CN111307763B - 中空双芯内外薄包层表面双侧镀膜pcf-spr探针 - Google Patents

中空双芯内外薄包层表面双侧镀膜pcf-spr探针 Download PDF

Info

Publication number
CN111307763B
CN111307763B CN202010352728.6A CN202010352728A CN111307763B CN 111307763 B CN111307763 B CN 111307763B CN 202010352728 A CN202010352728 A CN 202010352728A CN 111307763 B CN111307763 B CN 111307763B
Authority
CN
China
Prior art keywords
double
photonic crystal
pcf
core
gold film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010352728.6A
Other languages
English (en)
Other versions
CN111307763A (zh
Inventor
刘超
刘伟
易早
田凤军
汪发美
杨琳
刘强
苏魏全
吕靖薇
徐春红
刘睿骑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN202010352728.6A priority Critical patent/CN111307763B/zh
Publication of CN111307763A publication Critical patent/CN111307763A/zh
Application granted granted Critical
Publication of CN111307763B publication Critical patent/CN111307763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明涉及一种光纤探针,具体涉及一种工作在溶液环境下具有高灵敏度的双侧镀膜中空双芯PCF‑SPR探针,双侧镀膜中空双芯PCF‑SPR探针为光子晶体光纤、光子晶体光纤的包层内设有中心空气孔,中心空气孔的内壁上镀有内金膜,包层的外壁上镀有外金膜,两个纤芯位于内金膜和外金膜之间,且对称分布,形成双芯对称的光子晶体光纤。该探针能够使纤芯导模与两侧等离子体膜同时谐振;共振现象与单侧镀膜相比显著增强;平均光谱灵敏度为22571.43nm/RIU;平均光谱灵敏度为单侧镀膜的20倍;具有宽的工作波长范围为1000nm‑3400nm;结构简单,设计合理,经济适用,易于实际应用。

Description

中空双芯内外薄包层表面双侧镀膜PCF-SPR探针
技术领域:
本发明涉及一种光纤探针,具体涉及一种工作在溶液环境下具有高灵敏度的双侧镀膜中空双芯PCF-SPR探针。
背景技术:
表面等离子体共振(Surface Plasmon Resonance,SPR)是近年来国际上兴起的一种集应用和发展于一体的现代新型光学传感技术,是一种较为特殊的物理光学现象。因其具抗电磁干扰能力强、可实时监测、无需标记、灵敏度高及结构简单等优点在生物医学、环境监测、石油化工等诸多领域都具有极其广阔的应用前景。由于它对外界介质折射率的微小变化极为敏感,是用来检测介质折射率变化的一种光学传感技术。
光子晶体光纤(Photonic Crystal Fiber,PCF)是由于引入线缺陷(空气孔)而形成的波导,这种缺陷是在二维纤维的长度方向上制造,并且在缺陷处实现导光。与传统光纤相比,光子晶体光纤的包层是由沿轴向规则排列而成的许多周期性空气孔组成。由于空气孔的排列方式和孔径大小不同,使得其内部折射率变化极其灵活。基于光子晶体光纤的表面等离子体共振技术,因其纤芯折射率能够进行灵活设计和调控,易与表面等离子体模实现相位匹配而激发 SPR 现象,受到科研人员的密切关注。目前,相关科研人员虽然已提出了多种不同的 PCF-SPR 传感结构,但在他们所提出的结构中,金属薄膜选择镀在空气孔内侧或整个包层外侧,结果表明,工作在溶液环境下PCF-SPR探针的灵敏度并不高。
发明内容:
本发明弥补和改善了上述现有技术的不足之处,提供一种工作在溶液环境下具有高灵敏度的双侧镀膜中空双芯光子晶体光纤表面等离子体共振探针。
本发明采用的技术方案为:一种中空双芯内外薄包层表面双侧镀膜PCF-SPR探针(PCF-SPR为光子晶体光纤表面等离子体共振的缩写),所述双侧镀膜中空双芯 PCF-SPR探针为光子晶体光纤、光子晶体光纤的包层内设有中心空气孔,中心空气孔的内壁上镀有内金膜,包层的外壁上镀有外金膜,两个纤芯位于内金膜和外金膜之间,且对称分布,形成双芯对称的光子晶体光纤。
进一步地,所述中心空气孔的内径为5mm。
进一步地,所述包层的外径为11mm。
进一步地,所述纤芯的半径为1.5mm。
进一步地,所述内金膜和外金膜厚度均为50nm。
进一步地,所述包层的背景材料折射率为1.43。
进一步地,所述纤芯的材料为二氧化硅。
进一步地,所述光子晶体光纤为折射率引导型光子晶体光纤。
本发明的有益效果:提供了一种中空双芯内外薄包层表面双侧镀膜PCF-SPR探针,PCF-SPR探针由大孔洞中空双芯光纤和金膜组成,所述光子晶体光纤的包层内设有大的中心空气孔,中心空气孔内壁和包层外壁镀有金膜,纤芯位于两侧金膜之间构成双芯对称的光子晶体光纤。探针的优点如:
(1)、双侧镀膜PCF-SPR探针能够使纤芯导模与两侧等离子体膜同时谐振;
(2)、双侧镀膜PCF-SPR探针共振现象与单侧镀膜相比显著增强;
(3)、双侧镀膜PCF-SPR探针的平均光谱灵敏度为22571.43nm/RIU;
(4)、双侧镀膜PCF-SPR探针的平均光谱灵敏度为单侧镀膜的20倍;
(5)、双侧镀膜PCF-SPR探针具有宽的工作波长范围:1000nm-3400nm;
(6)、双侧镀膜PCF-SPR探针结构简单,方便设计,易于实际应用。
附图说明:
图1是实施例一的立体结构示意图;
图2是实施例一的光子晶体光纤的横截面示意图;
图3是实施例一中空双芯PCF-SPR共振波长与待测溶液折射率对应关系图。
具体实施方式:
参照各图,一种中空双芯内外薄包层表面双侧镀膜PCF-SPR探针,所述双侧镀膜中空双芯 PCF-SPR探针为光子晶体光纤1、光子晶体光纤1的包层5内设有中心空气孔3,中心空气孔3的内壁上镀有内金膜2,包层5的外壁上镀有外金膜6,两个纤芯4位于内金膜2和外金膜6之间,且对称分布,形成双芯对称的光子晶体光纤;所述中心空气孔3的内径为5mm;所述包层5的外径为11mm;所述纤芯4的半径为1.5mm;所述内金膜2和外金膜6厚度均为50nm;所述光子晶体光纤1为折射率引导型光子晶体光纤;所述包层5的背景材料折射率为1.43;所述纤芯4的材料为二氧化硅。
该双侧镀膜中空双芯 PCF-SPR探针是利用涂敷在光纤表面的两层金膜作为传感层,将金膜涂覆在中心空气孔内壁和包层外壁上,待测溶液填充到内金膜内侧和外金膜外侧。当有光射入到光子晶体光纤1内部的时候,不同波长的光分别以特定的模式在光子晶体光纤1内沿着轴心方向传播,而表面等离子体波则是以固定的模式在金膜内传播。当光子晶体光纤内某一波长的光与金膜内的表面等离子体波的波矢相同时,金膜内会发生能量耦合,光子晶体光纤内的光能回耦合到金膜内,光子晶体光纤内的光能减少,即光子晶体光纤内发生了能量损耗。能量损耗最大时对应的光波长为共振波长。通过能量损耗和共振波长的关系,画出能量的损耗谱。共振波长的大小随着内金膜内侧和外金膜外侧的待测溶液的折射率的变化而变化。当光子晶体光纤置于某种溶液时,通过计算共振波长的大小即可检测出待测溶液的折射率值,从而达到传感的目的。
通过有限元法建立本发明的传感模型,利用计算机对其传感情况进行仿真,可以得到共振波长和待测溶液折射率之间的关系曲线,如图3所示。拟合直线的拟合公式为
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE006
这里λ代表共振波长,单位为nm,n代表待测溶液折射率,单位为RIU。
本发明的平均光谱灵敏度可以通过下式求出
Figure DEST_PATH_IMAGE008
这里,Δλ代表共振波长的改变量,Δn代表待测液折射率的变化量。由此可以看出拟合直线公式的斜率即为本发明的平均光谱灵敏度,平均灵敏度的大小为22571.43nm/RIU。

Claims (1)

1.一种中空双芯内外薄包层表面双侧镀膜PCF-SPR探针,其特征在于:所述双侧镀膜中空双芯PCF-SPR探针为光子晶体光纤(1)、光子晶体光纤(1)的包层(5)内设有中心空气孔(3),中心空气孔(3)的内壁上镀有内金膜(2),包层(5)的外壁上镀有外金膜(6),两个纤芯(4)位于内金膜(2)和外金膜(6)之间,且对称分布,形成双芯对称的光子晶体光纤;所述中心空气孔(3)的内径为5μm;所述包层(5)的外径为11μm;所述纤芯(4)的半径为1.5μm;所述内金膜(2)和外金膜(6)厚度均为50nm;所述光子晶体光纤(1)为折射率引导型光子晶体光纤;所述包层(5)的背景材料折射率为1.43;所述纤芯(4)的材料为二氧化硅;所述光子晶体光纤(1)为折射率引导型光子晶体光纤。
CN202010352728.6A 2020-04-29 2020-04-29 中空双芯内外薄包层表面双侧镀膜pcf-spr探针 Active CN111307763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010352728.6A CN111307763B (zh) 2020-04-29 2020-04-29 中空双芯内外薄包层表面双侧镀膜pcf-spr探针

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010352728.6A CN111307763B (zh) 2020-04-29 2020-04-29 中空双芯内外薄包层表面双侧镀膜pcf-spr探针

Publications (2)

Publication Number Publication Date
CN111307763A CN111307763A (zh) 2020-06-19
CN111307763B true CN111307763B (zh) 2023-02-24

Family

ID=71152173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010352728.6A Active CN111307763B (zh) 2020-04-29 2020-04-29 中空双芯内外薄包层表面双侧镀膜pcf-spr探针

Country Status (1)

Country Link
CN (1) CN111307763B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376136B (zh) * 2021-06-18 2023-05-02 北京航空航天大学 一种基于双芯光子晶体光纤的荧光探测系统和方法
CN113466177B (zh) * 2021-08-24 2022-11-29 东北石油大学 大范围多功能检测气液物质的折射率型mof-spr探针

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201302545Y (zh) * 2008-09-28 2009-09-02 邢凤飞 一种光纤表面等离子体共振传感检测装置
WO2011105679A2 (ko) * 2010-02-25 2011-09-01 연세대학교 산학협력단 고감도 표면 플라즈몬 공명 센서, 표면 플라즈몬 공명 센서칩, 및 표면 플라즈몬 공명 센서 소자의 제조 방법
CN102590148A (zh) * 2012-02-28 2012-07-18 天津理工大学 一种易于实现相位匹配的光子晶体光纤spr传感模型
CN205175909U (zh) * 2015-11-05 2016-04-20 中国计量学院 一种基于光纤微环的表面等离子体共振折射率传感器
CN109358038A (zh) * 2018-11-01 2019-02-19 东北石油大学 微结构光纤表面等离子体共振多功能传感器及其制备方法
CN110108669A (zh) * 2019-05-16 2019-08-09 东北大学 一种同时测量海水盐度和温度的双spr效应光纤传感器及其方法
CN110441258A (zh) * 2019-07-12 2019-11-12 南京邮电大学 基于表面等离子体共振的探针式折射率传感器
CN110907399A (zh) * 2019-11-20 2020-03-24 河北科技大学 光子晶体光纤结构与折射率传感器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350335A (ja) * 2001-05-28 2002-12-04 Tama Tlo Kk 屈折率センサー、センサーシステムおよび光ファイバ
CN102608068B (zh) * 2012-03-09 2013-11-27 天津理工大学 一种新型结构的光子晶体光纤spr传感模型
WO2019000369A1 (zh) * 2017-06-30 2019-01-03 深圳大学 折射率传感器、其制备方法及折射率检测装置
CN107976421B (zh) * 2017-11-10 2020-09-01 东北石油大学 工作在高折射率溶液环境下的双对称pcf-spr探针
CN108872157B (zh) * 2018-04-20 2019-11-12 华中科技大学 一种侧面抛光开环型pcf-spr传感器
CN108593598B (zh) * 2018-05-04 2020-11-06 华北水利水电大学 一种检测高折射率液体的双芯光子晶体光纤传感器
CN109752345B (zh) * 2019-01-22 2021-05-11 北京交通大学 一种基于负曲率光子晶体光纤的spr低折射率传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201302545Y (zh) * 2008-09-28 2009-09-02 邢凤飞 一种光纤表面等离子体共振传感检测装置
WO2011105679A2 (ko) * 2010-02-25 2011-09-01 연세대학교 산학협력단 고감도 표면 플라즈몬 공명 센서, 표면 플라즈몬 공명 센서칩, 및 표면 플라즈몬 공명 센서 소자의 제조 방법
CN102590148A (zh) * 2012-02-28 2012-07-18 天津理工大学 一种易于实现相位匹配的光子晶体光纤spr传感模型
CN205175909U (zh) * 2015-11-05 2016-04-20 中国计量学院 一种基于光纤微环的表面等离子体共振折射率传感器
CN109358038A (zh) * 2018-11-01 2019-02-19 东北石油大学 微结构光纤表面等离子体共振多功能传感器及其制备方法
CN110108669A (zh) * 2019-05-16 2019-08-09 东北大学 一种同时测量海水盐度和温度的双spr效应光纤传感器及其方法
CN110441258A (zh) * 2019-07-12 2019-11-12 南京邮电大学 基于表面等离子体共振的探针式折射率传感器
CN110907399A (zh) * 2019-11-20 2020-03-24 河北科技大学 光子晶体光纤结构与折射率传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Two-core single-polarization optical fiber with a large hollow coated bimetallic layer";HONGKUN Q U.et al;《Applied Optics》;20180523;第2446-2451页、图1-6 *

Also Published As

Publication number Publication date
CN111307763A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
Zhao et al. Current status of optical fiber biosensor based on surface plasmon resonance
Yang et al. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance
Zhao et al. Photonic crystal fiber based surface plasmon resonance chemical sensors
Sakib et al. High performance dual core D-shape PCF-SPR sensor modeling employing gold coat
Gangwar et al. Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor
Wang et al. A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer
Liu et al. Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber
Rifat et al. A novel photonic crystal fiber biosensor using surface plasmon resonance
Jain et al. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications
CN109187440B (zh) 基于模式激发的单模-少模/多模光纤spr传感器
Zhang et al. A surface plasmon resonance sensor based on a multi-core photonic crystal fiber
CN111307763B (zh) 中空双芯内外薄包层表面双侧镀膜pcf-spr探针
Fu et al. Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires
CN109655434B (zh) 一种多参数测量的光纤lmr传感器
Liu et al. HE1, 1 mode-excited surface plasmon resonance for refractive index sensing by photonic crystal fibers with high sensitivity and long detection distance
Liu et al. Ultra-high sensitivity plasmonic sensor based on D-shaped photonic crystal fiber with offset-core
Nidaa et al. Fabrication of multi-mode tip fiber sensor based on surface plasmon resonance (SPR)
Pan et al. A high sensitivity localized surface plasmon resonance sensor based on D-shaped photonic crystal fiber for low refractive index detection
Ren et al. A High-FOM surface plasmon resonance sensor based on MMF-TUMMF-MMF structure of optical fiber
Ullah et al. Dual-side polished surface plasmon resonance–based photonic crystal fiber for refractive index sensing and polarization filtering
Mahmood et al. Simulation design of silver nanoparticle coated photonic crystal fiber sensor based on surface plasmon resonance
CN212059888U (zh) 一种纤芯上移型光子晶体光纤传感器
Seifouri et al. A photonic crystal fiber based surface plasmon resonance biosensor with elliptical and circular holes
Fu et al. A highly sensitive six-conjoined-tube anti-resonance optical fiber temperature sensor based on surface plasmon resonance
Fang et al. Double-core D-type photonic crystal fiber refractive index sensor based on grid coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant