2019-02-15 中国农业科学院油料作物研究所 芝麻抗旱与耐盐基因SiMYB75及其编码的蛋白与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Unexpected mode of action of sweet potato β-amylase on maltooligomer substrates;Erika Fazekas等;《Biochimica et Biophysica Acta》;20130702;第1976–1981页 *
XM_031265439.1;NCBI;《GenBank》;20191017;第1-2页 *

Also Published As

Publication number Publication date
CN111321158A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN108948164B (zh) 甘薯耐盐抗旱相关蛋白IbbZIP1及其编码基因与应用
CN101743314A (zh) 具有增加的胁迫耐受性和产量的转基因植物
CN110643618B (zh) 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用
CN107674873B (zh) 小麦热激转录因子基因TaHsfA2i及其编码蛋白与应用
CN107746846B (zh) 编码甘薯bZIP转录因子的IbABF4基因及应用
CN109837296B (zh) 玉米基因ZmNAC77的一个耐盐耐旱新功能及其应用
WO2005071083A1 (fr) Facteur de transcription arabidopis thaliana, gene le codant et utilisation correspondante
CN112342236B (zh) 水稻组蛋白甲基转移酶在增强作物干旱抗性及改善单株产量中的应用
CN106892973A (zh) 植物抗逆性相关蛋白GhMYB4及编码基因与应用
CN116590308A (zh) 马铃薯耐旱性相关热激蛋白基因hsp101及其应用
CN114231535B (zh) 木薯MeRSZ21b基因在提高植物抗干旱胁迫中的应用
CN111321158B (zh) 甘薯β-淀粉酶基因IbBAM1a、其编码的蛋白及应用
CN107267525B (zh) 三七多聚半乳糖醛酸酶抑制蛋白基因PnPGIP的应用
CN107881180B (zh) 基因ckx2和ckx3在提高植物抗寒能力中的应用
CN111718942A (zh) 一种水稻耐盐相关基因gt3及其应用
CN114277035B (zh) 木薯MeRS40基因及其蛋白和应用
CA2505623C (en) Plant stress tolerance genes, and uses therefor
JP2006204299A (ja) 環境ストレス抵抗性調節遺伝子を利用した植物の環境ストレス抵抗性増加方法
CN115322248B (zh) 一种钾离子通道蛋白AlAKT1、其编码基因及其应用
CN115724934B (zh) 拟南芥AtFLZ13基因在植物抗旱育种中的应用
CN114214335B (zh) 一种碱蓬耐盐性相关编码基因及其应用
CN112239493B (zh) 蜡梅CpWRI-L4基因及其编码的蛋白与应用
CN111303260B (zh) 一种植物抗逆性相关蛋白OsC3HC4及编码基因与应用
WO2022082866A1 (zh) 抗逆基因线路AcDwEm及其提高作物耐盐抗旱耐高温的应用
Wang et al. Identification and characterization of a novel NAC transcription factor gene from triticale (x Triticosecale Wittmack)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant