CN111312294B - 一种利用纳米技术对信息加密读写进行纠错的方法 - Google Patents

一种利用纳米技术对信息加密读写进行纠错的方法 Download PDF

Info

Publication number
CN111312294B
CN111312294B CN202010065505.1A CN202010065505A CN111312294B CN 111312294 B CN111312294 B CN 111312294B CN 202010065505 A CN202010065505 A CN 202010065505A CN 111312294 B CN111312294 B CN 111312294B
Authority
CN
China
Prior art keywords
molecules
information
photosensitive
imaging
intensity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010065505.1A
Other languages
English (en)
Other versions
CN111312294A (zh
Inventor
张利胜
张译元
王培杰
方炎
李志鹏
杨龙坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capital Normal University
Original Assignee
Capital Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capital Normal University filed Critical Capital Normal University
Priority to CN202010065505.1A priority Critical patent/CN111312294B/zh
Publication of CN111312294A publication Critical patent/CN111312294A/zh
Application granted granted Critical
Publication of CN111312294B publication Critical patent/CN111312294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

本发明公开了一种利用纳米技术对信息加密读写进行纠错的方法,包括:写入加密信息时,利用激光照射光敏分子层,至少两次重复写入需要加密的信息;利用光谱二维成像技术或扫描成像技术,以光敏分子和新分子的指纹谱为扫描对象利用低频激光扫描,得到光敏分子和新分子的强度分布成像;重复扫描M次光敏分子和新分子的强度分布成像,得出光敏分子的平均强度分布和新分子的平均强度分布;获取新分子的平均强度分布比上光敏分子和新分子的平均强度分布之和的比值,根据该比值成像得到解密信息。本发明中对利用纳米技术对信息加密读写的过程进行纠错,使加密信息读取误差更小,精确度更高,使对信息加密读写的过程更加具有应用价值。

Description

一种利用纳米技术对信息加密读写进行纠错的方法
技术领域
本发明涉及纳米技术领域,特别是关于一种利用纳米技术对信息加密读写进行纠错的方法。
背景技术
近几年,信息加密技术或依赖对电子信号的加密,或对原有信息进行算法加密。但是,这些技术被大家熟知而相较而言容易被破解。随着对纳米技术领域的研究,有研究表明可以使用纳米刻蚀等方法微创基底平面来实现绘制图形。进而提出利用纳米技术进行信息加密读写。
运用纳米技术将加密信息写入载体(硅、石英、云母、金、银、铜、铝、玻璃和合金等等具有一定机械强度的硬质材料)的过程包括:基底预处理,镀膜,吸附光敏分子层,写入加密信息,覆盖截止层。对载体上的信息进行解密的过程包括:利用光谱二维成像(Image)技术或扫描成像(Mapping)技术,以预先确定的目标新分子的指纹谱为扫描对象利用低频激光扫描所述载体,得到所述新分子的特定排列,实现对所述信息的解密。
但是,目前利用纳米技术进行信息加密过程中仍存在如下缺点:
1、在抛光、清洗基底时,由于一些偶然因素,无法完全保证基底的平整,会导致基底表面分布的不均匀。使得在镀膜时,导致基底上薄膜的也不均匀,从而导致不同位置上薄膜的厚度高低不同,使其对分子的吸附性也有一定差异,会造成吸附分子时的不均匀。
2、在吸附光敏分子层时,由于基底的不均匀和选取的光敏分子与基底的浸润程度的问题,无法保证薄膜表面完全均匀地吸附光敏分子,这样可能会造成薄膜基底有的地方光敏分子浓度高,而有的地方光敏分子浓度低的情况。薄膜上光敏分子浓度不均匀,会导致写入加密信息时,薄膜上光敏分子浓度高的地方生成的新分子的浓度也偏高,薄膜上光敏分子浓度低的地方生成的新分子的浓度也偏低。对载体上的信息进行解密时,因为对新生成的分子进行扫描成像,新分子浓度高的地方相对的指纹谱强度大,新分子浓度低的地方相对的指纹谱强度小。由此得到有些写入加密信息的地方由于新分子强度偏低而造成解读时的误解,认为该扫描区与新分子强度强的地方相比,可以近似看成没有新生成的分子,导致最终解密出来的信息与最开始写入的加密信息有一定偏差。
浸润是液体在与固体接触时,沿固体表面扩展而相互附着的现象。在这里指光敏分子溶剂沿基底表面扩展的现象。浸润角度大,说明浸润程度不好,如一滴水在蜡质平面上则会保持水珠状态称为不浸润;浸润角度小,说明浸润程度好,如一滴水在干净的玻璃上会浸润而摊开。
3、在写入加密信息时,激光与光敏分子发生光催化,由于激光强度的波动和不稳定,会造成一些微干扰,导致写入加密信息时产生误差。若写入的加密信息为微米量级(也可称为介观,范围在毫米-微米量级),存在不均匀或激光波动时,其影响可以忽略,仍可识别出加密信息的内容,介观的写入方式虽然方便,但其加密性并不强。由于写入的加密信息尺寸精细,为纳米量级(也可称为微观,范围在微米-纳米量级),它的线宽、尺寸较小,这既是利用纳米技术进行信息加密读写方法的优点,同时也会带来一定的问题,那就是对基底的均匀度的要求、分子的均匀度要求、激光写入强度的稳定性、激光读取的时候其稳定性都要非常高,一点误差的存在,就会使本来的加密信息完全改变其内容。
如图1a示意出了一个微米量级的字符“N”,该字符在左上角的斜纹处A、右下角的圆点处B和左内侧的网纹处C三个位置出现了一定的缺陷,但并不妨碍利用纳米技术对信息进行读取。S为光敏分子层,使用针尖增强拉曼光谱技术进行信息读取,读取用的针尖增强拉曼光谱系统低频激光785nm激光。载体上根据生成的新分子的特征峰成像(特征峰用来标识特定分子)组合生成“N”字。其中,斜纹处A的缺陷可认为是由基底镀膜的高度分布不均匀造成的;网纹处C的缺陷可认为是由于吸附光敏分子层时分子浓度的不均匀造成的分子分布不均匀;圆点处B的缺陷可认为是由于激光在催化或读取时的不稳定或波动造成的写入或读取错误。最终读写出的信息为图1b所示,虽然对最终读写出来加密信息并无太大的影响,但有一定的缺陷。
当加密信息为纳米量级时,这种缺陷就会严重影像信息的传递。如图2a所示,S为光敏分子层,写入信息为一个纳米量级的字符“N”,该字符的线宽和尺寸较小,若是出现了同图1a中所示的A、B、C三处缺陷,则会产生断点,变成类似于如图2b所示的“!\1”的形状,这样则改变了原有的加密信息,使得加密读取信息有误。
发明内容
本发明的目的在于提供一种利用纳米技术对信息加密读写进行纠错的方法来克服或至少减轻现有技术的上述缺陷中的至少一个。
为实现上述目的,本发明提供一种利用纳米技术对信息加密读写进行纠错的方法,包括:
步骤一,写入加密信息时,利用激光照射光敏分子层,激光的光斑为纳米尺度,受到激光照射的光敏分子反应生成新分子,根据需要加密的信息控制激光的移动,将需要加密的信息转换为新分子的特定排列,并至少两次重复写入需要加密的信息;
步骤二,利用光谱二维成像技术或扫描成像技术,以光敏分子和新分子的指纹谱为扫描对象利用低频激光扫描,得到光敏分子和新分子的强度分布成像;
步骤三,重复扫描M次光敏分子和新分子的强度分布成像,分别得到光敏分子的强度分布IA1…IAM和新分子的强度分布IB1…IBM,得出光敏分子的平均强度分布
Figure BDA0002375847390000031
和新分子的平均强度分布
Figure BDA0002375847390000032
所述M≥2;
步骤四,获取新分子的平均强度分布IB比上光敏分子和新分子的平均强度分布之和(IA+IB)的比值,根据该比值成像得到解密信息。
在一个实施方式中,所述根据该比值成像得到解密信息包括:若所述比值大于预设阈值,则成像,否则不予成像。
在一个实施方式中,所述根据该比值成像得到解密信息包括:
选取M次光敏分子和新分子的强度分布成像中的峰值,分别得到峰值的强度平均值IAP和IBP,计算得到IT=IBP/(IAP+IBP);
若所述比值大于等于IT则成像,否则不予成像。
本发明由于采取以上技术方案,其具有以下优点:
对利用纳米技术对信息加密读写的过程进行纠错,使加密信息读取误差更小,精确度更高,使对信息加密读写的过程更加具有应用价值。
附图说明
图1a为待读写的加密信息的示意图;
图1b为利用现有纳米技术将图1a中的加密信息读写出来后的示意图;
图2a为待加密信息的示意图;
图2b为利用现有纳米技术将图2a中的待加密信息加密后的示意图。
图3是本实施例提供的利用纳米技术对信息加密读写进行纠错的方法的流程示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
本实施例提供一种利用纳米技术对信息加密读写进行纠错的方法,减少加密和解密过程中的误差,增加解密过程的准确性,保证解密出来的信息可以最大程度上还原加密信息的内容。如图3所示,该方法包括:
步骤301,写入加密信息时,利用激光照射光敏分子层,激光的光斑为纳米尺度,受到激光照射的光敏分子反应生成新分子,根据需要加密的信息控制激光的移动,将需要加密的信息转换为新分子的特定排列,并至少两次重复写入需要加密的信息。
在一个实施方式中,写入加密信息时,利用特定频率以上的激光照射光敏分子层,激光的照射区域为纳米尺度,受到激光照射的光敏分子反应生成所述新分子;根据需要加密的信息控制激光的移动,将需要加密的信息转换为新分子的特定排列,并在同一地方写入相同信息M次,以避免写入加密信息时激光波动或不稳定所带来的误差,实现信息的加密。
例如,在暗室环境下,使用扫描近场光学显微镜或针尖增强拉曼光谱、或者直接使用具有纳米尺寸光斑的激光照射光敏分子进行信息写入,调节激光频率至特定频率以上,诱导探针下方纳米级区域或所述纳米尺寸光斑范围的分子反应生成所述新分子;根据需要加密的信息确定探针或光斑的移动轨迹,并进行M次重复写入,使得生成的新分子构成特定的加密数字、文字或图案信息。其中,该纳米尺寸指的是以纳米为单位计量的尺寸,包括几个纳米至数百纳米的计量范围。
根据选取的写入方式不一样,反应的分子区域的精细度也不一样,对于含有探针的针尖增强拉曼光谱技术或扫描近场光学显微镜等写入技术,探针的曲率半径越小,绘制的数字、文字或图案线条约精细清晰。
步骤302,利用光谱二维成像技术或扫描成像技术,以光敏分子和新分子的指纹谱为扫描对象利用低频激光扫描,得到光敏分子和新分子的强度分布成像。
在一个实施方式中,利用光谱二维成像(Image)技术或扫描成像(Mapping)技术,以光敏分子和新分子的指纹谱为扫描对象利用低频激光扫描载体,得到光敏分子的强度和新分子强度分布成像。
采用光谱二维成像(Image)技术或扫描成像(Mapping)技术包括:逐点扫描成像(Mapping)、拉曼直接整体成像(True Raman Imaging)、快速大面积拉曼成像(StreamLine)等拉曼光谱成像技术;红外光谱成像技术;拉曼扫描成像技术;扫描近场光学显微镜扫描成像技术或针尖增强拉曼光谱扫描成像技术等方法。光谱二维成像(Image)技术或扫描成像(Mapping)技术可以将看不见的光谱信息转换为可视的图像,并能直接看出不同指纹谱的分子分布。
步骤303,重复扫描M次光敏分子和新分子的强度分布成像,分别得到光敏分子的强度分布IA1…IAM和新分子的强度分布IB1…IBM,得出光敏分子的平均强度分布
Figure BDA0002375847390000051
和新分子的平均强度分布
Figure BDA0002375847390000052
所述M≥2。
例如,取M=3,扫描3次光敏分子的强度和新分子强度分布成像,分别得到光敏分子的强度IA1、IA2、IA3和新分子强度IB1、IB2、IB3。其中,每次扫描时,对于被扫描区域,确定光敏分子以及目标新分子的指纹谱(包括拉曼光谱、红外光谱),基于其特征峰,通过光谱二维成像(Image)技术或扫描成像(Mapping)技术,得到扫描区对应光敏分子的强度IA1、IA2、IA3、以及生成的新分子的强度IB1、IB2、IB3
由计算平均值的算法,得出光敏分子的平均强度
Figure BDA0002375847390000053
和新分子的平均强度
Figure BDA0002375847390000054
所分别对应的分布成像。
多次扫描求平均,以减少读取时由于激光的波动和不稳定造成的误差。可选的,使用的激光为小于特定频率或大于特定波长的激光。
步骤304,获取新分子的平均强度分布IB比上光敏分子和新分子的平均强度分布之和(IA+IB)的比值,根据该比值成像得到解密信息。
所述比值可以表征光敏分子转化为新分子的转化率,转化率越大则越表示该位置为信息写入位置,应当被成像。
经过纠错得到的图像可与直接解密得到的图像相比较,以实现纠正的作用。
在一个实施方式中,根据该比值成像得到解密信息包括:若所述比值大于预设阈值,则成像,否则不予成像。该预设阈值可以是经过多次实际操作得到的经验值,本发明对其具体取值不做限定。
在一个实施方式中,根据该比值成像得到解密信息包括:
选取M次光敏分子和新分子的强度分布成像曲线中的峰值,分别得到峰值的强度平均值IAP和IBP,计算得到IT=IBP/(IAP+IBP);若所述比值大于等于IT则成像,否则不予成像。在该实施方式中,以IT为成像标准,得到的结果相比扫描新分子信号成像更加准确。
本发明实施例提供的利用纳米技术对信息加密读写进行纠错的方法具有下述优点:
1、写入加密信息时,以避免激光波动或是长时间工作时激光功率不稳定所带来的写入误差,采用多次写入求平均的方法,在相同地方写入相同加密信息M次,使写入的加密信息更准确。
2、多次扫描求平均,以减少写入和读取时由于激光的波动或是激光功率不稳定造成的误差。
3、带入内比法的算法公式,一级纠错方法可以避免由于基底的不均匀或是吸附光敏分子操作时的分子浓度不均匀等偶然因素,造成的读取时新分子的强度不统一,而带来的解密时出现的错误。将单一的对比新分子的强度成像转换为根据光敏分子的转化率成像的方式,实现对所述信息的解密纠错,并保持其准确性。
结合光敏技术和光谱检测实现对加密信息的解密和纠错,使破解加密信息的难度高,误差小,精确度强,使对信息加密读写的过程更加具有应用价值,更完整,具有较强的科研及应用价值。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (1)

1.一种利用纳米技术对信息加密读写进行纠错的方法,其特征在于,包括:
步骤一,写入加密信息时,利用激光照射光敏分子层,激光的光斑为纳米尺度,受到激光照射的光敏分子反应生成新分子,根据需要加密的信息控制激光的移动,将需要加密的信息转换为新分子的特定排列,并至少两次重复写入需要加密的信息;
步骤二,利用光谱二维成像技术或扫描成像技术,以光敏分子和新分子的指纹谱为扫描对象利用低频激光扫描,得到光敏分子和新分子的强度分布成像;所述成像将看不见的光谱信息转换为可视的图像,直接呈现不同指纹谱的分子分布;
步骤三,重复扫描M次光敏分子和新分子的强度分布成像,分别得到光敏分子的强度分布IA1…IAM和新分子的强度分布IB1…IBM,得出光敏分子的平均强度分布
Figure FDA0002957620320000011
和新分子的平均强度分布
Figure FDA0002957620320000012
所述M≥2;
步骤四,获取新分子的平均强度分布IB比上光敏分子和新分子的平均强度分布之和(IA+IB)的比值,根据该比值成像得到解密信息;
所述根据该比值成像得到解密信息包括:
选取M次光敏分子和新分子的强度分布成像中的峰值,分别得到峰值的强度平均值IAP和IBP,计算得到IT=IBP/(IAP+IBP);
若所述比值大于等于IT则成像,否则不予成像。
CN202010065505.1A 2020-01-20 2020-01-20 一种利用纳米技术对信息加密读写进行纠错的方法 Active CN111312294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010065505.1A CN111312294B (zh) 2020-01-20 2020-01-20 一种利用纳米技术对信息加密读写进行纠错的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010065505.1A CN111312294B (zh) 2020-01-20 2020-01-20 一种利用纳米技术对信息加密读写进行纠错的方法

Publications (2)

Publication Number Publication Date
CN111312294A CN111312294A (zh) 2020-06-19
CN111312294B true CN111312294B (zh) 2021-04-20

Family

ID=71150974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010065505.1A Active CN111312294B (zh) 2020-01-20 2020-01-20 一种利用纳米技术对信息加密读写进行纠错的方法

Country Status (1)

Country Link
CN (1) CN111312294B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113221196A (zh) * 2021-05-13 2021-08-06 首都师范大学 一种利用纳米技术进行信息加密读写、解密及擦除方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535090A (ja) * 2004-04-29 2007-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光記憶システムの相対的レーザ強度の較正
KR101422006B1 (ko) * 2007-09-17 2014-07-23 엘지전자 주식회사 데이터의 인코딩/디코딩 방법, 데이터의 검출방법 및데이터의 기록/재생 방법
CN109598322B (zh) * 2018-11-08 2021-08-27 首都师范大学 一种利用纳米技术对信息进行加密读写的方法
CN109543426B (zh) * 2018-11-08 2023-03-31 首都师范大学 一种利用纳米技术进行信息加密处理的方法
CN109271803B (zh) * 2018-11-08 2021-09-28 首都师范大学 一种利用纳米技术进行信息加密读写的方法

Also Published As

Publication number Publication date
CN111312294A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
US20210247336A1 (en) Device and method for analysing a defect of a photolithographic mask or of a wafer
KR102508759B1 (ko) 마스크 블랭크의 결함을 보상하기 위한 방법 및 장치
CN111312294B (zh) 一种利用纳米技术对信息加密读写进行纠错的方法
US7804067B2 (en) Method of observing and method of working diamond stylus for working of atomic force microscope
CN109543426B (zh) 一种利用纳米技术进行信息加密处理的方法
WO2001063555A2 (en) Image deconvolution techniques for probe scanning apparatus
CN109271803B (zh) 一种利用纳米技术进行信息加密读写的方法
JP5031509B2 (ja) 近接場光散乱用プローブおよびその製造方法
CN109598322B (zh) 一种利用纳米技术对信息进行加密读写的方法
CN111311700B (zh) 一种利用纳米技术对信息加密读写进行纠错的方法
Magnozzi et al. Fast detection of water nanopockets underneath wet-transferred graphene
Donges et al. Machine learning enhanced in situ electron beam lithography of photonic nanostructures
Yang et al. Surface‐enhanced Raman imaging (SERI) as a technique for imaging molecular monolayers with chemical selectivity under ambient conditions
US20220299743A1 (en) 3d target for optical system characterization
Farkas et al. Parallel writing on zirconium nitride thin films by local oxidation nanolithography
JP5099824B2 (ja) ダイヤモンド様薄膜の評価方法、評価装置及び評価用プログラム
JP5055607B2 (ja) 荷電粒子ビーム描画装置を用いた荷電粒子ビーム描画方法
Srivastava et al. Tools and Techniques Used in Nanobiotechnology
WO2010000732A1 (en) Method and apparatus combining secondary ion mass spectrometry and scanning probe microscopy in one single instrument
JP2010122302A (ja) フォトマスク等の欠陥修正方法
US20240069434A1 (en) Method and apparatus for particle beam-induced processing of a defect of a microlithographic photomask
WO2023036911A1 (en) Method and apparatus for determining a beam tail of a focused particle beam
JP4448886B2 (ja) ディスク原盤露光装置及びその調整方法
Chambers II Self-Assembly Mechanisms of Organosilanes and Porphyrins Investigated with Scanning Probe Microscopy
Bonyár et al. Characterization of the shape of gold nanoparticles prepared by thermal annealing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant