CN111316511B - 激光雷达和激光测量技术 - Google Patents

激光雷达和激光测量技术 Download PDF

Info

Publication number
CN111316511B
CN111316511B CN201880071159.9A CN201880071159A CN111316511B CN 111316511 B CN111316511 B CN 111316511B CN 201880071159 A CN201880071159 A CN 201880071159A CN 111316511 B CN111316511 B CN 111316511B
Authority
CN
China
Prior art keywords
laser
optical comb
frequency
dual optical
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880071159.9A
Other languages
English (en)
Other versions
CN111316511A (zh
Inventor
黄书伟
李沛哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akronos
Original Assignee
Akronos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akronos filed Critical Akronos
Priority to CN202311184434.7A priority Critical patent/CN117406237A/zh
Publication of CN111316511A publication Critical patent/CN111316511A/zh
Application granted granted Critical
Publication of CN111316511B publication Critical patent/CN111316511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094076Pulsed or modulated pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/101Lasers provided with means to change the location from which, or the direction in which, laser radiation is emitted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1026Controlling the active medium by translation or rotation, e.g. to remove heat from that part of the active medium that is situated on the resonator axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

提供了双光梳测量系统。双光梳测量系统可以包括双向锁模飞秒激光器、高速旋转台和光纤耦合器。高速旋转台可以耦合至泵浦二极管。

Description

激光雷达和激光测量技术
技术领域
本发明的实施例总体上涉及激光雷达(LiDAR)和激光领域,更具体地,涉及与双光梳(dual comb)测量技术兼容的双向激光器,还涉及双边带、调频连续波(FMCW)测量技术。
背景技术
双光梳光谱仪是一种新兴的新型光谱仪工具,其利用频率梳的频率分辨率、频率精度、宽带宽和亮度来实现超高分辨率、高灵敏度宽带光谱仪。通过使用两个相干频率梳,双光梳光谱技术可以在逐个梳齿的基础上快速测量样品的光谱响应,而没有传统光谱仪的尺寸限制或仪器响应限制。
双光梳技术已使高分辨率光谱学、精确距离测量和3D成像中的激动人心的应用成为可能。通过双光梳技术可以实现优于传统方法的主要优点。例如,双光梳光谱仪在采集速度上比标准的傅里叶变换光谱仪提高了几个数量级,同时仍保留了高分辨率能力。然而,由于对复杂和昂贵的超快激光系统的需求,阻碍了该技术的广泛采用。
傅立叶变换光谱仪是一种用于在科学研究以及化学和制药工业中分析化学样品的工具。最近,通过使用双频梳,其测量速度、灵敏度和精度已得到显著提高。此外,最近的超短脉冲诱导非线性效应的演示丰富了双光梳光谱仪的实用性。但是,由于该技术对两个频率梳以及梳的主动稳定的要求,阻碍了该技术的广泛接受。
确定到物体的绝对距离的能力是遥感的最基本的测量之一。高精度测距在大规模制造和未来的紧凑编队飞行卫星任务中都有重要的应用,其中快速、精确地测量绝对距离对于维持各个卫星的相对指向和位置来说至关重要。已知的是,使用两个相干宽带光纤-激光频率梳光源,相干激光测距系统结合了飞行时间和干涉测量方法的优点,可以同时从多个反射器以低功率提供绝对距离测量。脉冲飞行时间可以产生3 mm的精度,在200 ms内的模糊范围为1.5 m。通过光载波相位,在60 ms时精度提高到5 nm以上,通过射频相位,模糊范围扩展到30 km,可能在长距离在1013测距中提供2个部分。但是,通常一次只能确定物体距离或物体速度。
双光梳测量技术在要求精度和稳定性的应用(例如精密光谱学和相干激光雷达)中显示出了巨大的希望。但是,目前,双光梳测量技术的广泛使用受到两个锁模飞秒激光频率梳和高速、锁相环电子器件以产生必要的相互相干性的要求的限制。因此,需要更好的激光频率梳。还需要能够仅在一次测量中明确地确定物体距离和物体速度的测量技术。
FMCW LiDAR是另一种有前途的激光测距技术。在FMCW LiDAR系统中,物体距离被线性地编码为测得的电频率。传统上,除非对物体速度进行另一个独立的测量,否则物体速度还会导致所测得的电频率产生偏移,从而导致距离不明确。使用在本文的各个实施例中描述的双边带方法,解决了这个问题,并且可以仅通过一次测量就明确地确定物体距离和物体速度。
发明概述
本发明的实施例包括双光梳测量系统。双光梳测量系统可以包括双向锁模飞秒激光器、高速旋转台、以及光纤耦合器。高速旋转台可以耦合至泵浦二极管。
该概述和以下详细描述仅是示例性、说明性和解释性的,并不旨在限制本发明,而是提供对所要求保护的本发明的进一步解释。通过检查以下附图和详细描述,示例实施例的其他系统、方法、特征和优点对于本领域技术人员将是或将变得显而易见。
附图说明
提供的附图是示意性的,并未按比例绘制。可以设想来自所示实施例的变化。因此,附图中的图示无意于限制本发明的范围。
图1示出了根据本发明示例性实施例的在高速旋转台上的双向锁模飞秒激光器。
图2A示出了仅利用正边带来进行测距测量的图。
图2B示出了作为时间的函数的正边带的光频率图。
图2C示出了具有弱反射物体和强反射物体的FMCW LiDAR结果的标准图。
图3A示出了根据本发明示例性实施例的在双边带FMCW LiDAR中仅抑制载波时的图。
图3B示出了根据本发明示例性实施例的作为时间的函数的两个边带的光频率图。
图3C示出了根据本发明示例性实施例的具有弱反射物体和强反射物体的FMCWLiDAR结果的图。
图4示出了根据本发明示例性实施例的双边带FMCW LiDAR系统的示意图。
图5示出了根据本发明示例性实施例的双边带FMCW LiDAR系统。
图6示出了根据本发明实施例的在LiDAR系统中使用的收发器终端。
图7示出了根据本发明示例性实施例的在LiDAR系统中使用的控制数据处理中心。
图8示出了根据本发明示例性实施例的双边带FMCW LiDAR系统的示意图。
图9示出了根据本发明示例性实施例的2D扫描单元的示意图。
详细描述
以下公开内容描述了本发明的各种实施例和在其优选的最佳模式实施例中的至少一个中的使用方法,其在以下描述中进一步详细定义。本领域普通技术人员可以在不脱离其精神和范围的情况下对本文所述内容进行变更和修改。尽管本发明易于以不同的形式出现在不同的实施例中,但是在附图中示出并且在此将详细描述本发明的优选实施例,但应理解,本公开被认为是本发明原理的示例,并且并非旨在将本发明的广泛方面限于所示的实施例。除非另有说明,否则相对于本文提供的任何实施方案描述的所有特征、元件、部件、功能和步骤旨在能够与任何其他实施方案的进行自由组合和替代。因此,应当理解,所示出的内容仅出于示例的目的而阐述,而不应被视为对本发明范围的限制。
在下面的描述和附图中,相同的元件用相同的附图标记表示。除非另有说明,否则使用“例如”、“等”和“或”表示非排他性替代方案而没有限制。除非另有说明,否则“包括/包含/含有”的使用是指“包括但不限于”。
参考附图。图1示出了双向激光器,其与单独的双光梳测量技术100A固有地兼容,而没有附加激光器。如图所示,在一些实施例中,双向激光器可以利用萨格纳克(Sagnac)效应在双向激光输出120、130之间产生重复率差。也可以使用其他产生重复率差的原理。对于旋转的单频激光陀螺仪,由于萨格纳克效应,顺时针方向和逆时针方向的激光发射频率将会相差,其中α是取决于激光腔体设计的常数,/>是陀螺仪静止时的激光发射频率,而Ω是角旋转速度。
类似地,如图1所示,如果将双向锁模飞秒激光器放在耦合到泵浦二极管140的高速旋转台110上,则萨格纳克效应还可以引入沿顺时针方向和逆时针方向在激光输出120、130之间的重复率差。重复率差可以与旋转台110的角速度成比例,并且可以表示为,其中α是相同的腔体设计相关常数,而/>是系统静止时的重复率。如图1所示,无需构建两个锁模飞秒激光器。在一些实施例中,两个激光输出120、130可以使用标准光纤耦合器如图1所示进行合并,然后我们就可以进行双光梳测量。也可以使用合并两个激光输出120、130的任何其他方法。在双光梳测量的标准两激光实施方案中,两个激光腔独立地波动,其噪声完全不相关。因此,可能需要高速反馈电子器件来锁定另外两个独立的腔体并确保两个激光器之间的相互相干性。其他信息可以在附录A和附录B中找到,在此通过引用将其全部内容并入本文。在一些实施例中,双向激光输出120、130共享相同的腔,因此,两个双向激光输出均等地经历任何线性腔波动。由于这种共同的噪声特性,即使不需要高速锁相环电子设备,两个激光输出120、130也可以本质上彼此相干。旋转台110还可以包括光纤旋转接头150,以使泵浦光纤与腔体旋转分离。
近年来,由于降低了系统复杂性和降低了成本,将双向光纤激光器应用于双光梳测量系统的兴趣日益浓厚。目前,双光梳测量技术的广泛使用受到两个锁模飞秒激光频率梳和高速锁相环电子器件的要求的限制。在一些实施例中,通过用双向光纤激光器代替两个锁模激光器,可以将激光器的成本降低一半。此外,如上一段所述,可能不再需要高速锁相环电子器件,从而进一步降低了系统复杂性和成本。当前,现有技术使光纤激光器腔静止,因此要求腔不对称。此外,必须引入不相等的非线性,以使两个方向的重复率不相同。由于腔体的不对称和所要求的非线性,两个方向所经历的腔体噪声不再能够完全消除(两个方向仅线性地经历了线性腔体波动)。因此,除非实现缓慢的反馈,否则双向激光输出仍然会逐渐彼此偏离,并且相互的相干性将会丢失。此外,为了确保激光器的稳定性,不能将非对称性和非线性度设置得太高,因此重复率差通常限制在<100 Hz,从而限制了双光梳测量系统的数据采集率。
另一方面,在一些实施例中,使用双光梳测量系统的双向激光器可以利用萨格纳克效应,其可以通过旋转台的速度线性地控制。由于重复率差异可能不再取决于腔不对称性和非线性,因此在一些实施例中,可以消除相互相干性的逐渐丧失以及增加的数据采集率。在一些实施例中,可以使用具有10,000 rpm(Ω)的速度的容易获得的机动旋转台,从而可以实现2 kHz的重复率差(Δf rep ),亦即与现有技术相比提高一个数量级。也可以使用任何其他种类的旋转台。对于速度为50,000 rpm的高速旋转台,可以将重复率差异进一步提高到10 kHz的水平。此外,由于重复率与旋转速度成线性比例关系(),因此只需更改旋转台的速度即可容易地进行调整,并通过跟踪电动机的旋转速度进行重新校准。此外,高速旋转会增加系统的惯性矩,从而使整个系统在遇到环境干扰时更加稳定(就像旋转的子弹具有更稳定的弹射一样)。
图2A至图2C示出了与单边带抑制的标准载波相关联的图,其描绘了传统的FMCWLiDAR原理。图2A示出了图200A,其描绘了载波和负边带被抑制并且仅正边带被用于进行测距测量。图2B示出了作为时间的函数的正边带的光学频率图200B,示出了频率扫描()的正斜率。图2C示出了标准FMCW LiDAR结果图200C,其中在3 m (L=3m)处具有弱反射物体,在5 m (L=5m)处具有强反射物体。在FMCW LiDAR系统中,物体距离被线性地编码为测得的电频率,方程式为/>,其中c是光速,f D 是由物体速度产生的多普勒频率。如该方程式所示,除非对物体速度进行另一次独立测量,否则物体速度会导致所测得的电频率发生偏移,并因此导致距离模糊。
图3A-3C示出了与载波抑制的双边带相关联的图,其描绘了示例性的双边带FMCWLiDAR原理。图3A示出了当在双边带FMCW LiDAR中仅载波被抑制时的图300A。正边带和负边带均可用于进行测距测量。图3B示出了作为时间的函数的两个边带的光频率图300B。可以同时存在频率扫描的正斜率和频率扫描的负斜率。图3C示出了来自示例性双边带FMCWLiDAR的示例性结果图300C,同样具有在3 m (L=3m)处的弱反射物体和在5 m (L=5m)处的强反射物体。对于每个物体,可能有两个测得的电频率,一个由多普勒频率升频而一个降频/>。在一些实施例中,双边带方法可以被用来在仅一次测量中同时且明确地确定物体距离和物体速度。可以通过分别对两个电频率(/>和/>)进行平均和差分/微分来计算物体距离和速度。
图4示出了双边带FMCW LiDAR系统400A的示意图。可以将单频二极管激光器410馈送到电光振幅调制器(“EOM”)420。EOM 420可以用于从单频二极管激光器410产生两个边带。仔细地选择EOM 420偏置电压以抑制载波频率。然后可以使用掺铒的光放大器430将光功率提高到3W。2D扫描单元450可以由计算系统460控制以将光引导到感兴趣的区域并最终形成LiDAR图像。还可以并入平衡检测技术440以提高测量灵敏度,从而使得双边带FMCWLiDAR系统400A可以在120 m的距离处以10%的反射率测量物体。
目前可用的示例性LiDAR系统是Velodyne的系统。Velodyne LiDAR系统涉及机械旋转。它使用六十四个激光器和六十四个探测器来覆盖不同的垂直角度。一组中有十六个激光器和三十二个探测器。然而,该LiDAR系统的主要缺点是较低的转速和LiDAR系统的复杂设计。另一个可用的LiDAR系统是Quanenergy的系统。它使用光相位阵列来扫描物体,通过控制每个天线的相位来控制光的方向。但是,该系统的主要缺点是,由于斑点质量较差,因此很难在远距离使用该系统检测物体。图5示出了根据本发明示例性实施例的双边带FMCW LiDAR系统500。LiDAR系统主要包括三个部分:调制光生成单元、收发器单元505、以及控制和处理单元550。
收发器单元505具有一个或多个收发器终端510和520。它可以具有激光和控制信号530以及数据链路540。它还可以具有控制和信号处理单元550。控制和信号处理单元550可以与收发器单元505分离,这使得LiDAR系统500的车载系统布局更加灵活。收发器单元550可以放置在车辆的顶部,而控制和信号处理单元550可以放置在车辆中。并且控制信号可以通过长电缆被传送到收发器单元,同时接收光信号通过长SMF-28光纤被发送回信号处理单元550。
图6示出了根据本发明实施例的在LiDAR系统中使用的收发器终端600。收发器终端可以使用具有x轴控制镜610和y轴控制镜620的两轴控制镜系统,以实现高速3D扫描和快速调整扫描角度。收发器终端610还可以具有检测模块630。可以使用两轴控制镜系统将激光和控制信号640偏转到物体660。数据链路650可以通过检测模块到达物体660。
图7示出了根据本发明实施例的在LiDAR系统中使用的控制数据处理中心700。中心700可以用于在传统的激光信号上编码高维信息,其可以获取诸如速度之类的物体的更多信息。借助来自LiDAR系统的这种高维信息,对于人工智能单元来说,在复杂的环境中了解其情况时,只需进行较少的猜测和推测即可。换句话说,由于本发明的LiDAR系统的增强的感测能力,因此可以减少人工智能单元的计算负荷。
图8示出了具有调制光生成单元、收发器单元以及控制和处理单元的双边带FMCWLiDAR系统的示意图800。在调制光生成单元中,以1550 nm为中心的连续波长(CW)二极管激光器810馈送到20 GHz电光振幅调制器(EOM)820。通过将射频(RF)信号发送入EOM 820,EOM 820从CW二极管激光器810产生两个等强度的边带。这里施加了压控振荡器(VCO)830以产生用于CW激光器的频率调制的RF信号。VCO 830的驱动信号是500 kHz伪锯齿信号,其电压输出范围为3.5 V至5.5 V,产生的射频信号范围为5 GHz至6 GHz。选择500 kHz,以使最大检测范围理论上可以达到300 m。该系统还可以将扫描频率从200 kHz更改为100 MHz,以用于不同的检测范围,同时保持相同的分辨率。可以选择波长和带宽,只要它们能补充本文所述的特征即可。通过具有mV级精度的电源仔细地选择偏置电压,最大程度地抑制载波频率,因此两个边带达到最大强度。调制的光信号然后可以由掺铒光纤前置放大器840放大到20 mW,并由50:50光纤耦合器850分成两条路径。一条路径馈送至高功率掺铒光纤放大器(EDFA)860,然后提升至10 W,另一条路径发送到2×2 50:50光纤耦合器870,用作测距测量的本地参考。EDFA 860的输出通过长SMF-28光纤从车辆的底部到顶部连接到收发器单元,并通过准直器转换为自由空间光束。然后,通过扩束器将光束扩展为直径为2 cm的光束,以最大程度地收集信号。光束越大越好。偏振分束器(PBS)870被实现用于共线检测。然后,将输出信号优化为横向电(TE)极化,以通过半波片(HWP)最大限度地利用强度。然后,光被引导到由控制和处理单元控制的2D扫描单元880。如图9所示,2D扫描单元900由两个组件组成,一个是用于垂直转向的振镜(galvo mirror)910和用于光的水平转向的旋转八边形镜(octagon mirror)920。振镜旋转角度设置为达到高达20°垂直视角。它还可以具有用于远物体检测的放大功能,该功能可以通过改变振镜920的旋转角度范围来实现。仔细设置振镜920和八边形镜910的位置以实现90°水平视角。振镜920的扫描速率由范围为10 Hz至2 Hz的全局触发速率确定。八边形镜910的旋转速度设置为3000 rpm,总共每秒产生四百条水平扫描线。并且通过将触发频率从10 Hz更改为2 Hz,可以将渲染图像的分辨率从40行/帧切换到200行/帧。当分辨率为200行/帧时,每行可能有1500个点,垂直空间分辨率可以达到0.1°,水平空间分辨率可以达到0.06°,从而提高图像的清晰度。
如图8所示,控制和处理单元可以包括平衡光电检测器(BPD)892、高速DAQ卡、高速处理器、两通道任意波形发生器和两通道信号发生器。结合了平衡检测技术以提高测量灵敏度,因此双边带FMCW LiDAR系统可以在120 m处测量反射率为10%的物体。平衡检测器可以接收两个信号路径,并消除共同的噪声。BPD可以仅检测两条路径之间的信号差。LiDAR系统可以在120 m处从具有10%反射率的物体接收约-70 dBm的功率,该功率达到平衡光电探测器的噪声等效功率。接收到的信号通过2×2 50:50光纤耦合器894与本地参考信号耦合,并由BPD 892以1 GHz带宽进行检测,该带宽与激光器的频率调制范围相匹配。可以使用任何其他匹配的带宽和调制频率对。通过光纤偏振控制器的三个旋转桨叶优化了本地参考路径的偏振,并且通过插入光纤可变光衰减器来调整BPD的两个输入的功率以使其完全均衡,以实现最佳信噪比。然后,DAQ卡以300 MHz的采样率采集信号,然后使用图形卡辅助的实时快速傅里叶变换(FFT)检测两个边带的两个电频率峰值和/>,其中/>。然后,可以分别通过对两个频率进行平均和差分来同时且明确地计算出物体距离和速度。最后,处理后的信号可用于感兴趣区域的云点生成,以及车辆界面上的实时渲染。阵列波导光栅(AWG)为VCO 830和振镜提供控制信号。用于VCO830的信号可以是具有更高阶项的定制锯齿信号,以补偿VCO的非线性扫描,并且用于振镜的信号是倾斜的三角波形。信号的形状可以是任何形状,只要在后处理中校准即可。该两通道信号发生器向DAQ卡提供具有5%脉冲持续时间的2-10 Hz脉冲信号以获取数据,并提供占空比为50%且最大2 V输出的300 Hz TTL信号来控制八边形镜。因此,在一些实施例中,在此描述并在汽车(或任何其他运输设备,例如飞机、轮船等)中实现的光生成单元以及控制和信号处理单元可以在座位下方或其他地方,并且收发器单元可以安装在车辆顶部。可以通过长光纤电缆将光传送到收发器单元,并且可以通过长光纤将接收到的信号发送回控制和信号处理单元。2D扫描单元由控制单元通过长BNC电缆控制。在2D扫描下,可以将接收到的信号渲染到云的实时3D点并显示在界面上,该界面可以是驱动程序的显示设备网络。运输设备可以具有当前可用的特征,以将音频和视频两者的信息传输给驾驶员。
如本文所用,置于第一实体和第二实体之间的术语“和/或”是指以下中的一个:(1)第一实体、(2)第二实体、以及(3)第一实体和第二实体中。用“和/或”列出的多个实体应以相同的方式解释,即,如此连接的实体中的“一个或多个”。除了由“和/或”子句明确标识的实体以外,还可以选择性地存在其他实体,无论与具体标识的实体相关还是无关。因此,作为非限制性示例,在与开放式语言(例如“包含”)结合使用时,对“A和/或B”的引用在一个实施例中可以仅指A(任选地包括除B以外的实体);在另一个实施例中,仅指B(任选地包括除A以外的实体);在又一个实施例中,指A和B(任选地包括其他实体)。这些实体可以指元素、动作、结构、步骤、操作、值等。

Claims (4)

1.一种双光梳生成系统,包括:
双向锁模飞秒激光器,其被配置来产生两个激光输出;
旋转台,其具有每分钟10,000转或更高的旋转速度,从而产生逆时针方向相比于顺时针方向在所述两个激光输出之间至少2千赫的重复率差,所述旋转台包括光纤旋转接头,所述光纤旋转接头使泵浦二极管的泵浦光纤与由所述两个激光输出共享的激光腔体的旋转分离,从而在没有锁相环电子器件以相对于一个激光输出调节另一个激光输出的情况下产生所述两个激光输出,
其中所述双向锁模飞秒激光器放置在所述旋转台上并且所述旋转台耦合至泵浦所述双向锁模飞秒激光器的泵浦二极管;以及
光纤耦合器,其被配置来合并所述两个激光输出。
2.根据权利要求1所述的双光梳生成系统,其中所述两个激光输出是相互相干的。
3.根据权利要求1所述的双光梳生成系统,其中逆时针方向相比于顺时针方向在所述两个激光输出之间的重复率差相对于所述旋转台的角速度是线性的。
4.根据权利要求1所述的双光梳生成系统,其中所述旋转台的转速为50,000rpm。
CN201880071159.9A 2017-11-03 2018-11-02 激光雷达和激光测量技术 Active CN111316511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311184434.7A CN117406237A (zh) 2017-11-03 2018-11-02 激光雷达和激光测量技术

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762581267P 2017-11-03 2017-11-03
US62/581,267 2017-11-03
PCT/US2018/059033 WO2019090131A1 (en) 2017-11-03 2018-11-02 Lidar and laser measurement techniques

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311184434.7A Division CN117406237A (zh) 2017-11-03 2018-11-02 激光雷达和激光测量技术

Publications (2)

Publication Number Publication Date
CN111316511A CN111316511A (zh) 2020-06-19
CN111316511B true CN111316511B (zh) 2023-10-17

Family

ID=66332332

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202311184434.7A Pending CN117406237A (zh) 2017-11-03 2018-11-02 激光雷达和激光测量技术
CN201880071159.9A Active CN111316511B (zh) 2017-11-03 2018-11-02 激光雷达和激光测量技术

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202311184434.7A Pending CN117406237A (zh) 2017-11-03 2018-11-02 激光雷达和激光测量技术

Country Status (5)

Country Link
US (2) US11619721B2 (zh)
EP (1) EP3704768A4 (zh)
JP (2) JP7279056B2 (zh)
CN (2) CN117406237A (zh)
WO (1) WO2019090131A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018200618A1 (de) * 2018-01-16 2019-07-18 Robert Bosch Gmbh Sensorvorrichtung
CN111239754A (zh) * 2020-01-19 2020-06-05 哈尔滨工业大学 一种基于可调频连续波的激光雷达系统及其成像方法
US11662437B2 (en) * 2020-04-03 2023-05-30 Aqronos, Inc. Frequency information rapid extraction for ranging applications
CN112034436A (zh) * 2020-09-16 2020-12-04 深圳市镭神智能系统有限公司 光发射模块、光信号检测模块、光学系统和激光雷达系统
WO2024033666A1 (en) * 2022-08-12 2024-02-15 University Of Zagreb, Faculty Of Science Method for tuning the laser frequency implemented in a rotating device with an optical waveguide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123499A2 (en) * 1983-04-25 1984-10-31 The Board Of Trustees Of The Leland Stanford Junior University Improved fiber optic rotation sensor with extended dynamic range
JPH02173519A (ja) * 1988-12-27 1990-07-05 Hitachi Cable Ltd 光ファイバ回転角速度センサ
US5022760A (en) * 1990-03-22 1991-06-11 Northrop Corporation Compound resonator for improving optic gyro scale factor
CN1123481A (zh) * 1995-07-27 1996-05-29 清华大学 实现光纤环形腔双向单模激射的方法及其光纤陀螺激光器
CN1272622A (zh) * 1999-01-22 2000-11-08 佳能株式会社 陀螺仪装置和陀螺仪
CN101165977A (zh) * 2006-10-20 2008-04-23 香港理工大学 光纤气体激光器和具有该激光器的光纤型环形激光陀螺仪
WO2009065086A2 (en) * 2007-11-15 2009-05-22 The Board Of Trustees Of The Leland Stanford Junior University Low-noise fiber-optic sensor utilizing a laser source
WO2016190913A2 (en) * 2015-01-23 2016-12-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona All-fiber bidirectional synchronously pumped ultrafast ring oscillator for precision sensing

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846571A (en) 1986-11-03 1989-07-11 Raytheon Company AM-FM laser
JPH01316599A (ja) * 1988-06-14 1989-12-21 Kubota Ltd 液化ガス充填装置
US5157745A (en) * 1991-09-16 1992-10-20 The United States Of America As Represented By The Secretary Of The Navy Multi-channel fiber optic rotary joint for single-mode fiber
US6373565B1 (en) * 1999-05-27 2002-04-16 Spectra Physics Lasers, Inc. Method and apparatus to detect a flaw in a surface of an article
US7346091B2 (en) * 2005-01-12 2008-03-18 Raytheon Company High energy solid-state laser with offset pump and extraction geometry
CA2531177A1 (en) * 2005-12-30 2007-06-30 Jesse Zheng Differential birefringent fiber frequency-modulated continuous-wave sagnac gyroscope
US8189785B2 (en) * 2008-09-30 2012-05-29 The Mitre Corporation Generating identical numerical sequences utilizing a physical property and secure communication using such sequences
US8831056B2 (en) * 2011-06-30 2014-09-09 Oewaves, Inc. Compact optical atomic clocks and applications based on parametric nonlinear optical mixing in whispering gallery mode optical resonators
US20150185246A1 (en) * 2011-12-23 2015-07-02 Optical Air Data Systems, Llc Laser Doppler Velocimeter With Intelligent Optical Device
US20130311141A1 (en) * 2012-05-18 2013-11-21 National Dong Hwa University Signal denoising methods for a charge detection frequency-scan/voltage-scan quadrupole/linear/rectilinear ion trap mass spectrometer
JP2014202716A (ja) 2013-04-09 2014-10-27 株式会社日立ハイテクノロジーズ 距離測定装置
CN103471579B (zh) * 2013-09-29 2016-02-17 浙江大学 一种采用双向全互易耦合光电振荡器的角速度检测方法
JP5804115B2 (ja) 2014-03-17 2015-11-04 ソニー株式会社 照射方向変更システム
US20160204571A1 (en) 2015-01-14 2016-07-14 Honeywell International Inc. Systems and methods for an optical frequency comb stimulated brillouin scattering gyroscope with rigid optical waveguide resonator
US10088557B2 (en) 2015-03-20 2018-10-02 MSOTEK Co., Ltd LIDAR apparatus
WO2016196677A1 (en) * 2015-06-01 2016-12-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser
KR102254468B1 (ko) * 2016-11-30 2021-05-20 블랙모어 센서스 앤드 애널리틱스, 엘엘씨 광 처프 거리 검출의 도플러 검출 및 도플러 보정을 위한 방법 및 장치
CN110268280B (zh) * 2017-01-24 2023-08-08 Hrl实验室有限责任公司 双频fmcw雷达和方法
US10401495B2 (en) * 2017-07-10 2019-09-03 Blackmore Sensors and Analytics Inc. Method and system for time separated quadrature detection of doppler effects in optical range measurements
WO2019060901A1 (en) * 2017-09-25 2019-03-28 Bridger Photonics, Inc. SCANNING SYSTEMS AND TECHNIQUES AND EXAMPLES OF USE IN FMCW LIDAR PROCESSES AND APPARATUSES

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123499A2 (en) * 1983-04-25 1984-10-31 The Board Of Trustees Of The Leland Stanford Junior University Improved fiber optic rotation sensor with extended dynamic range
JPH02173519A (ja) * 1988-12-27 1990-07-05 Hitachi Cable Ltd 光ファイバ回転角速度センサ
US5022760A (en) * 1990-03-22 1991-06-11 Northrop Corporation Compound resonator for improving optic gyro scale factor
CN1123481A (zh) * 1995-07-27 1996-05-29 清华大学 实现光纤环形腔双向单模激射的方法及其光纤陀螺激光器
CN1272622A (zh) * 1999-01-22 2000-11-08 佳能株式会社 陀螺仪装置和陀螺仪
CN101165977A (zh) * 2006-10-20 2008-04-23 香港理工大学 光纤气体激光器和具有该激光器的光纤型环形激光陀螺仪
WO2009065086A2 (en) * 2007-11-15 2009-05-22 The Board Of Trustees Of The Leland Stanford Junior University Low-noise fiber-optic sensor utilizing a laser source
WO2016190913A2 (en) * 2015-01-23 2016-12-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona All-fiber bidirectional synchronously pumped ultrafast ring oscillator for precision sensing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fresnel-Fizeau effect in a rotating optical fiber ring interferometer;V.Vali et al.;《Applied Optics》;19771031;第16卷(第10期);第2605页第1段至2607页第1段,图1-3 *

Also Published As

Publication number Publication date
WO2019090131A1 (en) 2019-05-09
JP2023109843A (ja) 2023-08-08
US20230251358A1 (en) 2023-08-10
JP2021502571A (ja) 2021-01-28
EP3704768A1 (en) 2020-09-09
US20210181321A1 (en) 2021-06-17
CN111316511A (zh) 2020-06-19
JP7279056B2 (ja) 2023-05-22
US12117567B2 (en) 2024-10-15
EP3704768A4 (en) 2021-11-17
US11619721B2 (en) 2023-04-04
CN117406237A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN111316511B (zh) 激光雷达和激光测量技术
CA3137540C (en) Providing spatial displacement of transmit and receive modes in lidar system
US11714169B2 (en) System for scanning a transmitted beam through a 360° field-of-view
US11531111B2 (en) 360 degrees field of view scanning lidar with no movable parts
CN109991623A (zh) 一种分布式激光雷达
US11573305B2 (en) Direction and doppler shift in ranging systems and methods
US11906665B2 (en) Method for scanning a transmitted beam through a 360° field-of-view (FOV)
CN104965206B (zh) 正交偏振复用合成孔径激光成像雷达
Xu et al. Photonics-based radar-lidar integrated system for multi-sensor fusion applications
WO2021226630A1 (en) Arbitrary optical waveform generation utilizing frequency discriminators
CN210155332U (zh) 一种分布式激光雷达
Torun et al. Multi-tone modulated continuous-wave lidar
Zhu et al. A Wide-Field Adaptive Spectral-Scanning LiDAR
Zhu et al. 4D Spectral-Scanning FMCW LiDAR System for 360-degree Detection
US20230393281A1 (en) Systems and Methods for Flight Navigation Using Lidar Devices
CN117872312A (zh) 基于光学相控阵及振镜混合扫描的收发一体激光雷达系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40031729

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant