CN111315282B - 用于确定希氏束起搏夺获的植入式医疗设备和方法 - Google Patents
用于确定希氏束起搏夺获的植入式医疗设备和方法 Download PDFInfo
- Publication number
- CN111315282B CN111315282B CN201880072564.2A CN201880072564A CN111315282B CN 111315282 B CN111315282 B CN 111315282B CN 201880072564 A CN201880072564 A CN 201880072564A CN 111315282 B CN111315282 B CN 111315282B
- Authority
- CN
- China
- Prior art keywords
- capture
- bundle
- pacing
- threshold
- selective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/37—Monitoring; Protecting
- A61N1/371—Capture, i.e. successful stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
- A61B5/29—Invasive for permanent or long-term implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/361—Detecting fibrillation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/363—Detecting tachycardia or bradycardia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/366—Detecting abnormal QRS complex, e.g. widening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/686—Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/37—Monitoring; Protecting
- A61N1/371—Capture, i.e. successful stimulation
- A61N1/3712—Auto-capture, i.e. automatic adjustment of the stimulation threshold
- A61N1/3714—Atrial capture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37217—Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
- A61N1/37223—Circuits for electromagnetic coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37235—Aspects of the external programmer
- A61N1/37247—User interfaces, e.g. input or presentation means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/378—Electrical supply
- A61N1/3787—Electrical supply from an external energy source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3956—Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/375—Constructional arrangements, e.g. casings
- A61N1/3756—Casings with electrodes thereon, e.g. leadless stimulators
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physiology (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Human Computer Interaction (AREA)
- Electrotherapy Devices (AREA)
Abstract
IMD系统经由第一感测电极向量接收由患者的心脏产生的近场希氏束电信号,并经由与第一感测电极向量不同的第二感测电极向量接收远场心脏电信号。IMD系统生成经由希氏起搏电极向量递送到患者的心脏的希氏束起搏脉冲,并确定由希氏束起搏脉冲诱发的心脏夺获的类型。
Description
技术领域
本公开涉及用于在心脏起搏期间确定希氏束的夺获的植入式医疗设备和方法。
背景技术
在正常窦性心律(NSR)期间,通过由位于右心房壁中的窦房(SA)结产生的电信号来调节心跳。由SA结产生的每个心房去极化信号传过心房(从而导致心房的去极化和收缩),并到达房室(AV)结。AV结通过将心室去极化信号传播通过心室间隔的希氏束并且此后到达束支以及右心室和左心室的浦肯野(Purkinje)肌纤维,来进行响应。
具有传导系统异常(例如,AV结传导不良或SA结功能不良)的患者可能会接收起搏器以恢复更正常的心律和AV同步。可以执行心室起搏以维持具有房室传导异常的患者的心室率。单个腔室心室起搏器可以被耦合到携载放置在右心室中(例如,在右心室心尖(apex)中)的电极的经静脉心室引线。起搏器自身通常被植入在皮下袋中,其中经静脉心室引线隧穿至皮下袋。已经引入或提出将心内起搏器完全植入患者的心脏内,从而消除了对经静脉引线的需要。心内起搏器可从患者心脏的腔室内(例如,从具有AV传导阻滞的患者的右心室内)提供感测和起搏。
双腔起搏器是可用的,其包括经静脉心房引线以及经静脉心室引线,该经静脉心房引线携载被放置在右心房中的电极,该经静脉心室引线携载经由右心房被放置在右心室中的电极。双腔起搏器感测心房电信号和心室电信号,并且可以在存在SA和/或AV结或其他传导异常时根据需要提供心房起搏和心室起搏,以促进正常的心房和心室节律并促进AV同步。
已提出对希氏束进行心脏起搏,以沿心脏的自然传导系统提供心室起搏。已发现在右心室心尖处的心室起搏与心房纤颤和心力衰竭的增大的风险相关联。已经研究或提出了替代的起搏部位,诸如,对希氏束的起搏。经由希氏束对心室进行起搏允许沿着心脏的自然传导系统(包括浦肯野纤维)的募集(recruitment),并且被假设为相比于其他起搏部位(诸如,心室心尖),促进在生理上更正常的电同步和机械同步。
发明内容
本公开的技术通常涉及确定通过经由希氏束起搏电极递送的心脏起搏脉冲实现的夺获的类型。起搏电极可以由引线(例如,经静脉心内膜引线)携载,或者由无引线起搏器的壳体携载。可以在希氏束起搏期间实现的夺获的类型包括选择性希氏束夺获、非选择性希氏束夺获、心室心肌夺获、心房夺获、和心室失夺获。夺获的类型可取决于电极相对于希氏束的位置、起搏脉冲能量和其他因素。根据本文公开的技术操作的植入式医疗设备(IMD)可以确定在希氏束起搏脉冲之后的夺获的类型,确定用于不同类型的夺获(诸如,选择性和非选择性希氏束夺获)的各种夺获阈值,以及基于确定的夺获类型和夺获阈值选择起搏脉冲控制参数,诸如,起搏脉冲振幅。IMD可以被配置成在希氏束起搏期间监测夺获,以检测夺获类型的变化并提供适当的响应。
在一个示例中,本公开提供了一种IMD系统,其包括感测电路、治疗递送电路、以及耦合至感测电路和治疗递送电路的控制电路。感测电路被配置成经由第一感测电极向量接收近场希氏束电信号,并且经由与第一感测电极向量不同的第二感测电极向量接收远场心脏电信号。治疗递送电路被配置成生成经由希氏起搏电极向量递送给患者心脏的希氏束起搏脉冲。控制电路被配置成确定由治疗递送电路递送的希氏束起搏脉冲诱发的心脏夺获的类型。确定夺获的类型可包括:从希氏束起搏脉冲之后的近场希氏束电信号中检测近场QRS信号;确定从希氏束起搏脉冲到近场QRS信号的时间间期,并将该时间间期与时间间期阈值进行比较。响应于时间间期小于时间间期阈值,控制电路可以确定远场心脏电信号的特征,将远场心脏电信号特征与非选择性希氏束夺获阈值进行比较,并响应于至少远场心脏电信号特征小于非选择性希氏束夺获阈值而将心脏夺获的类型确定为非选择性希氏束夺获,该非选择性希氏束夺获包括对希氏束和心室心肌两者的夺获。控制电路可响应于至少远场心脏电信号特征大于非选择性希氏束夺获阈值,而将心脏夺获的类型确定为仅心室心肌夺获。
在另一示例中,本公开提供了一种由IMD执行的方法,该方法包括:由植入式医疗设备的感测电路经由第一感测电极向量接收近场希氏束电信号,由感测电路经由与第一感测电极向量不同的第二感测电极向量接收远场心脏电信号,并生成经由希氏起搏电极向量递送到患者心脏的希氏束起搏脉冲。该方法进一步包括:确定由治疗递送电路递送的希氏束起搏脉冲诱发的心脏夺获的类型。确定心脏夺获的类型可以包括:从希氏束起搏脉冲之后的近场希氏束电信号中检测近场QRS信号,确定从希氏束起搏脉冲到近场QRS信号的时间间期,并将该时间间期与时间间期阈值进行比较。响应于时间间期小于时间间期阈值,该方法可以包括:确定远场心脏电信号的特征,将远场心脏电信号特征与非选择性希氏束夺获阈值进行比较。该方法可以进一步包括:响应于至少远场心脏电信号特征小于非选择性希氏束夺获阈值而将心脏夺获的类型确定为非选择性希氏束夺获,该非选择性希氏束夺获包括对患者心脏的希氏束和心室心肌两者的夺获;以及响应于至少远场心脏电信号特征大于非选择性希氏束夺获阈值,而将心脏夺获的类型确定为仅心室心肌夺获。
在又另一示例中,本公开提供了一种包括一组指令的非瞬态计算机可读存储介质,该一组指令在由IMD的控制器执行时使IMD执行以下操作:经由第一感测电极向量接收由患者心脏产生的近场希氏束电信号,经由与第一感测电极向量不同的第二感测电极向量接收由患者心脏产生的远场心脏电信号,生成经由希氏起搏电极向量递送到患者心脏的希氏束起搏脉冲,并确定由递送的希氏束起搏脉冲诱发的心脏夺获的类型。心脏夺获的类型可以通过以下操作来确定:从在希氏束起搏脉冲之后的近场希氏束信号中检测近场QRS信号,确定从希氏束起搏脉冲到近场QRS信号的时间间期,将该时间间期与时间间期阈值进行比较,响应于时间间期小于时间间期阈值而确定远场心脏电信号的特征并将远场心脏电信号特征与非选择性希氏束夺获阈值进行比较。确定心脏夺获的类型可进一步包括:响应于至少远场心脏电信号特征小于非选择性希氏束夺获阈值而将心脏夺获的类型确定为非选择性希氏束夺获,该非选择性希氏束夺获包括对希氏束和心室心肌两者的夺获;以及响应于至少远场心脏电信号特征大于非选择性希氏束夺获阈值,而将心脏夺获的类型确定为心室心肌夺获。
在下面的所附附图和说明书中阐述了本公开的一个或多个方面的细节。本公开中描述的技术的其他特征、目的以及优点将从描述、附图以及权利要求书中显而易见。
附图说明
图1是能够在患者心脏中起搏和感测的IMD系统的概念图。
图2是位于右心房内用于提供心室起搏的无引线心内起搏器的概念图。
图3是可以被封围在被配置成执行希氏束起搏和夺获检测的IMD内的电路系统的示意图。
图4是表示不同类型的响应于希氏束起搏脉冲的心脏夺获的诱发响应信号的图。
图5是用于确定希氏束起搏脉冲之后的心脏夺获的类型的方法的流程图。
图6是根据另一示例的由IMD执行的用于区分希氏束起搏脉冲之后的不同类型的夺获、失夺获和其他事件的方法的流程图。
图7是根据一个示例的用于执行用于希氏束起搏的夺获阈值测试的流程图。
图8是用于基于希氏束夺获阈值测试结果确定IMD电池寿命和推荐的起搏参数的方法的流程图。
图9是根据一个示例的用于在希氏束起搏期间进行夺获监测的方法的流程图。
图10是根据另一示例的用于执行用于希氏束起搏的夺获阈值测试的方法的流程图。
具体实施方式
本文描述了一种能够递送希氏束起搏并检测和监测希氏束的夺获的IMD。心脏腔室由起搏脉冲“夺获”,该起搏脉冲具有足够的电能以引起心脏组织的去极化,从而引起电“诱发响应”以及随后的心脏腔室的机械收缩。为了有效地夺获并起搏心脏以实现期望的治疗效果,心脏起搏脉冲需要具有等于或大于在起搏部位处的心脏组织的夺获阈值的脉冲能量。可以执行起搏夺获阈值测试,以确定夺获心脏腔室的针对给定起搏脉冲宽度的最小起搏脉冲振幅(反之亦然)。夺获阈值的确定使得能够对起搏脉冲振幅和脉冲宽度进行适当编程,以促进有效起搏并避免失夺获。由起搏器进行的夺获监测允许当检测到失夺获时将起搏脉冲振幅和/或宽度自动调整为超阈值(suprathreshold value)。
当通过位于心脏中的电极递送起搏脉冲来起搏希氏束时,仅夺获希氏束组织、夺获希氏束和周围的心室心肌两者、或者夺获周围的心室心肌而未夺获希氏束是可能的。仅夺获希氏束在本文中被称为“选择性”希氏束(SHB)夺获。对希氏束和周围的心室心肌组织的夺获在本文中被称为“非选择性”希氏束(NSHB)夺获。夺获周围的心室心肌而未夺获希氏束被称为心室心肌(VM)夺获。在某些情况下,对仅右束支的夺获可能响应于预期的希氏束起搏脉冲而发生,心房夺获可能发生而不是希氏束或心室心肌夺获,或者在同时发生起搏脉冲夺获和固有去极化时可发生融合。对响应于预期的希氏束起搏脉冲而正在发生哪种夺获的类型的确定,以及对希氏束夺获阈值的确定允许提供对希氏束的选择性或非选择性起搏,以便实现沿自然心室传导系统的起搏。
图1是能够在患者心脏8中起搏和感测的IMD系统10的概念图。IMD系统10包括IMD14,该IMD 14经由经静脉电引线16、17和18耦合到患者的心脏8。IMD 14被示为能够在右心房(RA)和右心室(RV)中递送心脏起搏脉冲并感测心脏电信号的双腔室设备。壳体15封围与以下结合图3描述的各种电路和组件相对应的内部电路系统,用于使用本文公开的技术感测来自心脏8的心脏信号、检测心律失常、控制治疗递送、以及监测希氏束夺获。
IMD 14包括连接器块12,该连接器块12可以被配置成接收RA引线16、RV引线17和希氏引线18的近端,所述RA引线16、RV引线17和希氏引线18b被经静脉地推进以用于定位用于在RA和RV中感测和刺激的电极。RA引线16被定位成使得其远端在右心房和上腔静脉附近。RA引线16配备有起搏和感测电极20和22,被示出为尖端电极20以及在近侧与尖端电极20间隔开的环形电极22。电极20和22在右心房中提供感测和起搏,并且各自被连接至在RA引线16的细长主体内延伸的相应绝缘导体。每个绝缘导体在其近端处被耦合至由近侧引线连接器40所携载的连接器。
希氏引线18在右心房中被推进以定位电极32和34,以用于在希氏束附近起搏和感测。希氏引线尖端电极32可以是螺旋形电极,该螺旋形电极被推进到房间隔的下端,在AV结之下并且在三尖瓣环附近,以将尖端电极32定位在希氏束中或希氏束附近。在近侧与尖端电极32间隔开的环形电极34可以用作返回电极,与阴极尖端电极32一起以用于经由从希氏束延伸的自然心室传导系统对右心室和左心室进行起搏。可由IMD 14从心脏电信号产生心内电描记图(EGM)信号,该心脏电信号是使用希氏引线18的尖端电极32和环形电极34获得的,并由IMD 14中所包括的感测电路系统接收的。如下所述,从经由希氏引线18接收的心脏电信号产生的EGM信号可用于检测希氏束的夺获以及区分SHB夺获、NSHB夺获、VM夺获和失夺获。电极32和34分别被耦合到在希氏引线18的细长主体内延伸的相应绝缘导体,该绝缘导体提供到被耦合到连接器块12的近侧引线连接器44的电连接。
在一些示例中,IMD 14可以可选地耦合至RV引线17,以用于将电极定位在RV内以用于感测RV心脏信号并在RV中递送起搏或电击脉冲。出于这些目的,RV引线17配备有被示出为尖端电极28和环形电极30的起搏和感测电极。RV引线17被进一步示为携载除颤电极24和26,除颤电极24和26可以是用于递送高电压CV/DF脉冲的细长线圈电极。除颤电极24可被称为“RV除颤电极”或“RV线圈电极”,因为除颤电极24可沿RV引线17被携载,使得当远侧起搏和感测电极28和30被定位用于在右心室中进行起搏和感测时,除颤电极24基本上位于右心室内。除颤电极26可以被称为“上腔静脉(SVC)除颤电极”或“SVC线圈电极”,因为除颤电极26可以沿着RV引线17被携载,使得当RV引线17的远端在右心室内被推进时,除颤电极26至少部分沿着SVC定位。
电极24、26、28和30中的每一个被连接到在RV引线17的主体内延伸的相应绝缘导体。绝缘导体的近端被耦合到由近侧引线连接器42(例如,DF-4连接器)携载的对应连接器,以用于提供到IMD 14的电连接。在其他示例中,RV引线17可以携载RV线圈电极24和SVC线圈电极26,以提供高电压治疗,而无需携载任何起搏和感测电极28和30。在CV/DF电击递送期间,壳体15可以结合RV线圈电极24或SVC线圈电极26用作有效(active)电极。在一些示例中,壳体15可以用作用于单极感测或起搏配置(其中电极中的任一个电极由引线16、17和18携载)的返回电极。
应当理解,尽管IMD 14在图1中被示为能够递送低电压心脏起搏治疗以及高电压心脏复律和除颤(CV/DF)电击两者的植入式心脏复律除颤器,但是,IMD 14可以被配置为在其他示例中仅被耦合到RA引线16和希氏引线18的双腔室起搏器,而不具有CV/DF电击递送能力并且无需被耦合到第三引线,诸如RV引线17。在又其他示例中,IMD 14可以是仅被耦合到希氏引线18的单腔室设备,以用于将起搏脉冲递送至心室,以用于至少维持最小心室率。
外部设备50被示出为通过通信链路60与IMD 14遥测通信。外部设备50可以包括处理器52、存储器53、显示单元54、用户接口56和遥测单元58。处理器52控制外部设备操作并处理从IMD 14接收的数据和信号。显示器54,其可以包括图形用户界面,向用户显示数据和其他信息,以用于查看IMD操作和编程参数以及从IMD 14检取的心脏电信号。经由通信链路60从IMD 14获得的数据可以显示在显示单元54上。例如,临床医生可以查看从IMD 14接收到的心脏电信号和/或希氏夺获阈值测试和监测的结果或从中导出的数据。
用户接口56可以包括鼠标、触摸屏、键盘等,以使用户能够与外部设备50交互以发起与IMD 14的遥测会话,以用于从IMD 14检取数据和/或向IMD 14传输数据,包括用于如本文所描述的控制希氏夺获确定的可编程参数。遥测单元58包括收发器和天线,该收发器和天线被配置为与IMD 14中所包括的遥测电路进行双向通信,并且遥测单元58被配置为结合处理器52进行操作,以用于经由通信链路60发送和接收与IMD功能有关的数据,该数据可以包括与希氏束和心室夺获管理有关的数据,诸如,针对SHB夺获、NSHB夺获和VM夺获而确定的夺获阈值。
可以使用诸如Wi-Fi、或医疗植入通信服务(MICS)之类的无线射频(RF)链路或其他RF或通信频率带宽或通信协议在IMD 14与外部设备50之间建立通信链路60。IMD 14存储或获取的数据(包括生理信号或从其中导出的相关联数据、设备诊断的结果、以及检测到的节律发作和递送的治疗的历史)可以在询问命令之后由外部设备50从IMD 14中检取。
外部设备50可被实现为在医院、诊所或医师的办公室中使用的编程器,以从IMD14检取数据并在IMD 14中编程操作参数与算法以用于控制IMD功能。外部设备50可以替代地被实现为家用监测器或手持式设备。外部设备50可以用于编程由IMD 14使用的心脏信号感测参数、心律检测参数和治疗控制参数。可以使用外部设备50将用于根据本文公开的技术检测SHB夺获、NSHB夺获和VM夺获的阈值或其他参数编程到IMD 14中。
图2是定位在RA内以用于经由希氏束提供心室起搏的无引线心内起搏器100的概念图起搏器100可包括延伸远离起搏器壳体105的远端112的远侧尖端电极102。心内起搏器100被示出为植入患者的心脏8的RA中,以放置远侧尖端电极102,以用于将起搏脉冲递送到希氏束。例如,远侧尖端电极102可以被插入到房间隔的下端中,在AV结之下并且在三尖瓣环附近,以将尖端电极102定位在希氏束中、沿着希氏束定位或定位在希氏束附近。远侧尖端电极102可以是螺旋形电极,其提供固定以将起搏器100锚定在植入位置处。在其他示例中,起搏器100可包括固定构件,该固定构件包括将起搏器100的远端锚定在植入部位处的一个或多个尖齿、钩、倒钩、螺旋或其他固定构件(多个)。
远侧尖端电极102的一部分可以被电绝缘,使得仅尖端电极102的最远端(最远离壳体远端112)被暴露以在包括希氏束的一部分的组织部位处提供目标起搏。一个或多个基于壳体的电极104和106可以被携载在起搏器100的壳体的表面上。可以将远侧尖端电极102用作阴极并且将基于壳体的电极104和106中的任一个用作返回阳极来实现希氏束的起搏。
可由起搏器100使用选自电极102、104和106的感测电极对来感测由心脏8产生的心脏电信号。例如,可以使用远侧尖端电极112和远侧基于壳体的电极104来感测近场信号。可以使用电极104和106来感测第二电信号,该第二电信号是相对更远的远场信号。可以分析心脏电信号以用于确定希氏束夺获并在至少SHB夺获、NSHB夺获和VM夺获之间进行区分。
图3是可以被封围在被配置成执行希氏束起搏和夺获检测的IMD内的电路系统的示意图。为了说明起见,图3的框图表示IMD 10,但是应当理解,归因于图3所示的各种电路和组件的用于执行希氏束起搏以及对其他类型的夺获中的SHB夺获、NSHB夺获和VM夺获和/或失夺获的检测和判别的功能可以类似地在图2的心内起搏器100或能够递送希氏起搏脉冲并感测心脏电信号的其他IMD中实现。壳体15在图3中被表示为用于感测和心脏电刺激脉冲递送的电极。被封围在壳体15内的电子电路系统包括软件、固件和硬件,所述软件、固件和硬件可协同监测电心脏信号、确定何时需要起搏治疗、并在需要时根据编程的起搏模式和起搏脉冲控制参数将电起搏脉冲递送到患者的心脏。电子电路系统包括控制电路80、存储器82、治疗递送电路84、感测电路86、遥测电路88和电源98。
电源98根据需要向IMD 10的电路系统提供电力,该电路系统包括组件80、82、84、86和88中的每一个。电源98可以包括一个或多个能量存储设备,诸如一个或多个可再充电或不可再充电的电池。电源98与其他组件80、82、84、86和88中的每一个之间的连接将根据图3的总体框图来理解,但是为了清楚起见未被示出。例如,电源98可以被耦合到被包括在治疗递送电路84中的一个或多个充电电路,以用于提供对被包括在治疗递送电路84中的保持电容器进行充电所需的电力,所述保持电容器在控制电路80的控制下在适当的时间处放电,以用于递送起搏脉冲。电源98还被耦合到感测电路86的组件(诸如,感测放大器、模数转换器、开关电路系统等)、遥测电路88和存储器82,以根据需要向各种电路提供电力。
图3所示的功能框表示IMD 10中所包括的功能,并且可以包括实现能够产生归因于本文的IMD 10(或起搏器100)的功能的模拟和/或数字电路的任何分立和/或集成电子电路组件。各种组件可以包括专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的、专用的、或群组)和存储器、组合逻辑电路、状态机、或提供所描述的功能的其他合适的组件或组件的组合。鉴于本文的公开,在任何现代心脏医疗设备系统的背景下提供软件、硬件和/或固件以用于完成所描述的功能在本领域技术人员的能力范围内。
控制电路80例如经由数据总线与治疗递送电路84以及感测电路86通信,以用于感测心脏电信号以及响应于感知到的心脏事件(例如,P波和R波、或缺少P波或R波)而控制心脏电刺激治疗的递送。可用的电极被电耦合到治疗递送电路84以用于将电刺激脉冲递送到患者的心脏和/或被电耦合到感测电路86以用于感测由心脏产生的心脏电信号,所述心脏电信号包括在不存在刺激脉冲的情况下由心脏产生的固有信号以及由心脏响应于递送的刺激脉冲而产生的诱发响应信号两者。
感测电路86可以包括两个或更多个感测通道,以用于感测来自两个或更多个感测电极向量的心脏电信号。例如,可以使用电极20和22来感测RA信号,可以使用电极28和30来感测RV信号,并且可以使用电极32和34来感测希氏信号。如下所述,希氏束近场信号可以由一个感测通道感知,该感测通道被示出为近场感测通道84,例如使用希氏引线18的电极32和34。远场信号可以由第二感测通道感知,该第二感测通道被示为远场感测通道89。
如本文所使用的,“近场”信号是指从感测电极向量接收的心脏电信号,该感测电极向量包括位于希氏束中或附近、在希氏起搏脉冲递送的部位附近的至少一个电极,使得近场信号也被称为“希氏束近场信号”。希氏束近场信号可能包括或可能不包括希氏束诱发的响应,这取决于是否夺获了希氏束。希氏束近场信号可以包括由SHB夺获引起的诱发响应信号、由NSHB夺获引起的诱发响应信号、或由VM夺获引起的诱发响应信号。
如本文所使用的,“远场”信号指的是从感测电极向量接收的心脏电信号,该感测电极向量比用于感测希氏束近场信号的电极向量相对更远离希氏束和/或在定义远场感测电极向量的两个电极之间具有比定义希氏束近场感测电极向量的两个电极之间的电极间距离更大的电极间距离。远场信号更代表心室的整体激动,如与更代表起搏部位处或起搏部位附近的局部组织激动的近场信号相对。远场信号可以包括与SHB夺获、NSHB夺获或VM夺获相关联的诱发响应信号。当选择性地或非选择性地夺获希氏束时,远场QRS宽度比在未夺获希氏束(而是夺获心室心肌组织)时更窄。
在一些示例中,可以使用由RA引线16携载的电极和IMD壳体15(例如,电极20和壳体15或电极22和壳体15)来感知远场信号。在包括RV引线17的示例中,可以使用与壳体15配对的RV线圈电极24、与壳体15配对的SVC线圈电极26、或与SVC线圈电极26配对的RV线圈电极24来感知远场信号。本文公开的希氏束夺获检测方法包括:从近场信号中检测SHB夺获,以及在未检测到SHB夺获时,从远场信号中区分NSHB夺获和VM夺获。
感测电路86可以包括开关电路系统,以用于选择性地将来自可用电极的近场感测电极对耦合到近场感测通道87,以用于感测近场希氏束信号,并且用于选择性地将远场感测电极对耦合到远场感测通道89,以用于感测相对于递送希氏束起搏脉冲的部位而言是远场的电信号。远场感测电极对可以排除用于递送希氏束起搏脉冲的电极中的至少一个或两个。开关电路系统可以包括开关阵列、开关矩阵、多路复用器、或适合用于选择性地将感测电路86的组件耦合到选定电极的任何其他类型的开关设备。
近场感测通道87和远场感测通道89中的每一个可以包括用于从相应的感测电极对接收心脏电信号的输入滤波器、前置放大器、模数转换器和带通滤波器,用于产生多位数字EGM信号,以供在检测希氏束夺获并在至少SHB夺获、NSHB夺获和VM夺获之间进行区分中使用,并且可以在其他类型的夺获(诸如右束支夺获和融合)之间进行区分。近场和远场EGM信号的特征可以由控制电路80确定,并且在一些示例中,每个感测通道87和89可以包括整流器以产生经整流的信号,控制电路80可以根据该经整流的信号来确定信号特征,以供在确定希氏束夺获中使用。如以下结合图4-6所述,在希氏束起搏脉冲之后的QRS信号可用于基于近场和近场信号中QRS信号的特征来检测希氏束起搏脉冲夺获,并区分不同类型的夺获。在夺获希氏束和/或心室心肌的希氏束起搏脉冲之后的QRS信号在本文中也可以被称为“诱发响应信号”,并且包括可以由感测电路86感知到的诱发响应R波。
感测电路86可以包括心脏事件检测电路系统,该心脏事件检测电路系统可以包括一个或多个感测放大器、滤波器、整流器、阈值检测器、比较器、模数转换器(ADC)、定时器或其他的模拟或数字组件,以用于检测心脏电事件。例如,心房事件检测器可以被包括在感测电路86中,以用于使用由RA引线16携载的电极20和22中的一个或两个来检测伴随固有心房去极化的固有P波。心室事件检测器可以被包括在感测电路86中,以用于使用由希氏引线18携载的电极32和34和/或使用由RV引线17携载的电极24、26、28和/或30来检测伴随固有心室去极化的固有R波。可在控制电路80的控制下例如基于由控制电路80确定的、存储在存储器82中的、和/或由控制电路80和/或感测电路86的硬件、固件、和/或软件控制的计时间期和感测阈值,由感测电路86自动地调整心脏事件感测阈值,诸如,P波感测阈值或R波感测阈值。R波感测阈值例如可被控制在心室后消隐期之后的起始阈值电压处开始,随后根据衰减曲线减小直到达到最小感测阈值。最小R波感测阈值可以设置为相应的近场感测通道84或远场感测通道89中的R波检测电路系统的编程灵敏度。被编程为通常以毫伏为单位的电压电平的灵敏度是最低电压电平,在该最低电压电平以上,心脏事件检测电路系统可以感知到心脏事件(在该示例中为R波)。低灵敏度设置使得感测电路86对检测心脏事件更灵敏,而高灵敏度设置使得感测电路86对检测心脏事件不那么灵敏。
在基于感测阈值越过而检测到心脏电事件时,感测电路86可以产生被传送至控制电路80的感知事件信号。例如,心房事件检测器可以响应于P波感测阈值越过而产生P波感知事件信号。心室事件检测器可以响应于R波感测阈值越过而产生R波感知事件信号。感知事件信号由控制电路80使用以用于设置控制用于安排心脏起搏脉冲的基础时间间期的起搏逸搏间期定时器。控制电路80可以包括用于对房室(AV)起搏间期、VV起搏间期、AA起搏间期等进行倒计时的各种定时器或计数器。感知事件信号可以取决于特定的编程起搏模式而触发或抑制起搏脉冲。例如,从感测电路86接收到的P波感知事件信号可以使控制电路80抑制安排的心房起搏脉冲并且按照编程的AV起搏间期来安排希氏束起搏脉冲。如果AV起搏间期在控制电路80从感测电路86接收到R波感知事件信号之前期满,则控制电路80可以控制治疗递送电路84以在感知P波之后在AV起搏间期处递送希氏起搏脉冲并且以这种方式递送心房同步心室起搏。如果在AV起搏间期期满之前从感测电路86接收到R波感知事件信号,则可以抑制安排的希氏起搏脉冲。AV起搏间期控制起搏的或感知到的心房事件与希氏束起搏脉冲之间的时间间期,以促进AV同步。
治疗递送电路84可包括充电电路系统、一个或多个电荷存储设备(诸如,一个或多个保持电容器)、输出电容器以及开关电路系统,该开关电路系统控制何时对保持电容器(多个)进行充电以及何时跨输出电容器对保持电容器(多个)进行放电以将起搏脉冲递送到被耦合至治疗递送电路84的选定的起搏电极向量。治疗递送电路84可包括一个或多个起搏通道。在IMD 10的示例中,治疗递送电路84可以包括RA起搏通道、希氏起搏通道和RV起搏通道,每个起搏通道包括保持电容器、一个或多个开关以及输出电容器,以用于产生由相应的RA引线16、RV引线17以及希氏引线18递送的起搏脉冲。可以由治疗递送电路84根据从控制电路80接收到的控制信号,将保持电容器充电至编程的起搏电压振幅,并对电容器进行放电达编程的起搏脉冲宽度。例如,被包括在控制电路80中的起搏计时电路可包括由控制电路80的微处理器设置的可编程数字计数器,以用于控制与各种单腔室或双腔起搏模式或抗心动过速起搏序列相关联的基础起搏时间间期。控制电路80的微处理器还可以设置心脏起搏脉冲的振幅、脉冲宽度、极性或其他特性,这些参数可以基于存储在存储器82中的编程值。
在一些示例中,IMD 10可以被配置成检测非窦性心动过速并递送抗心动过速起搏(ATP)。控制电路80可以确定心脏事件时间间期,例如,从感测电路86接收的连续P波感知事件信号之间的PP间期以及从感测电路86接收的连续R波感知事件信号之间的RR间期。可将这些间期与心动过速检测间期相比较以用于检测非窦性心动过速。可基于阈值数量的心动过速检测间期被检测到而在给定心脏腔室中检测到心动过速。响应于检测到房性或室性心动过速,控制电路80可以控制治疗递送电路84递送ATP。
除了用于生成低电压起搏脉冲的低电压治疗电路系统之外,治疗递送电路84还可以包括用于产生高电压电击脉冲的高电压治疗电路系统。响应于检测到房性或室性心动过速或纤颤,控制电路80可以控制治疗递送电路84递送心脏复律/除颤(CV/DF)电击。高电压治疗电路系统可以包括高电压电容器和相关联的充电电路系统,以用于使用线圈电极24和26和/或壳体15来生成和递送CV/DF电击脉冲。
由控制电路80用于感测心脏事件和控制起搏治疗递送的控制参数可以经由遥测电路88被编程到存储器82中。遥测电路88包括收发器和天线,以用于使用射频通信或其他通信协议与外部设备50(图1)进行通信。在控制电路80的控制下,遥测电路88可以从外部设备50接收下行链路遥测并向外部设备50发送上行链路遥测。在一些情况下,遥测电路88可以用于向植入在患者体内的另一医疗设备传输通信信号以及从该另一医疗设备接收通信信号。
图4是心脏电信号的图200,其包括表示SHB夺获(左列)、NSHB夺获(右列)和VM夺获(中心列)的诱发响应信号。在每个示例中,远场心脏电信号202和对应的希氏束近场信号212被示出为在时间上与相应的希氏束起搏脉冲210对齐。
在左列中,导致SHB夺获的希氏束起搏脉冲210产生希氏束近场诱发响应信号214,希氏束近场诱发响应信号214时间延迟220之后发生。希氏束近场诱发响应信号214具有正极性和相对窄的信号宽度。也可以看到,远场诱发响应信号204相对较窄,极性为正,并且在一时间延迟之后发生。在希氏束起搏脉冲210之后直到QRS波群(诱发响应信号214)的时间延迟220是由于去极化要沿着希氏浦肯野传导系统传导所需的时间。
在中间列中,示出了在仅夺获心室心肌组织而未夺获希氏束的希氏束起搏脉冲210之后的远场诱发响应信号206和对应的希氏束近场诱发响应信号216。由于不存在沿希氏浦肯野传导系统的传导,近场诱发响应信号216发生在比SHB夺获期间的诱发响应信号214的时间延迟220相对更短的时间延迟222之后。VM夺获期间的近场诱发响应信号216相对宽并且具有负极性。
在右栏中示出了在NSHB夺获期间的远场诱发响应信号208和希氏束近场诱发响应信号218。在希氏束近场信号212中,VM夺获诱发的响应信号216(中间列)和NSHB诱发的响应信号218基本相似。信号216和218两者在相应的希氏束起搏脉冲210之后较早地发生,它们均为负极性并且具有相似的信号宽度,该信号宽度比SHB诱发的响应信号214相对更宽。因此,可以例如基于直到诱发响应信号214为止的较长的时间延迟220、正极性(至少在某些患者中)、相对窄的信号宽度、相对小的信号波形面积或它们的组合而从希氏束近场信号212中肯定地检测到SHB夺获。NSHB夺获期间的希氏束近场诱发响应信号218和VM夺获期间的近场诱发响应信号216的计时和形态的相似性使这两种夺获难以单独的根据希氏束近场信号212区别开。
然而,NSHB夺获期间的远场诱发响应信号208明显比VM夺获期间的远场诱发响应信号206更窄。如果没有基于较晚的、窄的和/或正极性的近场诱发响应信号214而肯定地检测到SHB夺获,则可以根据远场信号202例如基于远场诱发响应信号宽度、面积和/或QRS波形形态来确定夺获类型,例如VM夺获或NSHB夺获。可以建立或确定针对已知类型的夺获的QRS宽度、面积或波形模板。例如,可以对未知类型的夺获的QRS波形执行小波变换,以产生与已知夺获模板的小波系数相比较的小波系数。可以生成用于SHB夺获、NSHB夺获和/或VM夺获的已知夺获模板。与未知QRS波形的模板比较可用于确定希氏起搏夺获监测期间的夺获类型。希氏束近场和/或远场信号的QRS模板比较可以单独地执行,或与QRS宽度和/或QRS面积与相应阈值的比较相结合地执行,以用于确定通过希氏束起搏脉冲实现的夺获的类型。
图5是可以由IMD 10或心内起搏器100执行的,用于确定在希氏束起搏脉冲之后的心脏夺获的类型的方法的流程图300。在一些示例中,在开始夺获检测之前,控制电路80可以执行建立过程以用于建立在希氏束夺获检测期间使用的控制参数。例如,可以在框301处执行用于建立控制参数的过程,以选择灵敏度设置,以用于从由感测电路86接收的心脏电信号中检测QRS信号和/或用于设置夺获检测窗口持续时间,在该夺获检测窗口持续时间期间可以检测到由递送的希氏束起搏脉冲引起的诱发响应信号。夺获检测窗口是时间窗口,该时间窗口可以在递送希氏束起搏脉冲时开始,并延伸达在框301处建立的夺获检测窗口持续时间。
在一个示例中,控制电路80控制治疗递送电路84递送双腔室起搏,该双腔室起搏包括以超速(overdrive)起搏频率递送的心房起搏脉冲和心房同步希氏束起搏脉冲,每个心房同步希氏束起搏脉冲在每个相应的心房超速起搏脉冲之后的延伸的AV起搏间期处被递送。可以按照大于固有感知的心房率的频率来起搏右心房,例如,使用RA引线16或被包括在起搏器100上的心房起搏电极(如果可用的话)。可以通过确定PP间期来确定固有心房率,每个PP间期被测得为由感测电路86连续感知到的两个固有(非起搏)P波之间的时间间期。例如,心房超速起搏频率可以被设置为比固有频率快10至20个脉冲/分钟。
延伸的AV起搏间期被设置为比用于递送希氏束起搏以促进最佳AV同步的AV起搏间期更长的时间间期。延伸的AV起搏间期可以例如被设置为180至200ms,并且正常的、非延伸的AV起搏间期可能为50至150ms,并且可以针对个体患者进行调整。可以执行心房超速起搏和按照延伸的AV间期被递送的心房同步希氏束起搏脉冲,以建立最大夺获检测窗口,以降低在希氏束起搏期间固有AV传导干扰检测诱发响应R波信号的可能性。
如图4所示,由于沿希氏浦肯野传导系统传导所需的时间,因此在SHB夺获期间,在递送的希氏束起搏脉冲210与后续的诱发响应QRS信号214之间发生时间延迟220。为了从近场信号中检测SHB夺获,可以设置SHB夺获检测时间窗口,在该SHB夺获检测时间窗口期间,检测到的QRS信号被确定为SHB夺获的证据。可以将SHB夺获检测窗口设置为晚于预期的时间延迟220期满。如果SHB夺获检测窗口结束得太早,则在延迟时间220处发生的诱发响应信号214可能会欠感知(undersense),从而在某些情况下导致错误的失夺获检测。
然而,在接收希氏束起搏的某些患者中,可发生固有AV传导,从而导致在固有心房P波或递送的心房起搏脉冲之后,从心房传导R波。将固有或起搏的心房事件传导至心室的时间称为“AV传导时间”。取决于AV传导时间,当希氏束起搏脉冲未能夺获但是发生AV传导时,可能会将由AV传导引起的固有传导的R波错误地感知为指示夺获的诱发响应信号。具体地,由于AV传导时间可能仅比SHB夺获期间的时间延迟220稍长,所以将心房传导的R波感测为诱发响应信号可能导致错误的SHB夺获检测。因此,如果将SHB夺获检测窗口设置得太长,则由于固有的AV传导而可能发生错误的SHB夺获检测。基于错误的SHB夺获检测为SHB起搏而确定的夺获阈值将被低估。如果根据由于错误的SHB夺获检测而低估的夺获阈值设置希氏束起搏脉冲振幅,则希氏束起搏治疗可能无法实现期望的治疗益处。
为了建立促进检测到SHB夺获而不会错误地检测到通过AV结传导的心房事件引起的传导R波的SHB夺获检测窗口,控制电路80可以在心房超速起搏与按照延伸的AV起搏间期的心房同步希氏束起搏期间确定AV传导时间。可以将所递送的心房起搏脉冲与在延伸的AV起搏间期期间发生的后续检测到的QRS信号之间的时间间期确定为AV传导时间。
控制电路80可以将SHB夺获检测窗口设置为小于AV传导时间以避免由于感测到心房传导的心室去极化而导致的错误的夺获检测,但是SHB夺获检测窗口足够长,以便以高可能性涵盖SHB诱发响应信号的时间延迟220。例如,如果发现AV传导时间为160ms,则夺获检测窗口可以被设置为150ms或更小,例如140ms。如果未发生AV传导或AV传导时间长于延伸的AV间期,则在延伸的AV起搏间期期间未检测到QRS信号。在每个超速心房起搏脉冲之后,按照延伸的AV起搏间期递送希氏束起搏脉冲。在这种情况下,可以将夺获检测窗口设置为与延伸的AV间期一样长。
可以在框301处由控制电路80建立的夺获检测控制参数的另一示例可以是感测电路86的R波检测电路系统的灵敏度。如结合图3所描述的,R波检测电路系统的灵敏度是可以被感测电路86检测为QRS信号的心脏电信号的最低电压振幅。在某些情况下,希氏束近场信号中可能存在远场P波。在某些情况下,在希氏束起搏脉冲之后,远场P波的振幅可能会超过灵敏度,从而导致错误的诱发响应QRS信号检测。在框301处,控制电路80可以设置相对低的灵敏度电压设置,以增大感测电路86对远场P波的灵敏度。灵敏度可以被设置为1.0mV或更小、0.5mV或更小、或从可用灵敏度设置中选择的其他相对低的设置,以确定是否发生对远场P波的感测。
在灵敏度设置为相对低的电压的情况下,控制电路80可以控制治疗递送电路84,以如上所述的递送心房超速起搏与按照延伸的AV起搏间期的心房同步希氏束起搏脉冲。在延伸的AV间期期间从近场心脏电信号感知到的QRS信号可能是过感知的远场P波,尤其是如果在延伸的AV间期期间相对较早地感知到该信号。因此,来自近场感测通道87的较早的R波感知事件信号可以指示过感知的P波(由递送的心房起搏脉冲诱发的)。由于远场P波过感知而导致的对希氏束起搏脉冲的错误夺获检测,可能会导致在递送有效的希氏束起搏时不准确的夺获起搏阈值和起搏脉冲振幅选择。
控制电路80可以通过从感测电路86接收R波感知事件信号来检测QRS信号。如果在延伸的AV间期期间控制电路80接收到R波感知事件信号,则控制电路80可以将检测到的QRS信号标识为过感知的远场P波。响应于标识的远场P波,控制电路80控制感测电路86将灵敏度调节至较高的电压设置,以降低R波检测电路系统对远场P波过感测的灵敏度。
控制电路80可以基于R波感知时间信号在延伸的AV起搏间期期间的相对计时,将可能是过感知的远场P波的接收到的R波感知事件信号与可能是心房传导的R波的R波感知事件信号区别开来。例如,在延伸的AV起搏间期的前一半内或在AV起搏间期的前100ms中的R波感知事件信号可能是远场P波。在延伸的AV起搏间期中相对晚(例如,在延伸的AV起搏间期的后一半中或在AV起搏间期的100ms之后)发生的R波感知事件信号很可能是由AV传导引起的R波。可以附加地或替代地基于在时间上与接收到的R波感知事件信号相对应的近场信号峰值振幅,来将过感知的远场P波与传导的R波区分开。在某些情况下,远场P波的振幅可能小于传导R波的振幅。这样,控制电路80可以被配置成确定在延伸的AV起搏间期期间被感知为R波的心脏事件信号的计时和/或振幅,并且将该计时和/或振幅与用于将远场P波与AV传导的R波区别开的标准进行比较。
在一些示例中,控制电路80可以控制感测电路86减小灵敏度设置,直到在延伸的AV起搏间期期间检测到远场P波为止。感测电路86可以将用于感测R波的至少近场感测通道87的灵敏度调整到大于在延伸的AV间期期间由控制电路80标识出远场P波的最高灵敏度设置的电压设置。在其他示例中,控制电路80可以确定被标识为过感知的远场P波的近场信号的心脏事件的峰值电压振幅。控制电路80可以将感测电路86用于从近场心脏电信号中感测到R波的灵敏度设置成为安全裕量的电压,该安全裕量大于远场P波峰值振幅。在又其他示例中,控制电路80可以将灵敏度设置为选定的设置,并确定在AV起搏间期期间是否感知到远场P波。如果在AV起搏间期期间未感知到事件,则预期不会发生对远场P波的过感测。等于或大于所测试的灵敏度设置的灵敏度设置可以用于感测来自近场心脏电信号的R波,以用于通过控制电路80标识诱发的QRS信号,以用于检测希氏束起搏脉冲的夺获。
在一些示例中,控制电路80控制遥测电路88以将近场心脏电信号传输到外部设备50,以用于生成近场心脏电信号和/或标记通道信号的显示,该显示指示感知事件相对于心房和希氏束起搏脉冲以及近场心脏电信号的计时。用户可以基于对所显示的信号的观察并使用外部设备50的用户接口来授权对选定的控制参数的编程,该选定的控制参数例如,用于感测R波的灵敏度和/或夺获检测窗口持续时间。
因此,在框301处建立的用于夺获检测和区别的一个控制参数可以是灵敏度,该灵敏度由近场感测通道87用于感测R波以避免在夺获检测期间对远场P波的过感测。可以在框301的设置过程期间建立的控制参数的另一示例是夺获检测窗口,在该夺获检测窗口期间,感知R波是诱发响应以及由希氏起搏脉冲夺获的指示。
在框302处,控制电路80通过控制治疗递送电路84生成并递送希氏束起搏脉冲来开始夺获检测过程。在图1的IMD 10的示例中,可以使用希氏引线(例如,希氏引线18的电极32和34)来递送希氏束起搏脉冲。可以由心内起搏器例如使用图2的心内起搏器100的电极102和104来递送希氏束起搏脉冲。希氏束起搏脉冲可能会或可能不会通过AV起搏间期与心房事件同步。
在框304处,由感测电路86接收希氏束近场信号和远场心脏电信号。希氏束近场信号可以由用于递送希氏束起搏脉冲的相同电极(例如,尖端电极32和环形电极34(图1))接收。在其他示例中,用于递送希氏束起搏脉冲的至少一个电极被用于感测希氏束近场信号,例如,使用尖端电极32和壳体15。通过使用例如与IMD壳体15配对的尖端电极32,对夺获心室心肌组织的希氏束起搏脉冲的诱发响应将从起搏尖端电极32传导出去,导致在VM夺获和NSHB夺获期间的诱发QRS信号出现负极性的可能性更大。在发生SHB夺获时,诱发QRS信号的极性被预期为正。可以在植入或随访测试的时间处建立在SHB夺获、NSHB夺获和VM夺获期间使用选定的近场感测电极向量感知到的诱发QRS信号的极性,以验证信号的极性是SHB夺获(正极性)与包括心室心肌组织的其他类型的夺获(NSHB和VM夺获)之间的区别特征。
在图1的IMD 10的示例中,远场信号可以被感测电极接收,该感测电极不包括用于递送希氏束起搏脉冲的电极。例如,使用图1的示例,可以使用RA尖端电极20和壳体15、RA环形电极22和壳体15、RV线圈电极24和壳体15、SVC线圈电极26和壳体15、RV尖端电极28和壳体15、或RV环形电极30和壳体15来接收远场信号。在其他示例中,RA尖端电极20、RA环形电极22、RV尖端电极28或RV环形电极30可以与RV线圈电极24或SVC线圈电极26中的任一个组合使用,以获得远场心脏电信号。在图2的心内起搏器100的示例中,可以使用基于壳体的电极104和106来接收远场心脏电信号。
在框306处,控制电路80在近场信号中检测在递送的希氏束起搏脉冲之后的QRS信号。在一些示例中,由感测电路86基于近场信号的阈值越过而检测到近场QRS信号。QRS检测信号可以从近场感测通道87被传递到控制电路80。在其他示例中,控制电路80可以从感测电路86接收数字近场信号,并且基于阈值越过、转换(slew)速率或近场诱发响应信号的其他特征来确定QRS信号的时间。
在框308处,控制电路80可以将近场QRS信号与SHB夺获标准进行比较。控制电路80可以在框308处响应于从所递送的希氏束起搏脉冲到检测到的近场QRS信号的时间的时间间期大于SHB时间间期阈值但小于失夺获时间间期阈值,而确定近场QRS信号满足SHB夺获标准。例如,从希氏束起搏脉冲到检测到近场QRS信号的时间的时间间期220可以由控制电路80确定,并且与时间间期阈值相比较。在各种示例中,SHB时间间期阈值可以被设置为至少30ms、至少40ms或至少50ms,并且可以是可编程的以适合个体患者。早于SHB时间间期阈值检测到的QRS信号是夺获心肌细胞的指示,并且可能是NSHB夺获或VM夺获。
在一些实例中,希氏束起搏脉冲可能未能夺获希氏束和心室心肌组织两者,从而导致在希氏起搏脉冲之后无心室诱发响应。然而,如果AV传导完好无损,则由于传导性心房搏动(固有的或起搏的),QRS信号仍然可能发生。心房去极化可传导至心室,但可发生在未能夺获心室的希氏束起搏脉冲之后的加长延迟处。这样,在框308处应用的近场SHB夺获标准可以要求在SHB时间间期阈值之后但不晚于失夺获时间间期阈值的时间间期范围内检测到QRS信号。时间间期范围的结束时间可以由在框301处建立的夺获检测窗口来限定。夺获检测窗口可以限定在希氏束起搏脉冲之后的失夺获时间间期阈值。当在夺获检测窗口期满之前未感知到QRS信号时,可能检测到心室失夺获。
在框308处应用于近场QRS信号的SHB夺获标准可以要求:近场QRS信号是在SHB时间间期阈值之后(并且在失夺获时间间期阈值之前)被检测到的,是正极性信号,具有小于阈值宽度的信号宽度,具有小于阈值面积的信号面积,或它们的组合。如果在框308处近场QRS信号满足SHB夺获标准,则控制电路80在框310处检测到SHB夺获。
响应于在框308处近场QRS信号不满足SHB夺获标准,例如,QRS信号早于SHB阈值时间间期发生、具有负极性、大于阈值宽度的信号宽度、和/或大于阈值面积的信号面积,而未检测到SHB夺获。该过程前进到框311。如果在失夺获时间间期阈值之后检测到近场(NF)QRS信号,则控制电路80可以在框322处检测到心室失夺获。递送的希氏束起搏脉冲可能无法夺获希氏束和心室心肌组织两者,但是可以夺获心房组织从而导致心房去极化。如果AV传导完好无损,则心房去极化可被传导到心室,并且可以从希氏束近场信号中检测到所得的QRS信号。然而,QRS信号以加长的延迟(例如,对应于AV传导时间)发生,并且是希氏起搏脉冲对心室失夺获的证据。这样,可以在框322处检测到心室失夺获。
在一些示例中,响应于在框322处检测到心室失夺获,在框324处可以将从希氏束起搏脉冲到检测到的QRS信号的时间与预期的AV传导时间进行比较。如果在失夺获时间间期阈值之后并且在心房去极化经由AV结传导至心室所需的近似的或预期的AV传导时间的预定范围内检测到QRS信号,则可怀疑是心房夺获。可以在框326处确定心房夺获。如果在希氏束起搏脉冲之后的不在预期的AV传导时间的范围内的时间间期处检测到QRS信号,则固有心房搏动或由心房起搏脉冲(例如,由图1的RA电极20和22递送的)引起的诱发心房去极化可能已传导到心室。在框328处,可以将检测到的QRS信号确定为传导的心房搏动。
如果在框326处确定了心房夺获,则在框330处可以由控制电路80提供心房夺获响应。该响应可以包括:通过将事件存储在存储器82中并将心房夺获的报告传输到外部设备50来报告心房夺获,向患者和/或临床医生生成警告或警报以通知临床医生心房夺获正在发生并且需要随访,和/或调整希氏束起搏脉冲控制参数或切换到经由不同的起搏电极向量的心室起搏,例如使用由RV引线17(如果存在的话)携载的电极。在某些情况下,调整起搏脉冲振幅、起搏脉冲宽度、AV起搏间期、或其他希氏束起搏控制参数可排除心房夺获并实现希氏束和/或VM夺获。
尽管未在图5中明确示出,但是应理解,如果在VV起搏间期期满之前在框306处未检测到QRS信号,则可以例如以增大的起搏脉冲能量来递送备用希氏束起搏脉冲。控制电路80可以设置VV起搏间期以提供备用的心室起搏,以防止例如在具有完全AV阻滞的患者中的心室心搏停止。在图1的示例中,可以由RV引线17携载的电极提供备用的心室起搏脉冲。
如果不满足SHB夺获标准,并且检测到的QRS信号不晚于失夺获时间间期阈值(框311的“否”分支),则控制电路80可以在框312处分析远场QRS信号以确定QRS信号是否对应于不同类型的夺获。控制电路80可以从远场感测通道89接收数字化远场信号,并确定远场QRS信号的一个或多个特征。将远场QRS信号的一个或多个特征与用于在NSHB夺获和VM夺获之间进行区分的标准进行比较。例如,可以在框312处确定远场QRS信号宽度和/或QRS信号面积。VM夺获期间的诱发响应信号和NSHB夺获期间的诱发响应信号两者可在希氏束起搏脉冲之后相对早地发生,并且在近场和远场信号这两者中具有相同的极性。然而,在远场信号中,与VM夺获诱发响应信号相比,预期NSHB夺获诱发响应信号具有更窄的信号宽度和/或更小的信号面积。
因此,在框316处,将一个或多个远场QRS信号特征与NSHB夺获标准相比较。远场QRS信号宽度可以被确定并且与NSHB宽度阈值相比较和/或远场QRS信号面积可以被确定并且与NSHB面积阈值相比较。如果远场QRS信号宽度和远场QRS信号面积中的一者或两者小于相应的宽度或面积阈值,则在框320处检测到NSHB夺获。如果远场QRS信号特征(多个)不满足在框316处应用的NSHB夺获标准,则在框318处检测到VM夺获。
在确定夺获的类型或确定失夺获(例如,在框310、318、320、322、326或328中的一个处)之后,控制电路80可以返回到框302以继续监测希氏束近场电信号和远场心脏电信号,以用于在逐个搏动的基础上或更不频繁的基础上提供夺获监测。在其他示例中,可以在希氏束夺获阈值测试期间执行图5的过程。以下结合图7-10描述图5的夺获确定方法的应用的各种示例。
图6是根据另一示例的由IMD执行的用于在不同类型的夺获之间进行区分的方法的流程图350。在一些情况下,可以满足在图5的框308处应用的SHB夺获标准中的一些SHB夺获标准但不是全部SHB夺获标准。例如,QRS信号可具有正极性,但早于SHB时间间期阈值发生。在其他情况下,QRS信号可以在SHB时间间期阈值之后被检测到,但是具有负极性。在这种情况下,SHB夺获未被确定,但是用于检测NSHB夺获标准的标准(例如,SHB时间间期阈值之前的负极性QRS信号和窄的远场QRS信号宽度)或VM夺获标准(例如,在SHB时间间期阈值之前发生的负极性QRS信号以及宽的远场QRS信号宽度)可能也不被满足,因为SHB夺获标准中的一些SHB夺获标准但不是全部SHB夺获标准被满足。在这些情况下,QRS信号可对应于融合搏动、室性早搏(PVC)、或束支(例如,右束支(RBB))的选择性夺获而未夺获左束支(LBB)。
在图6的示例中,可以将附加标准应用于近场QRS信号和/或远场QRS信号,以在其他类型的夺获之间进行区分或检测其他类型的事件。图6中相同编号的框对应于图5中所示并且以上所述的相同编号的框。如果在框308处不满足SHB夺获标准并且近场QRS信号不在失夺获时间间期阈值之后(框311的“否”分支),则如以上所描述的在框312处从远场信号中确定QRS信号特征(多个)。
判定框352、360和364考虑了满足SHB标准之一但不是全部SHB标准的情况。例如,如果近场QRS信号具有正极性,但是在希氏束起搏脉冲之后较早地发生而不是在SHB时间间期阈值之后发生(框352的“是”分支),则QRS信号可以表示融合搏动或PVC。在框354处,可以通过比较远场QRS信号宽度和/或面积来区分融合搏动和PVC。如果确定的远场QRS信号宽度或面积大于相应的宽度或面积阈值,则在框358处将较早的正极性QRS信号检测为PVC。如果较早的正极性QRS信号的信号宽度和/或面积小于相应的宽度或面积阈值,则在框356处检测到融合搏动。
在框360处,控制电路80可以考虑近场QRS信号为较晚(在SHB时间间期阈值之后但是在失夺获时间间期阈值之前)的情况,这表明SHB夺获,但是具有负极性而不是在SHB夺获已发生的情况下的预期的正极性。如果近场QRS信号在SHB时间间期阈值之后但是具有负极性,则在框362处可以确定该搏动是未知搏动。
如果近场QRS信号被检测为较晚(在SHB时间间期阈值之后但在失夺获时间间期阈值之前),并且具有正极性,但不满足用于在框308处检测SHB夺获的QRS信号宽度和/或面积标准(框364的“是”分支),择可在框366处检测到右束支夺获(RBB夺获)。在这种情况下,宽的QRS信号与SHB夺获不一致,但较晚发生的正QRS信号表明心室传导系统被希氏起搏脉冲夺获。RBB的夺获导致较晚的、正极性QRS和宽QRS信号(或大的QRS面积)是从右心室到左心室的传导的证据,所述从右心室到左心室的传导比希氏束被夺获并且去极化传导到右束支和左束支两者的情况花费更长时间。
如果检测到的近场QRS信号既是较早的(在SHB时间间期阈值之前),又是负极性的,则在框312确定的远场QRS信号特征(多个)(例如,信号宽度和/或面积)可在框316处与用于在NSHB夺获和VM夺获之间进行区分的阈值进行比较,如以上结合图5所描述的。
图5和图6的用于检测希氏束起搏脉冲之后的QRS信号以及在至少SHB夺获、NSHB夺获、VM夺获和失夺获之间进行区分(其可包括确定心房夺获)的技术可在起搏夺获阈值测试期间使用、在夺获监测期间使用、在希氏束起搏期间使用、和/或在IMD植入进程期间使用以用于验证可接受的电极放置。QRS信号之后的夺获类型的确定使得能够对起搏脉冲参数进行选择,以用于实现期望的夺获类型,如下文进一步描述的。
图5和图6示出了可被应用以用于从近场希氏束电信号和远场电信号检测不同类型的心脏夺获、失夺获或其他事件的标准的特定示例。在表I中,显示了示例真值表,其中列出了近场(NF)QRS信号和远场(FF)QRS宽度的示例特性,其可用于定义用于通过分析希氏束近场信号和远场心脏电信号来检测希氏束起搏脉冲之后的各种夺获类型和其他事件的标准。基于这些标准,可以开发各种算法以用于检测和区分在希氏束起搏脉冲之后可能发生的不同类型的夺获和其他事件。表I中列出的“较早”和“较晚”NF QRS时间可以被分别定义为在SHB时间间期阈值之前或之后。“非常晚”的NF QRS时间可以是在失夺获时间间期阈值之后感知到的QRS信号。如表I中所列的“窄”和“宽”FF QRS宽度可以被分别定义为小于或大于QRS宽度阈值。表I中所列的实际标准可在特定IMD系统之间和在患者之间变化,例如取决于IMD和电极位置以及其他因素。基于真值表标准的算法可以包括:评估希氏束近场信号的特征以检测SHB夺获,然后,如果未检测到SHB夺获,则评估远场信号的一个或多个特征以用于确定夺获类型。
事件 | NF QRS时间 | NF QRS极性 | FF QRS宽度 |
NSHB夺获 | 较早 | 负 | 窄 |
SHB夺获 | 较晚 | 正 | 窄 |
融合搏动 | 较早 | 正 | 窄 |
PVC | 较早 | 正 | 宽 |
未知 | 较晚 | 负 | 窄或宽 |
VM夺获 | 较早 | 负 | 宽 |
RBB夺获 | 较晚 | 正 | 宽 |
LOV夺获 | 非常晚 | 任一个 | 任一个 |
表I.示例“真值”表,用于建立用于基于近场(NF)QRS时间(来自所递送的希氏束起搏脉冲)、近场QRS信号极性和远场QRS信号宽度来确定夺获类型并检测心室失夺获(LOV)和其他事件的标准。
图7是根据一个示例的用于执行希氏束起搏的阈值测试的流程图400。在框402处,通过使用选定的希氏束起搏电极向量按照测试振幅和测试脉冲宽度来递送希氏束起搏脉冲,来开始夺获阈值测试。起始起搏脉冲振幅可以(不具有限制目的)高至5.0伏,并且起始脉冲宽度可以为0.4ms或高达1ms。在框404处,确定夺获。可以用相对高的起搏脉冲能量开始夺获阈值测试,使得心室夺获被预期。应当理解,如结合图5所描述的,如果检测到心室失夺获,则可以将脉冲能量增加到更高的起始测试脉冲能量。
在图7所示的示例中,假设心室夺获响应于起始测试脉冲而发生,心室夺获被示为被确定为SHB夺获(框422)、NSHB夺获(框406)或VM夺获(框430)中的一个。然而,已经认识到,在其他示例中,可以在框404处应用用于检测其他类型的夺获或事件(例如,融合搏动、PVC、RBB夺获、或未知信号)的附加标准。如果在框404处检测到融合搏动、PVC或未知信号,则可能地按照不同的起搏间期重复起始测试脉冲的递送,以避免融合并促进希氏束和/或心室心肌的夺获。
可以在框404处通过根据以上结合图5描述的技术来分析希氏束近场信号和远场心脏电信号两者来确定夺获。在其他示例中,控制电路80可以最初地分析远场心脏电信号以确定是否检测到NSHB夺获。例如,可以基于在SHB时间间期阈值之前发生并且具有小于宽度阈值的QRS信号宽度和/或小于面积阈值的信号面积的远场信号诱发响应信号,而检测到NSHB夺获。可以通过分析希氏束近场信号以验证不满足SHB夺获检测标准,来进一步确认NSHB夺获。
如果如在判定框406处确定的检测到NSHB夺获,则控制电路80可以被配置成以逐步的方式自动减小希氏束起搏脉冲能量,以确定希氏束夺获阈值和VM夺获阈值。在某些患者中,希氏束夺获阈值可能大于VM夺获阈值,并且在其他患者中,VM夺获阈值可能大于希氏束夺获阈值。在给定患者中,希氏束夺获阈值和VM夺获阈值可例如由于起搏电极向量的组织封装的变化和/或电极位置的偏移,而随时间变化。这样,在给定患者中,在一个时间处,希氏束夺获阈值可能高于VM夺获阈值,并且在另一时间处,VM夺获阈值可能高于希氏束夺获阈值。因此,可以执行图7的阈值测试以确定两个分开的希氏束夺获阈值和VM夺获阈值。希氏束夺获阈值和VM夺获阈值中较高的一个也是NSHB夺获阈值,因为希氏束和心室心肌组织两者均以较高的夺获阈值被夺获。
在框408处,例如通过将脉冲振幅减小1.0伏、0.5伏、0.25伏或其他预定的减量(decrement)来减小脉冲能量。在其他示例中,在框408处,起搏脉冲振幅可以保持恒定,并且起搏脉冲宽度可以减小一个步长减量。为了说明起见,结合图7描述的阈值测试是通过减小起搏脉冲振幅同时保持起搏脉冲宽度恒定来执行的。然而,认识到,阈值测试可以通过将脉冲宽度减小给定的固定脉冲振幅来被执行,或者可以使用脉冲振幅减量和脉冲宽度减量的组合。此外,虽然阈值测试被描述为以逐步方式减小的高脉冲振幅开始,但是可以认识到,可以通过以低脉冲振幅开始并增大脉冲振幅直到不同类型夺获各自被标识来执行阈值测试,或者二进制或其他搜索算法可以用于调整希氏束起搏脉冲能量以确定希氏束夺获阈值和VM夺获阈值中的每一个。
在起搏脉冲振幅的第一次减小之后,控制电路80在框410处确定NSHB夺获是否仍发生。如果在框410处检测到NSHB,则例如通过减小脉冲振幅来继续减小起搏脉冲能量,直到不再检测到NSHB夺获为止。如果不再检测到NSHB夺获,则在框411处将NSHB夺获阈值确定为检测到NSHB夺获的最低的、在前的起搏脉冲振幅。失去NSHB夺获的在当前测试振幅和脉冲宽度处的希氏束起搏脉冲可能仅夺获希氏束(SHB夺获)或仅夺获心室心肌组织(VM夺获),但不再夺获两者。
在框412处,控制电路80分析希氏束近场信号和/或远场心脏电信号以在不再检测到NSHB夺获之后确定是否满足用于检测SHB夺获的标准或是否满足用于检测VM夺获的标准。控制电路80可在框410处监测希氏束近场信号,并响应于检测到晚于SHB时间间期阈值和/或从负极性信号切换到正极性信号的近场诱发响应信号,而确定不再发生NSHB夺获。基于指示SHB夺获的较晚的近场诱发响应信号和/或正极性诱发响应信号,在框410处不再检测到NSHB夺获,并且在框414处检测到SHB夺获(框412的“否”分支)。在框411处确定的NSHB夺获阈值也在框416处被报告为VM夺获阈值,因为当失去NSHB夺获时失去VM夺获,仅留下SHB夺获。
然而,如果在框412处基于对近场信号的分析未确定从NSHB夺获到SHB夺获的转换,则控制电路80可以分析远场信号,以检测由于希氏束失夺获而导致的NSHB失夺获,从而导致VM夺获。在另一示例中,因为NSHB夺获最初是在框406处被确定的,所以控制电路80可以在框410处以希氏束起搏脉冲振幅的每一步减小来仅监测远场心脏电信号,以基于远场诱发响应信号的变化来检测NSHB失夺获。例如,如果远场诱发响应信号在希氏束起搏脉冲之后的时间上变得较晚或信号宽度和/或面积增大,则控制电路80可以在框410处确定不再发生NSHB夺获。如果在希氏束起搏脉冲之后仍较早地发生远场诱发响应信号,但是该远场诱发响应信号更宽和/或面积增大,则在框410处未检测到NSHB夺获,并且在框412处检测到VM夺获。
为了在框412处肯定地检测到VM夺获,控制电路80可以将远场诱发响应信号宽度和/或面积与被设置为预定值的相应宽度和面积阈值进行比较,以将VM夺获与NSHB夺获区分开。如果在框410处远场诱发响应信号在时间上较晚,则在相应的框410和412处均未检测到NSHB夺获或VM夺获。控制电路80可以在框414处执行对近场信号的附加分析,以基于与近场诱发响应信号的计时、极性、宽度和/或面积有关的标准来肯定地检测SHB夺获。
如果在框410处失去NSHB夺获之后在框412处检测到VM夺获,则失去了对希氏束的夺获。因此,在框410处导致NSHB夺获的最新希氏束起搏脉冲振幅和宽度是希氏束夺获阈值。在框428处,控制电路80可以通过将希氏束夺获阈值存储在存储器82中和/或经由遥测电路88传输希氏束夺获阈值以供在外部设备50上显示,来报告希氏束夺获阈值。
控制电路80可以前进到框432以控制治疗递送电路84减小希氏束起搏脉冲振幅,直到在框434处失去VM夺获为止。仍在框434处检测到VM夺获的针对固定起搏脉冲宽度的最低起搏脉冲振幅在框436处被报告为VM夺获阈值。
在这种情况下,被设置为大于或等于希氏束夺获阈值的值的起搏脉冲振幅导致NSHB起搏。小于希氏束夺获阈值的起搏脉冲振幅导致心室心肌起搏。在不重新定位选定的起搏电极向量的情况下,可能无法实现SHB夺获,因为VM夺获阈值小于希氏束夺获阈值。在希氏束夺获阈值大于VM夺获阈值的这种情况下,希氏束夺获阈值等于NSHB夺获阈值。如果希氏束夺获阈值没有不可接受地高,则可期望NSHB起搏优于心室心肌起搏,以沿自然传导路径提供传导。此外,在NSHB起搏期间,即使失去了希氏束夺获,仍可以实现VM夺获,以确保患者不会经历心室心搏停止。
如果在框410处失去NSHB夺获之后未检测到VM夺获,则在框414处检测到SHB夺获。在这种情况下,随着起搏脉冲振幅的减小,首先失去了对心室心肌组织的夺获。可以在框416处将VM夺获阈值报告为仍检测到NSHB夺获的最低脉冲振幅,例如通过将VM夺获阈值存储在存储器82中和/或将VM夺获阈值传输到外部设备50。在框418处,控制电路80继续控制治疗递送电路84减小希氏束起搏脉冲能量,直到在框420处不再检测到SHB夺获。希氏束夺获阈值是仍检测到SHB夺获的最低脉冲振幅。在框428处报告希氏束夺获阈值。在这种情况下,如果将起搏脉冲振幅设置为等于或大于希氏束夺获阈值但小于VM夺获阈值,则SHB夺获是可实现的。然而,为了降低心室心搏停止的可能性,可期望NSHB夺获。这样,可以将起搏脉冲振幅设置为高于VM夺获阈值以促进NSHB起搏。
在一些患者中,取决于局部解剖结构、电极定位或其他因素,可响应于递送最大脉冲能量测试起搏脉冲,而在框406处未检测到NSHB夺获。如果在框422处在第一测试起搏脉冲之后检测到SHB夺获,则所测试的最高脉冲能量低于VM夺获阈值。选定的起搏电极向量可以被定位成使得仅希氏束被夺获。控制电路80可以在框424处减小起搏脉冲能量,直到在框426处例如基于仅监测近场诱发响应信号而不再检测到SHB夺获为止。在框428处,希氏束夺获阈值被报告为仍检测到SHB夺获的最低脉冲振幅。在这种情况下,阈值搜索已完成,因为从未检测到VM夺获,因此没有要确定和报告的VM夺获阈值。
如果在框406处响应于第一最高起搏脉冲振幅而未检测到NSHB夺获,则可在框430处基于以上描述的对希氏束近场和/或远场信号的示例分析中的任一个来检测VM夺获。如果在框430处检测到VM夺获,则在不重新定位希氏束起搏电极向量的情况下可能无法实现希氏束夺获。可以在框432处减小脉冲振幅,直到在框434处失去VM夺获为止。可以在框436处将VM夺获阈值振幅报告为仍检测到VM夺获的最低起搏脉冲振幅。可以由临床医生或由控制电路80使用所确定和所报告的希氏束夺获阈值、VM夺获阈值、以及与希氏束夺获阈值和VM夺获阈值中较高者相对应的NSHB夺获阈值来选择起搏脉冲振幅,以实现期望类型的夺获。
图8是用于基于希氏束夺获阈值测试结果确定预期的IMD电池寿命和推荐的起搏参数的方法的流程图500。在框502处,控制电路80可以使用图7的技术来确定希氏束夺获阈值和VM夺获阈值。当确定VM夺获阈值和希氏束夺获阈值两者时,两者中较高的一个也是NSHB夺获阈值。在某些示例中,可能无法区分NSBH和VM夺获类型。
在框504处,基于在VM夺获阈值处或高于VM夺获阈值的安全裕度的起搏来计算起搏设备(例如,IMD 14或起搏器100)的预期电池寿命。控制电路80可通过考虑剩余电池电量、基于来自患者的历史数据的预期起搏负担、被设置为高于VM夺获阈值的编程安全裕度的起搏脉冲振幅、编程的起搏脉冲宽度和其他起搏控制参数,来计算预期的电池寿命。在框506处,由控制电路80基于在高于希氏束夺获阈值的安全裕度处的起搏来确定起搏设备的预期电池寿命。
在框510处,例如通过在外部设备50上显示结果来报告夺获阈值和针对在高于VM夺获阈值的安全裕度处起搏的预期电池寿命以及针对在高于希氏束夺获阈值的安全裕度处起搏的预期电池寿命。外部设备50的处理器52可以接收所确定的夺获阈值和对应的预测电池寿命,并且生成数据的表格显示、图形显示或文本显示。如果VM夺获阈值大于希氏束夺获阈值,则针对在VM夺获阈值处或高于VM夺获阈值进行起搏的设备寿命可对应于提供NSHB起搏的情况下的预期电池寿命,并且比针对SHB起搏的预期电池寿命更短。如果希氏束夺获阈值大于VM夺获阈值,则针对提供NSHB起搏的预期电池寿命可能比仅提供VM起搏的预期电池寿命更短。这样,为了实现NSHB起搏,起搏设备的预期使用寿命可被缩短。
在某些情况下,期望NSHB起搏以沿着正常的传导路径提供诱发响应的传导,其中确保了如果失去希氏束夺获,则仍可能发生VM夺获。如果NSHB夺获阈值(其可能等于希氏束夺获阈值或VM夺获,以较大者为准)太高,则起搏设备的预期电池寿命可变得短得无法接受。在VM夺获较高的情况下,保证在失去希氏束夺获的情况下具有备用VM夺获的希氏束起搏的潜在好处可能不会比起搏设备缩短的功能寿命重要。在这种情况下,使用小于NSHB夺获阈值的脉冲振幅的SHB起搏可能是优选的。
在希氏束夺获阈值大于VM夺获阈值的情况下,可以以较低的起搏脉冲振幅提供心室起搏。当SHB和对应的NSHB夺获阈值实质上更高时,VM起搏可能是优选的,以便实现起搏设备的更长的使用寿命。
在框512处,控制电路80(或外部设备50)可以基于夺获阈值和对应的预期电池寿命来选择起搏参数。在一些示例中,可以将选定的起搏参数报告为在外部设备50上显示的推荐起搏参数。外部设备50的显示单元54可以是图形用户界面(GUI)),该图形用户界面使得能够向用户显示推荐的起搏参数以及相关联的夺获阈值和预期的电池寿命,并且使得用户能够接受推荐的设置(诸如,起搏脉冲振幅)或拒绝推荐的设置并选择不同的设置。
在其他示例中,选定的起搏参数由控制电路80在框512处自动选择,以用于控制治疗递送电路84。控制电路80可以在框512处通过将NSHB夺获阈值(等于希氏束夺获阈值或VM夺获阈值,当两者都被确定时取较大者)与最大脉冲振幅限制进行比较来选择起搏参数。如果NSHB夺获阈值小于最大限制(或相关联的电池寿命大于最小电池寿命限制),则可以将起搏脉冲振幅选择为高于NSHB夺获阈值的安全裕度。希氏束起搏被提供有在失去希氏束夺获的情况下仍提供VM夺获的保证。
如果希氏束夺获阈值小于VM夺获阈值,则可以在框512处将起搏脉冲振幅选择为大于希氏束夺获阈值但小于VM夺获阈值。可以使用较低的脉冲能量提供SHB起搏,以节省电池电量,并提供经由自然传导系统对心室进行起搏的好处。
图9是根据一个示例的用于在希氏束起搏期间进行夺获监测的方法的流程图600。在框602处,控制电路80可以执行夺获阈值测试以确定希氏束夺获阈值、VM夺获阈值、以及等于两者中的较大者的NSHB夺获阈值。在框602处,控制电路80可以确定希氏束夺获阈值是否小于VM夺获阈值,以及希氏束夺获阈值是否已稳定达一个或多个阈值测试。在最初植入IMD系统后的恢复期期间,希氏束起搏电极向量部位的炎症和愈合可能会导致夺获阈值的波动。在手术后的急性期期间,可能期望NSHB起搏,以提供希氏束起搏,其中确保在失去希氏束夺获的情况下将发生心室心肌夺获。然而,如果SHB夺获阈值稳定且小于VM夺获阈值,则可期望SHB起搏以经由自然传导系统来起搏心室并节省电池电量。这样,可以基于夺获阈值和希氏束夺获阈值的稳定性并考虑IMD的预期电池寿命来选择所递送的起搏的类型(NSHB起搏、仅VM起搏或SHB起搏)。
控制电路80可基于当前希氏束夺获阈值与一个或多个先前希氏束夺获阈值的比较来确定希氏束夺获阈值是稳定的。例如,如果自上次夺获阈值测试以来,希氏束夺获阈值没有增大超过编程的安全裕度(或两个或多个在前的希氏束夺获阈值的移动平均值),则可将希氏束夺获阈值确定为是稳定的。如果希氏束夺获阈值是稳定的并且小于VM夺获阈值,则控制电路80可以在框608处将起搏脉冲振幅设置为安全裕度,例如0.25至0.5伏、大于希氏束夺获阈值但小于NSHB夺获阈值(在该情况下,等于VM夺获阈值)。在框612处,基于低的稳定希氏束夺获阈值来提供SHB起搏。
然而,如果希氏束夺获阈值大于VM夺获阈值或不稳定,则可期望NSHB起搏,以在失去希氏束夺获的情况下促进VM夺获。因此,在框606处,控制电路80可将NSHB夺获阈值与最大限制进行比较。可以设置上限以防止在NSHB夺获阈值不可接受的高的情况下的电池消耗过多。可以基于IMD的最小可接受的预期电池寿命来设置NSHB夺获阈值的最大限制。如果NSHB夺获阈值大于最大限制,则在框608处,控制电路80可以将起搏脉冲振幅设置为小于NSHB夺获阈值的值。起搏脉冲振幅可以被设置为高于希氏束夺获阈值和VM夺获阈值中的较低者的安全裕度。当较低阈值是希氏束夺获阈值时,可以在框608处使用较高的安全裕度来设置起搏脉冲振幅,以考虑希氏束夺获阈值的不稳定性。例如,如果已发现自从上次夺获阈值测试以来,希氏束夺获阈值增加超过安全裕度,则可以将起搏脉冲振幅设置为编程的安全裕度的倍数。可以基于自从先前的夺获阈值测试以来希氏束夺获阈值已经增加了多少来设置安全裕度的倍数,而不会导致脉冲振幅超过NSHB夺获阈值(或其他最大脉冲振幅限制)。
如果在框604处VM夺获阈值低于希氏束夺获阈值,并且在框606处NSHB夺获阈值大于最大限制,则可以在框608处将起搏脉冲振幅设置为高于VM夺获阈值且小于NSHB(以及希氏束)夺获阈值的安全裕度。可以递送心室心肌起搏,直到希氏束夺获阈值较低和/或更稳定。
如果希氏束夺获阈值大于VM夺获阈值,或者不稳定,但是NSHB夺获阈值小于最大限制(如在框604和606处确定的),则控制电路80可以在框610处将起搏脉冲振幅设置为大于NSHB夺获阈值的安全裕度。可期望NSHB起搏,直到希氏束阈值低于VM阈值且稳定。在这种情况下,在框610处,将起搏脉冲振幅设置为大于NSHB夺获阈值的安全裕度。当希氏束夺获不稳定和/或高于VM夺获阈值时,提供NSHB起搏提供了确保VM夺获。
在框608或610处基于所确定的夺获阈值来设置起搏脉冲振幅以递送选定类型的起搏(VM、SHB或NSHB起搏)之后,在框612处使用选定的起搏脉冲振幅来递送希氏起搏脉冲。在框614处,控制电路80通过确定在希氏束起搏脉冲之后的夺获的类型来监测希氏束起搏夺获。可以在逐个搏动的基础上、每分钟一次、每小时一次、每天一次或其他预定的基础来确定夺获。夺获确定可以响应于特定事件或其他传感器信号而附加地在触发的基础上发生。在框614处,使用以上结合图5描述的方法,将夺获的类型确定为至少SHB夺获、NSHB夺获或VM夺获中的一个。在某些情况下,可以在框614处由于起搏脉冲振幅下降到希氏束夺获阈值和VM夺获阈值两者以下而确定失夺获。在其他示例中,夺获监测可以包括检测其他类型的夺获或事件,如以上结合图6所述。
在框614处确定夺获的类型(或失夺获)之后,控制电路80可以更新存储在存储器82中的日志,该日志对检测到每种类型的夺获的频率进行计数以提供有效的希氏束起搏的度量。每当确定夺获的类型时,可以跟踪并更新检测到NSHB夺获、检测到SHB夺获、以及检测到VM夺获(以及可选的其他类型的夺获或事件)的百分比或次数。该数据可以被传输到外部设备50。处理器52可以在显示单元54上生成数据的显示以供临床医生查看。了解成功夺获希氏束的时间百分比(与心室心肌起搏形成对照),可提供有助于选择起搏治疗参数的有用的诊断或预后信息。
如果如框620处确定的检测到失夺获,则控制电路80可以通过返回到框602来执行另一夺获阈值测试。如果检测到预期的夺获类型,则控制电路80继续根据当前选择的起搏控制参数递送希氏起搏脉冲(框612),并根据夺获监测协议来监测夺获(框614)。预期的夺获类型基于在框608或610处选择的起搏类型和起搏脉冲振幅。例如,如果将起搏脉冲振幅设置为大于NSHB夺获阈值,则预期NSHB夺获。如果将起搏脉冲振幅设置为小于NSHB夺获阈值,则预期SHB夺获或VM夺获,这取决于在最新的夺获阈值测试中发现哪个具有较低的夺获阈值。
如果检测到的夺获类型不是预期的夺获类型(框622的“否”分支),则VM夺获阈值和希氏束夺获阈值中的一者或两者可能已改变。控制电路80可以通过返回到框602来执行新的夺获阈值测试。基于新的夺获阈值测试结果,可以不同地设置起搏脉冲振幅以实现不同类型的夺获。以此方式,当希氏束夺获阈值低于最大可接受限制(或对应的电池寿命至少是最小可接受限制)时,提供希氏束起搏。当希氏束夺获阈值不可接受的高时,提供心室心肌起搏。当SHB夺获阈值高于VM夺获阈值和/或不稳定但小于最大夺获阈值限制时,可以提供NSHB起搏。
图10是根据另一示例的用于确定希氏束夺获阈值的方法的流程图700。在框702处,使用被定位用于希氏束起搏的电极按照起始脉冲能量递送希氏束起搏脉冲。起始脉冲能量设置为远高于预期的希氏束夺获阈值,以促进在第一个测试脉冲上夺获希氏束的可能性。
在框704处,控制电路80从远场心脏电信号确定QRS信号的特征,诸如,QRS宽度和/或QRS面积。在框704处,将所确定的特征与阈值进行比较,以确定远场QRS宽度和/或面积是否分别小于阈值宽度和/或阈值面积。如果是这样,则相对窄的QRS和/或小的QRS面积指示希氏束正被夺获,无论夺获类型是SHB还是NSHB夺获。控制电路80控制治疗递送电路84以在框706处例如通过将脉冲振幅减小预定的减量来减小希氏束起搏脉冲能量。在框704处,递送在降低的脉冲能量下的希氏起搏。该过程继续,直到在框704处以降低的脉冲能量递送的希氏起搏脉冲之后确定的远场QRS特征大于阈值。如果在框704处远场QRS特征大于阈值(“否”分支),则失去希氏夺获(框708)。远场QRS信号的加宽和/或增大的远场QRS信号面积指示正发生VM夺获而没有希氏束夺获。
在框710处,可以将希氏束夺获阈值报告为在失去希氏束夺获之前应用的最低起搏脉冲能量。控制电路80可以在框710处自动将希氏束起搏脉冲能量设置为大于希氏束夺获阈值的安全裕度。附加地或替代地,控制电路80可以通过将夺获阈值传输到外部设备50以供显示来向临床医生报告希氏束夺获阈值。在某些临床应用中,无论发生选择性还是非选择性希氏束夺获,起搏希氏束都是可接受的。这样,仅在VM夺获和包括希氏束夺获(其可以是SHB或NSHB夺获)的夺获之间进行区分是选择起搏脉冲控制参数以促进希氏束起搏所需的全部操作。
应当理解,取决于示例,本文描述的方法中的任一个中的某些动作或事件可以以不同的顺序被执行,可以被添加、合并、或完全省略(例如,并非所有描述的动作或事件都是实践该方法所必需的)。此外,在某些示例中,可同时地而不是顺序地执行动作或事件,例如,通过多线程处理、中断处理或多个处理器。另外,尽管为了清楚起见,本公开的某些方面被描述为由单个电路或单元执行,但是应该理解,本公开的技术可以由与例如医疗设备相关联的电路或组件的组合来执行。
在一个或多个示例中,可以以硬件、软件、固件或它们的任意组合来实现所描述的功能。如果以软件实现,则这些功能可作为一个或多个指令或代码被存储在计算机可读介质上并且由基于硬件的处理单元来执行。计算机可读介质可包括计算机可读存储介质,其对应于有形介质,诸如数据存储介质(例如,RAM、ROM、EEPROM、闪存、或可用于存储以指令或数据结构的形式的期望程序代码并且可由计算机访问的任何其他介质)。
指令可由一个或多个处理器执行,诸如一个或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其他等效的集成或分立逻辑电路系统。相应地,如本文中所使用的术语“处理器”可以指的是任何上述结构或适合于实现本文中所描述的技术的任何其他结构。而且,可以在一个或多个电路或逻辑元件中完全地实现这些技术。
因此,在前面的描述中已经参考特定示例呈现了起搏器。将理解的是,本文所公开的各种方面可以以与附图中呈现的特定组合不同的组合来组合。可理解到,可对参考示例做出各种修改而不背离本公开以及所附各权利要求的范围。
Claims (15)
1.一种植入式医疗设备系统,包括:
感测电路,所述感测电路被配置成用于:
经由第一感测电极向量接收近场希氏束电信号,并且
经由与所述第一感测电极向量不同的第二感测电极向量接收远场心脏电信号;
治疗递送电路,所述治疗递送电路被配置成生成经由希氏起搏电极向量递送给患者的心脏的希氏束起搏脉冲;以及
控制电路,所述控制电路被配置成用于:
通过以下操作来确定由所述治疗递送电路递送的希氏束起搏脉冲诱发的心脏夺获的类型:
从所述希氏束起搏脉冲之后的所述近场希氏束电信号中检测近场QRS信号;
确定从所述希氏束起搏脉冲到所述近场QRS信号的时间间期;
将所述时间间期与第一时间间期阈值进行比较;
响应于所述时间间期小于所述第一时间间期阈值,而确定所述远场心脏电信号的特征;
将所述远场心脏电信号特征与非选择性希氏束夺获阈值进行比较;
响应于至少所述远场心脏电信号特征小于所述非选择性希氏束夺获阈值而将所述心脏夺获的类型确定为非选择性希氏束夺获,所述非选择性希氏束夺获包括对希氏束和心室心肌两者的夺获;并且
响应于至少所述远场心脏电信号特征大于所述非选择性希氏束夺获阈值,而将所述心脏夺获的类型确定为仅心室心肌夺获。
2.根据权利要求1所述的系统,其特征在于,所述控制电路被进一步配置成用于:
响应于所述时间间期大于所述第一时间间期阈值而将所述心脏夺获的类型确定为选择性希氏束夺获,所述选择性希氏束夺获包括仅对所述希氏束的夺获。
3.根据权利要求1或2所述的系统,其特征在于,所述控制电路被进一步配置成用于:
将所述时间间期与大于所述第一时间间期阈值的第二时间间期阈值进行比较;并且
响应于所述时间间期大于所述第二时间间期阈值,而确定心室失夺获。
4.根据权利要求1-2中任一项所述的系统,其特征在于,所述控制电路被进一步配置成用于:
将所述时间间期与预期的房室传导时间范围进行比较;并且响应于所述时间间期在所述预期的房室传导时间范围中,而检测到心房夺获。
5.根据权利要求4所述的系统,其特征在于,所述控制电路被进一步配置成响应于检测到心房夺获而提供心房夺获响应,所述心房夺获响应包括以下各项中的至少一项:
调整心室起搏控制参数;以及
生成心房夺获通知。
6.根据权利要求1-2中任一项所述的系统,其特征在于,所述控制电路被进一步配置成用于:
控制所述治疗递送电路递送包括多个起搏脉冲能量的多个希氏束起搏脉冲;
基于从所述多个希氏束起搏脉冲中的每一个之后的至少所述远场心脏电信号中检测到的QRS信号,从所述多个起搏脉冲能量中确定非选择性希氏束夺获阈值;并且
控制所述治疗递送电路递送非选择性希氏束起搏脉冲,每个非选择性希氏束起搏脉冲具有大于所述非选择性希氏束夺获阈值的起搏脉冲能量。
7.根据权利要求1-2中任一项所述的系统,其特征在于,所述控制电路被进一步配置成用于:
将所确定的心脏夺获的类型与预期的心脏夺获的类型进行比较;并且
响应于所述所确定的心脏夺获的类型与所述预期的心脏夺获的类型不同,而执行夺获阈值测试。
8.根据权利要求1-2中任一项所述的系统,其特征在于,所述控制电路被进一步配置成通过以下操作执行希氏束夺获阈值测试:
控制所述治疗递送电路递送包括多个起搏脉冲能量的多个希氏束起搏脉冲;
在所述多个希氏束起搏脉冲中的至少一个之后,将所述夺获的类型确定为非选择性希氏束夺获;
将非选择性希氏束夺获阈值确定为所述夺获的类型被确定为非选择性希氏束夺获的所述多个起搏脉冲能量中的最低者;
确定心室心肌夺获和选择性希氏束夺获中由所述多个希氏束起搏脉冲中的一个希氏束起搏脉冲诱发的首先一个,其中所述一个希氏束起搏脉冲按照所述多个起搏脉冲能量中的小于所述非选择性希氏束夺获阈值的下一个较低者被递送;
响应于确定心室心肌夺获和选择性希氏束夺获中由所述多个起搏脉冲能量中的所述下一个较低者诱发的所述首先一个,而确定失去所述心室心肌夺获和选择性希氏束夺获中的第二个;
将所述心室心肌夺获和选择性希氏束夺获中的所述第二个的第二夺获阈值确定为等于所述非选择性希氏束夺获阈值;并且
将所述心室心肌夺获和选择性希氏束夺获中的所述首先一个的第一夺获阈值确定为所述多个起搏脉冲能量中诱发所述心室心肌夺获和选择性希氏束夺获中的所述首先一个的最低者。
9.根据权利要求8所述的系统,其特征在于,所述控制电路被进一步配置成用于:
基于所述第一夺获阈值和所述第二夺获阈值,从包括至少非选择性希氏束起搏和选择性希氏束起搏的多个起搏类型中选择起搏类型;并且
基于选定的起搏类型,设置起搏脉冲振幅和起搏脉冲宽度中的至少一个。
10.根据权利要求1-2中任一项所述的系统,其特征在于,所述控制电路被进一步配置成用于:
确定非选择性希氏束夺获阈值;
将所述非选择性希氏束夺获阈值与最大限制进行比较;并且
响应于所述非选择性希氏束夺获阈值小于所述最大限制,而控制所述治疗递送电路递送具有大于所述非选择性希氏束夺获阈值的起搏脉冲能量的希氏束起搏脉冲。
11.根据权利要求10所述的系统,其特征在于,所述控制电路被进一步配置成用于:
响应于所述非选择性希氏束夺获阈值大于所述最大限制,而控制所述治疗递送电路递送心室心肌起搏和选择性希氏束起搏中、包括具有小于所述非选择性希氏束夺获阈值的起搏脉冲能量的希氏束起搏脉冲的一个。
12.根据权利要求11所述的系统,其特征在于,进一步包括电源,所述电源包括至少一个电池;
其中所述控制电路被进一步配置成用于:
确定包括希氏束夺获的起搏夺获阈值;
基于所述起搏夺获阈值来确定预期的电池寿命;
将所述预期的电池寿命与最小寿命进行比较;并且
响应于所述预期的电池寿命大于所述最小寿命,而控制所述治疗递送电路使用大于包括希氏束夺获的所述起搏夺获阈值的起搏脉冲能量,来递送希氏束起搏。
13.如权利要求12所述的系统,其特征在于,进一步包括:
植入式电源,所述植入式电源包括至少一个电池;
植入式遥测电路;以及
外部设备,所述外部设备包括处理器、外部遥测电路和显示单元;
其中所述控制电路被进一步配置成用于:
确定希氏束起搏夺获阈值;
确定心室心肌起搏夺获阈值;
确定与所述希氏束起搏夺获阈值和所述心室心肌起搏夺获阈值中的每一个对应的预期电池寿命;并且
将确定的预期电池寿命传输到所述外部设备;
其中所述处理器在所述显示单元上生成显示,所述显示包括所述预期电池寿命。
14.根据权利要求13所述的系统,其特征在于,所述控制电路被配置成用于:
响应于所述确定的预期电池寿命,而选择起搏脉冲振幅;并且
使用选定的起搏脉冲振幅递送希氏束起搏脉冲或者在所述显示单元上显示所述选定的起搏脉冲振幅中的至少一者。
15.如权利要求1-2中任一项所述的系统,其特征在于:
所述治疗递送电路被配置成递送包括多个起搏脉冲能量的多个希氏束起搏脉冲;
所述控制电路被进一步配置成用于:
确定由所述多个起搏脉冲中的每一个诱发的心脏夺获的类型;
基于由所述多个希氏束起搏脉冲中的每一个诱发的所述心脏夺获的类型,确定与仅所述希氏束的夺获相对应的第一选择性希氏束夺获阈值以及与所述希氏束和心室心肌的夺获相对应的非选择性希氏束夺获阈值;
将所述第一选择性希氏束夺获阈值与至少一个先前确定的选择性希氏束夺获阈值进行比较;
响应于所述比较,来检测选择性希氏束夺获阈值不稳定性;并且所述治疗递送电路被配置成:响应于所述控制电路检测到所述选择性希氏束夺获阈值不稳定性,而使用大于所述非选择性希氏束夺获阈值的第一起搏脉冲能量来递送希氏束起搏脉冲。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762583082P | 2017-11-08 | 2017-11-08 | |
US62/583,082 | 2017-11-08 | ||
US201862663619P | 2018-04-27 | 2018-04-27 | |
US62/663,619 | 2018-04-27 | ||
PCT/US2018/059766 WO2019094554A1 (en) | 2017-11-08 | 2018-11-08 | Implantable medical device and method for determining his bundle pacing capture |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111315282A CN111315282A (zh) | 2020-06-19 |
CN111315282B true CN111315282B (zh) | 2023-05-26 |
Family
ID=64427252
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880072173.0A Active CN111315443B (zh) | 2017-11-08 | 2018-11-08 | 用于确定希氏束起搏夺获的植入式医疗设备和方法 |
CN201880072564.2A Active CN111315282B (zh) | 2017-11-08 | 2018-11-08 | 用于确定希氏束起搏夺获的植入式医疗设备和方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880072173.0A Active CN111315443B (zh) | 2017-11-08 | 2018-11-08 | 用于确定希氏束起搏夺获的植入式医疗设备和方法 |
Country Status (4)
Country | Link |
---|---|
US (5) | US11007369B2 (zh) |
EP (3) | EP3706616B1 (zh) |
CN (2) | CN111315443B (zh) |
WO (2) | WO2019094557A1 (zh) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12090330B2 (en) | 2017-10-17 | 2024-09-17 | Medtronic, Inc. | Bundle branch pacing devices and methods |
EP3706616B1 (en) | 2017-11-08 | 2021-10-27 | Medtronic, Inc. | Implantable medical device for determining his bundle pacing capture |
US11224752B2 (en) * | 2018-07-06 | 2022-01-18 | Cardiac Pacemakers, Inc. | His-bundle pacing capture verification |
US11707630B2 (en) * | 2018-10-24 | 2023-07-25 | Cardiac Pacemakers, Inc. | His-bundle or bundle branch pacing capture verification |
US11207528B2 (en) * | 2018-12-10 | 2021-12-28 | Cardiac Pacemakers, Inc. | Atrioventricular conduction guided His-bundle pacing |
EP3679983A1 (de) * | 2019-01-11 | 2020-07-15 | BIOTRONIK SE & Co. KG | Implantierbare anordnung zur stimulation eines menschlichen oder tierischen herzens |
US11679265B2 (en) | 2019-02-14 | 2023-06-20 | Medtronic, Inc. | Lead-in-lead systems and methods for cardiac therapy |
US11420067B2 (en) | 2019-04-05 | 2022-08-23 | Medtronic, Inc. | Medical device and method for controlling pacing interval to promote mechanical heart chamber synchrony |
US11400295B2 (en) * | 2019-05-07 | 2022-08-02 | Pacesetter, Inc. | Time domain-based methods for his bundle capture classification |
US11607550B2 (en) * | 2019-06-25 | 2023-03-21 | Medtronic, Inc. | His-Purkinje system capture detection |
US11730967B2 (en) * | 2019-07-18 | 2023-08-22 | Pacesetter, Inc. | Systems and methods for improved his bundle and backup pacing timing |
US11911166B2 (en) * | 2019-07-20 | 2024-02-27 | Medtronic, Inc. | Method and apparatus for implantation of a pacing electrode |
US11786739B2 (en) | 2019-08-19 | 2023-10-17 | Medtronic Inc. | Ventricular sensing control in a cardiac pacing system |
US10625080B1 (en) * | 2019-09-17 | 2020-04-21 | Farapulse, Inc. | Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation |
US11779769B2 (en) * | 2019-09-19 | 2023-10-10 | Pacesetter, Inc. | Method and device for avoiding atrial activity oversensing on his sensing channel |
CN114599423A (zh) * | 2019-10-24 | 2022-06-07 | 百多力两合公司 | 用于对可植入医疗设备进行编程的方法 |
EP4117526A4 (en) * | 2020-03-09 | 2024-03-13 | Maxwell Biomedical, Inc. | CARDIAC STIMULATION DEVICE |
US20210290094A1 (en) * | 2020-03-23 | 2021-09-23 | Biosense Webster (Israel) Ltd. | Pacing induced electrical activation grading |
US11964160B2 (en) | 2020-07-27 | 2024-04-23 | Medtronic, Inc. | Method and apparatus for delivering bundle branch pacing |
US11752347B2 (en) | 2020-07-31 | 2023-09-12 | Medtronic, Inc. | Cardiac conduction system pacing |
US12005259B2 (en) | 2020-09-10 | 2024-06-11 | Medtronic, Inc. | Dual sensors to control pacing rate |
US12083344B2 (en) | 2020-11-24 | 2024-09-10 | Medtronic, Inc. | Guiding anti-tachyarrhythmia pacing train design and electrode selection with electrograms |
US11712568B2 (en) * | 2021-02-09 | 2023-08-01 | Pacesetter, Inc. | Implantable medical systems and methods for use therewith that detect atrial capture and AV node capture responsive to his bundle pacing |
US11878174B2 (en) | 2021-02-09 | 2024-01-23 | Pacesetter, Inc. | Implantable medical systems and methods used to detect, characterize or avoid atrial oversensing within a His IEGM |
US20240075301A1 (en) * | 2021-02-11 | 2024-03-07 | Biotronik SE & Co., KG | An Implantable Medical Device Configured to Provide an Intra-Cardiac Function |
WO2023135054A1 (en) * | 2022-01-17 | 2023-07-20 | Biotronik Se & Co. Kg | Therapy system for providing a cardiac therapy |
WO2023144635A1 (en) * | 2022-01-26 | 2023-08-03 | Medtronic, Inc. | Medical device and method for cardiac pacing of the his-purkinje conduction system |
WO2023235680A1 (en) | 2022-06-01 | 2023-12-07 | Medtronic, Inc. | Method and apparatus for detecting oversensing |
WO2024015775A1 (en) | 2022-07-12 | 2024-01-18 | Medtronic, Inc. | Apparatus for cardiac event signal sensing |
WO2024069290A1 (en) * | 2022-09-30 | 2024-04-04 | Medtronic, Inc. | Adaptive cardiac conduction system pacing therapy for multi-chamber devices |
WO2024089501A1 (en) * | 2022-10-27 | 2024-05-02 | Medtronic, Inc. | Apparatus for monitoring conduction system pacing |
WO2024134308A1 (en) | 2022-12-21 | 2024-06-27 | Medtronic, Inc. | Method and apparatus for cardiac event signal sensing |
WO2024157093A1 (en) | 2023-01-27 | 2024-08-02 | Medtronic, Inc. | Determination of septal perforation during electrode implantation |
WO2024201193A1 (en) | 2023-03-31 | 2024-10-03 | Medtronic, Inc. | Medical device fixation integrity monitoring and alert |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033915A1 (en) * | 1998-12-08 | 2000-06-15 | Cardiac Pacemakers, Inc. | Autocapture determination for an implantable cardioverter defibrillator |
CN102065947A (zh) * | 2008-04-15 | 2011-05-18 | 心脏起搏器公司 | 希氏束刺激系统 |
CN104797292A (zh) * | 2012-11-15 | 2015-07-22 | 美敦力公司 | 用于选择起搏向量的夺获阈值测量 |
CN105873635A (zh) * | 2013-10-25 | 2016-08-17 | 美敦力公司 | 用于自动化膈神经刺激和起搏夺获阈值测试的装置 |
CN106232178A (zh) * | 2014-02-20 | 2016-12-14 | 美敦力公司 | 自动化膈神经刺激和起搏夺获阈值测试 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4505276A (en) | 1983-06-15 | 1985-03-19 | Medtronic, Inc. | Device for detecting retrograde conduction |
US6148234A (en) * | 1998-09-28 | 2000-11-14 | Medtronic Inc. | Dual site pacing system with automatic pulse output adjustment |
US6408210B1 (en) | 2000-01-11 | 2002-06-18 | Pacesetter, Inc. | System and method for automatic atrial capture detection and atrial pacing threshold determination |
US6609027B2 (en) * | 2001-02-23 | 2003-08-19 | Pacesetter, Inc. | His Bundle sensing device and associated method |
US6768924B2 (en) | 2002-01-03 | 2004-07-27 | Cardiac Pacemakers, Inc. | Method and apparatus for capture verification based on propagated electrical activity |
US20060155338A1 (en) * | 2004-12-20 | 2006-07-13 | Mongeon Luc R | Bi-ventricular ventricular capture management in cardiac resyncronization therapy delivery devices |
US7457666B2 (en) * | 2005-05-25 | 2008-11-25 | Cardiac Pacemakers, Inc. | Retrograde atrial sensing for identifying sub-threshold atrial pacing |
US9345887B2 (en) * | 2006-06-29 | 2016-05-24 | Cardiac Pacemakers Inc. | Local and non-local sensing for cardiac pacing |
US8290590B2 (en) | 2006-11-17 | 2012-10-16 | Cardiac Pacemakers, Inc. | Dynamic morphology based atrial automatic threshold |
US7941218B2 (en) * | 2008-03-13 | 2011-05-10 | Medtronic, Inc. | Apparatus and methods of optimizing atrioventricular pacing delay intervals |
US8565880B2 (en) * | 2010-04-27 | 2013-10-22 | Cardiac Pacemakers, Inc. | His-bundle capture verification and monitoring |
US8954147B2 (en) | 2010-10-22 | 2015-02-10 | Cardiac Pacemakers, Inc. | Timing for His-bundle pacing |
US8761880B2 (en) | 2011-03-14 | 2014-06-24 | Cardiac Pacemakers, Inc. | His capture verification using electro-mechanical delay |
US9168382B2 (en) * | 2012-10-11 | 2015-10-27 | Cardiac Pacemakers, Inc. | Method and apparatus for selective his bundle pacing |
US9731138B1 (en) * | 2016-02-17 | 2017-08-15 | Medtronic, Inc. | System and method for cardiac pacing |
US20170323361A1 (en) * | 2016-05-06 | 2017-11-09 | Oct8ne Inc. | Rapid re-hosting of collaborative browsing sessions |
EP3706616B1 (en) | 2017-11-08 | 2021-10-27 | Medtronic, Inc. | Implantable medical device for determining his bundle pacing capture |
US10799703B2 (en) | 2017-12-22 | 2020-10-13 | Medtronic, Inc. | Evaluation of his bundle pacing therapy |
-
2018
- 2018-11-08 EP EP18807531.1A patent/EP3706616B1/en active Active
- 2018-11-08 US US16/183,902 patent/US11007369B2/en active Active
- 2018-11-08 WO PCT/US2018/059770 patent/WO2019094557A1/en unknown
- 2018-11-08 CN CN201880072173.0A patent/CN111315443B/zh active Active
- 2018-11-08 EP EP18807532.9A patent/EP3706860B1/en active Active
- 2018-11-08 EP EP22151631.3A patent/EP4023286A1/en active Pending
- 2018-11-08 WO PCT/US2018/059766 patent/WO2019094554A1/en unknown
- 2018-11-08 CN CN201880072564.2A patent/CN111315282B/zh active Active
- 2018-11-08 US US16/183,867 patent/US10773086B2/en active Active
-
2021
- 2021-05-17 US US17/321,828 patent/US11547859B2/en active Active
-
2022
- 2022-12-20 US US18/069,227 patent/US11998750B2/en active Active
-
2024
- 2024-05-29 US US18/677,784 patent/US20240307696A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033915A1 (en) * | 1998-12-08 | 2000-06-15 | Cardiac Pacemakers, Inc. | Autocapture determination for an implantable cardioverter defibrillator |
CN102065947A (zh) * | 2008-04-15 | 2011-05-18 | 心脏起搏器公司 | 希氏束刺激系统 |
CN104797292A (zh) * | 2012-11-15 | 2015-07-22 | 美敦力公司 | 用于选择起搏向量的夺获阈值测量 |
CN105873635A (zh) * | 2013-10-25 | 2016-08-17 | 美敦力公司 | 用于自动化膈神经刺激和起搏夺获阈值测试的装置 |
CN106232178A (zh) * | 2014-02-20 | 2016-12-14 | 美敦力公司 | 自动化膈神经刺激和起搏夺获阈值测试 |
Non-Patent Citations (2)
Title |
---|
R. MacDonald ; 等.A software trigger for intracardiac waveform detection with automatic threshold adjustment.《Proceedings. Computers in Cardiology》.1989, * |
体表心电图诊断时相性希氏束内差异传导(附2例报告);闾文德;《实用心电学杂志》;20021231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
US20190134404A1 (en) | 2019-05-09 |
WO2019094557A1 (en) | 2019-05-16 |
EP3706860A1 (en) | 2020-09-16 |
EP4023286A1 (en) | 2022-07-06 |
US20240307696A1 (en) | 2024-09-19 |
CN111315282A (zh) | 2020-06-19 |
US11007369B2 (en) | 2021-05-18 |
US11547859B2 (en) | 2023-01-10 |
EP3706616A1 (en) | 2020-09-16 |
CN111315443B (zh) | 2023-10-31 |
WO2019094554A1 (en) | 2019-05-16 |
EP3706616B1 (en) | 2021-10-27 |
US20230125541A1 (en) | 2023-04-27 |
US11998750B2 (en) | 2024-06-04 |
US20190134405A1 (en) | 2019-05-09 |
US10773086B2 (en) | 2020-09-15 |
EP3706860B1 (en) | 2022-03-02 |
US20210283402A1 (en) | 2021-09-16 |
CN111315443A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111315282B (zh) | 用于确定希氏束起搏夺获的植入式医疗设备和方法 | |
US11607550B2 (en) | His-Purkinje system capture detection | |
US10201710B2 (en) | Latency-based adaptation of anti-tachyarrhythmia pacing therapy | |
US11291845B2 (en) | Medical device system and method for determining His bundle pacing capture | |
CN116133720A (zh) | 用于递送束支起搏的方法和设备 | |
US20220080210A1 (en) | His-purkinje system capture detection | |
US20230405332A1 (en) | Ventricular sensing control in a cardiac pacing system | |
EP4074374A1 (en) | Rate smoothing in atrial synchronous ventricular pacemaker | |
US20230233864A1 (en) | Medical device and method for cardiac pacing of the his-purkinje conduction system | |
WO2023089415A1 (en) | His-purkinje system capture detection | |
WO2023214249A1 (en) | Method and apparatus for conduction system pacing capture classification | |
CN118765207A (zh) | 用于希浦传导系统的心脏起搏的医疗装置和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |