CN111317868A - 一种定向增强3d打印聚合物股骨近端替代物及其设计方法 - Google Patents

一种定向增强3d打印聚合物股骨近端替代物及其设计方法 Download PDF

Info

Publication number
CN111317868A
CN111317868A CN202010102033.2A CN202010102033A CN111317868A CN 111317868 A CN111317868 A CN 111317868A CN 202010102033 A CN202010102033 A CN 202010102033A CN 111317868 A CN111317868 A CN 111317868A
Authority
CN
China
Prior art keywords
substitute
reinforcing fibers
femur
directionally
stress trace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010102033.2A
Other languages
English (en)
Other versions
CN111317868B (zh
Inventor
王玲
孙畅宁
李涤尘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yang Chuncheng
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010102033.2A priority Critical patent/CN111317868B/zh
Publication of CN111317868A publication Critical patent/CN111317868A/zh
Application granted granted Critical
Publication of CN111317868B publication Critical patent/CN111317868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2825Femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种定向增强3D打印聚合物股骨近端替代物及其设计方法,替代物包括主体部分和固定部分;主体部分的外形与人体缺损股骨近端的形貌相匹配,主体部分和固定部分内部有增强纤维,增强纤维的铺设方向与股骨近端替代物的主应力迹线方向一致,增强纤维的分布密度和分布区域满足股骨近端替代物的拉伸和弯曲强度要求,起到提高股骨近端替代物抗拉和抗弯强度的作用;主体部分和固定部分内部有增强颗粒,增强颗粒的含量满足股骨近端替代物压缩强度要求,起到提高股骨近端替代物抗压强度的作用;本发明使用主应力迹线作为高分子聚合物基体材料中的增强纤维排布方式的依据,使替代物既获得了高分子聚合物的轻质、低模量优势,又具有足够的强度。

Description

一种定向增强3D打印聚合物股骨近端替代物及其设计方法
技术领域
本发明属于个性化骨替代物技术领域,具体涉及一种定向增强3D打印聚合物股骨近端替代物及其设计方法。
背景技术
由于股骨头坏死、股骨近端肿瘤或事故等原因造成的人体股骨近端严重骨缺损对病人的运动功能有重大影响,严重者甚至危及生命,切除近端股骨并使用人工材料进行重建是解决严重骨缺损的重要手段。采用金属3D打印技术对缺损骨骼进行个性化重建是近年来修复严重骨缺损的新方法,但金属骨替代物存在弹性模量大、重量大、成本高和伪影等问题,因此以聚醚醚酮、聚乙烯等为代表的可植入的高分子聚合物材料被认为是可以替代金属材料的下一代骨植入物材料,相比于金属材料,高分子聚合物材料的优势在于力学性能接近于人体骨、密度低、比强度高且CT下不显影,已在胸肋骨、颅颌面、肩胛骨替代物等有所应用。
目前,高分子聚合物材料在人体下肢承力部位的替代物中尚无应用,主要是由于下肢长骨及关节承担人体运动载荷,以股骨近端假体为例,单纯使用高分子聚合物材料对股骨近端进行重建可能会面临假体强度不足的问题,纤维增强是提高高分子聚合物材料强度的重要手段,但纤维增强复合材料的力学性能通常与内部纤维排列方向密切相关,呈现各向异性,难以适应骨替代物在人体内的复杂受力情况。
发明内容
为了克服上述现有技术存在的缺点,本发明的目的在于提供一种定向增强3D打印聚合物股骨近端替代物及其设计方法,使股骨近端替代物内部的增强纤维排布方向适应自身受力情况,提高替代物的安全性。
为了达到上述目的,本发明采取的技术方案为:
一种定向增强3D打印聚合物股骨近端替代物,包括主体部分1和固定部分,主体部分1的外形与人体缺损股骨近端的形貌相匹配,主体部分1和固定部分内部有增强纤维3,增强纤维3的铺设方向与股骨近端替代物的主应力迹线方向一致,增强纤维3的分布密度和分布区域满足股骨近端替代物的拉伸和弯曲强度要求;所述主体部分1和固定部分内部有增强颗粒4,增强颗粒4的含量满足股骨近端替代物压缩强度要求。
所述固定部分采用髓内针结构2-1或翼板结构2-2。
所述增强纤维3的铺设方向的设计方法为:建立包括股骨近端替代物和残余股骨的股骨近端有限元模型,根据患者股骨近端的生物力学环境为有限元模型定义载荷和边界条件,进行有限元计算并提取计算结果的主应力迹线,将所有主应力迹线根据方向划分为若干主应力迹线束,主应力迹线束方向即为增强纤维3的铺设方向。
所述增强纤维3的分布密度和分布区域的设计方法为:首先建立增强纤维3的分布密度α与许用拉伸强度[σ]的强度关系函数[σ]=f(α),以及增强纤维3的分布密度α与等效弹性模量E的模量关系函数E=g(α);为每一主应力迹线束赋予初始增强纤维分布密度αi,i为主应力迹线束的序号,并根据模量关系函数计算每一主应力迹线束的等效弹性模量Ei;在股骨近端有限元模型中,使用每一主应力迹线束的等效弹性模量Ei为股骨近端替代物内的增强纤维3的分布区域赋予弹性模量,并实施有限元计算;在有限元计算的结果中提取每一主应力迹线束的最大应力σi,max,并根据强度关系函数计算每一主应力迹线束的许用拉伸强度[σi],根据公式
Figure BDA0002387180050000021
计算每一主应力迹线束的安全系数Ni;调整所有主应力迹线束的增强纤维3的分布密度αi和分布区域的横截面积,使所有主应力迹线束的安全系数Ni大于额定安全系数[N]。
所述增强纤维3的材料为碳纤维、芳纶纤维、玻璃纤维或金属丝纤维合成纤维材料。
所述的增强颗粒4的材料为陶瓷颗粒或金属颗粒,采用具有多材料打印功能的熔融沉积成形3D打印设备制造。
所述定向增强3D打印聚合物股骨近端替代物选用的基体材料为具有生物相容性的高分子聚合物材料。
本发明的优点和效果在于:
1.本发明的股骨近端替代物具有较高的个性化适配程度,可用于各类患者。由于患者的骨骼形态和病理特征等差异,其所需的替代物需根据实际情况进行个性化定制,本发明能够满足替代物的形状个性化重建。
2.本发明使用主应力迹线作为高分子聚合物基体材料中的增强纤维排布方式的依据,能够最大程度上利用纤维在拉伸方向上的高强度,使替代物既获得了高分子聚合物的轻质、低模量优势,又具有足够的强度。
3.本发明使用个性化的有限元模型对替代物中的主应力迹线进行计算,能够得到适用于个体化患者的主应力迹线及增强纤维排布方式,所设计制备的替代物具有力学个性化特征。
附图说明
图1为本发明髓内针结构的示意图。
图2为本发明翼板结构的示意图。
图3为本发明髓内针结构的冠状剖面的增强纤维铺设示意图。
图4为本发明翼板结构的冠状剖面的增强纤维铺设示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细描述,应当理解,此处所描述的实施案例仅用于说明和解释本发明,但本发明的实施方式不仅限于此。
如图1和图2所示,一种定向增强3D打印聚合物股骨近端替代物,包括主体部分1和固定部分(固定部分采用髓内针结构2-1或翼板结构2-2),主体部分的外形与人体缺损股骨近端的形貌相匹配,主体部分1和固定部分2内部有增强纤维3;如图3和图4所示,增强纤维3的铺设方向与股骨近端替代物的主应力迹线方向一致,增强纤维3的分布密度和分布区域满足股骨近端替代物的拉伸和弯曲强度要求,起到提高股骨近端替代物抗拉和抗弯强度的作用;所述主体部分1和固定部分2内部有增强颗粒4,增强颗粒4的含量满足股骨近端替代物压缩强度要求,起到提高股骨近端替代物抗压强度的作用。
所述增强纤维3的铺设方向的设计方法为:建立包括股骨近端替代物和残余股骨的股骨近端有限元模型,根据患者股骨近端的生物力学环境为有限元模型定义载荷和边界条件,进行有限元计算并提取计算结果的主应力迹线,将所有主应力迹线根据方向划分为若干主应力迹线束,主应力迹线束方向即为增强纤维3的铺设方向。
所述增强纤维3的分布密度和分布区域的设计方法为:首先建立增强纤维3的分布密度α与许用拉伸强度[σ]的强度关系函数[σ]=f(α),以及增强纤维3的分布密度α与等效弹性模量E的模量关系函数E=g(α);为每一主应力迹线束赋予初始增强纤维分布密度αi(i为主应力迹线束的序号),并根据模量关系函数计算每一主应力迹线束的等效弹性模量Ei;在股骨近端有限元模型中,使用每一主应力迹线束的等效弹性模量Ei为股骨近端替代物内的增强纤维3的分布区域赋予弹性模量,并实施有限元计算;在有限元计算的结果中提取每一主应力迹线束的最大应力σi,max,并根据强度关系函数计算每一主应力迹线束的许用拉伸强度[σi],根据公式
Figure BDA0002387180050000041
计算每一主应力迹线束的安全系数Ni;调整所有主应力迹线束的增强纤维3的分布密度αi和分布区域的横截面积,使所有主应力迹线束的安全系数Ni大于额定安全系数[N]=2。
所述固定部分2采用髓内针结构2-1或翼板结构2-2。
所述的个性化定向增强可控3D打印聚合物股骨近端替代物选用的基体材料为聚醚醚酮材料,增强纤维3的材料为碳纤维,增强颗粒4的材料为羟基磷灰石陶瓷颗粒,采用具有多材料打印功能的熔融沉积成形3D打印设备制造。

Claims (7)

1.一种定向增强3D打印聚合物股骨近端替代物,包括主体部分(1)和固定部分,其特征在于:主体部分(1)的外形与人体缺损股骨近端的形貌相匹配,主体部分(1)和固定部分内部有增强纤维(3),增强纤维(3)的铺设方向与股骨近端替代物的主应力迹线方向一致,增强纤维(3)的分布密度和分布区域满足股骨近端替代物的拉伸和弯曲强度要求;主体部分(1)和固定部分内部有增强颗粒(4),增强颗粒(4)的含量满足股骨近端替代物压缩强度要求。
2.根据权利要求1所述的一种定向增强3D打印聚合物股骨近端替代物,其特征在于:所述固定部分采用髓内针结构(2-1)或翼板结构(2-2)。
3.根据权利要求1所述的一种定向增强3D打印聚合物股骨近端替代物的增强纤维(3)的铺设方向的设计方法,其特征在于:建立包括股骨近端替代物和残余股骨的股骨近端有限元模型,根据患者股骨近端的生物力学环境为有限元模型定义载荷和边界条件,进行有限元计算并提取计算结果的主应力迹线,将所有主应力迹线根据方向划分为若干主应力迹线束,主应力迹线束方向即为增强纤维(3)的铺设方向。
4.根据权利要求1所述的一种定向增强3D打印聚合物股骨近端替代物的增强纤维(3)的分布密度和分布区域的设计方法,其特征在于:首先建立增强纤维(3)的分布密度α与许用拉伸强度[σ]的强度关系函数[σ]=f(α),以及增强纤维(3)的分布密度α与等效弹性模量E的模量关系函数E=g(α);为每一主应力迹线束赋予初始增强纤维分布密度αi,i为主应力迹线束的序号,并根据模量关系函数计算每一主应力迹线束的等效弹性模量Ei;在股骨近端有限元模型中,使用每一主应力迹线束的等效弹性模量Ei为股骨近端替代物内的增强纤维(3)的分布区域赋予弹性模量,并实施有限元计算;在有限元计算的结果中提取每一主应力迹线束的最大应力σi,max,并根据强度关系函数计算每一主应力迹线束的许用拉伸强度[σi],根据公式
Figure FDA0002387180040000021
计算每一主应力迹线束的安全系数Ni;调整所有主应力迹线束的增强纤维(3)的分布密度αi和分布区域的横截面积,使所有主应力迹线束的安全系数Ni大于额定安全系数[N]。
5.根据权利要求1所述的一种定向增强3D打印聚合物股骨近端替代物,其特征在于:所述增强纤维(3)的材料为碳纤维、芳纶纤维、玻璃纤维或金属丝纤维合成纤维材料。
6.根据权利要求1所述的一种定向增强3D打印聚合物股骨近端替代物,其特征在于:所述的增强颗粒(4)的材料为陶瓷颗粒或金属颗粒,采用具有多材料打印功能的熔融沉积成形3D打印设备制造。
7.根据权利要求1所述的一种定向增强3D打印聚合物股骨近端替代物,其特征在于:所述定向增强3D打印聚合物股骨近端替代物选用的基体材料为具有生物相容性的高分子聚合物材料。
CN202010102033.2A 2020-02-19 2020-02-19 一种定向增强3d打印聚合物股骨近端替代物及其设计方法 Active CN111317868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010102033.2A CN111317868B (zh) 2020-02-19 2020-02-19 一种定向增强3d打印聚合物股骨近端替代物及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010102033.2A CN111317868B (zh) 2020-02-19 2020-02-19 一种定向增强3d打印聚合物股骨近端替代物及其设计方法

Publications (2)

Publication Number Publication Date
CN111317868A true CN111317868A (zh) 2020-06-23
CN111317868B CN111317868B (zh) 2021-02-02

Family

ID=71165386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010102033.2A Active CN111317868B (zh) 2020-02-19 2020-02-19 一种定向增强3d打印聚合物股骨近端替代物及其设计方法

Country Status (1)

Country Link
CN (1) CN111317868B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111907054A (zh) * 2020-08-08 2020-11-10 西安交通大学 基于应力方向的连续纤维增强复合材料3d打印凸分解方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031255A (zh) * 2004-06-30 2007-09-05 科迪斯公司 具有非对称构件的管腔内医疗器械以及最优化方法
WO2009154847A2 (en) * 2008-04-09 2009-12-23 Active Implants Corporation Meniscus prosthetic devices and associated methods
CN107433713A (zh) * 2017-09-04 2017-12-05 西安交通大学 一种基于连续纤维复材3d打印的功能调控结构制备方法
CN109766599A (zh) * 2018-12-26 2019-05-17 国家康复辅具研究中心 一种基于骨重建原理的个性化前路椎间融合器设计方法
CN109996512A (zh) * 2016-11-14 2019-07-09 安德烈亚斯·施维塔拉 由纤维增强的塑料制成的植入物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031255A (zh) * 2004-06-30 2007-09-05 科迪斯公司 具有非对称构件的管腔内医疗器械以及最优化方法
WO2009154847A2 (en) * 2008-04-09 2009-12-23 Active Implants Corporation Meniscus prosthetic devices and associated methods
CN109996512A (zh) * 2016-11-14 2019-07-09 安德烈亚斯·施维塔拉 由纤维增强的塑料制成的植入物
CN107433713A (zh) * 2017-09-04 2017-12-05 西安交通大学 一种基于连续纤维复材3d打印的功能调控结构制备方法
CN109766599A (zh) * 2018-12-26 2019-05-17 国家康复辅具研究中心 一种基于骨重建原理的个性化前路椎间融合器设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NANYA LI ET AL: "Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures", 《COMPOSITES PART B》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111907054A (zh) * 2020-08-08 2020-11-10 西安交通大学 基于应力方向的连续纤维增强复合材料3d打印凸分解方法
CN111907054B (zh) * 2020-08-08 2021-06-11 西安交通大学 基于应力方向的连续纤维增强复合材料3d打印凸分解方法

Also Published As

Publication number Publication date
CN111317868B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
US20090177282A1 (en) Implantable biomimetic prosthetic bone
EP0532582B1 (en) Composite orthopedic implant with modulus variations
US6602293B1 (en) Polymeric composite orthopedic implant
CA1233953A (en) Orthopedic device and method of making the same
CN206651895U (zh) 髋臼填充块组件及具有其的髋关节系统
Hillock et al. Utility of carbon fiber implants in orthopedic surgery: literature review
CN111317868B (zh) 一种定向增强3d打印聚合物股骨近端替代物及其设计方法
Dworak et al. Dynamic mechanical properties of carbon fibre-reinforced PEEK composites in simulated body-fluid
Ataollahi Oshkour et al. Comparison of various functionally graded femoral prostheses by finite element analysis
US4662888A (en) Endoprosthetic bone joint components
Wang et al. Fused deposition modeling PEEK implants for personalized surgical application: from clinical need to biofabrication
Cheng et al. 3D printed PEKK bone analogs with internal porosity and surface modification for mandibular reconstruction: An in vivo rabbit model study
Dworak et al. Mechanical assessment of a hip joint stem model made of a PEEK/carbon fibre composite under compression loading
Wan et al. The evaluation of bio-mechanical properties of four different skull implants by finite element methods
CN110811929B (zh) 一种个性化下肢长骨节段替代物及其制备方法
Reinhardt et al. Preliminary study on composite hip prostheses made by resin transfer molding
Joshi et al. Survey of stress analyses of the femoral hip prosthesis
Ivorra Martínez et al. Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures
CN111265344B (zh) 一种纤维增强3d打印聚合物盆骨替代物
CN111544160B (zh) 一种鼻旁凹陷塑形用生物型假体
CN221060964U (zh) 定制个体化半髁假体
CN209966666U (zh) 人造半月板
Limmahakhun Development of functionally graded materials for innovation in bone-replacement applications
Campbell et al. Biomimetic polymer composites for orthopedic hip implants
ABDULAZEEZ et al. A REVIEW OF: THE ROLE OF POLYMER COMPOSITES IN THE FABRICATION OF ARTIFICIAL HUMAN ARMS.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Sun Changning

Inventor after: Wang Ling

Inventor after: Li Dichen

Inventor before: Wang Ling

Inventor before: Sun Changning

Inventor before: Li Dichen

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230721

Address after: 710004 Room 102, Building 4A, West Yungu Phase 2, Fengxi New City, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Shaanxi JuKang Gaobo Medical Technology Co.,Ltd.

Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28

Patentee before: XI'AN JIAOTONG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240227

Address after: No. 4, 27th Floor, Unit 1, Building 2, No. 1288 Huajian Road, Yanta District, Xi'an City, Shaanxi Province, 710000

Patentee after: Yang Chuncheng

Country or region after: China

Address before: 710004 Room 102, Building 4A, West Yungu Phase 2, Fengxi New City, Xixian New District, Xi'an City, Shaanxi Province

Patentee before: Shaanxi JuKang Gaobo Medical Technology Co.,Ltd.

Country or region before: China