CN111305780A - High-pressure gas impact vibration well cementation system and vibration method - Google Patents

High-pressure gas impact vibration well cementation system and vibration method Download PDF

Info

Publication number
CN111305780A
CN111305780A CN202010112234.0A CN202010112234A CN111305780A CN 111305780 A CN111305780 A CN 111305780A CN 202010112234 A CN202010112234 A CN 202010112234A CN 111305780 A CN111305780 A CN 111305780A
Authority
CN
China
Prior art keywords
well
vibration
temperature
pressure
rubber plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010112234.0A
Other languages
Chinese (zh)
Other versions
CN111305780B (en
Inventor
尹宜勇
白翰钦
陈一
柳沙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202010112234.0A priority Critical patent/CN111305780B/en
Publication of CN111305780A publication Critical patent/CN111305780A/en
Application granted granted Critical
Publication of CN111305780B publication Critical patent/CN111305780B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like

Abstract

The invention discloses a high-pressure gas impact vibration well cementation system and a vibration well cementation method, belonging to the field of oil and gas well engineering. The vibration well cementation system is characterized in that a sleeve is preset in the center of a well wall, and an annular space is formed between the sleeve and the well wall; a rubber plug is put in a proper position in the sleeve, and the upper end of the rubber plug is sealed with the inner wall of the sleeve through a sealing ring; cement slurry which is prepared outside a well and is uniformly added with high-temperature fusible aerated particles; the method comprises the following steps that a casing is put into a preset position in an oil-gas well, and cement slurry is injected into the casing; injecting a rubber plug and a sealing ring into the sleeve and then injecting drilling fluid; applying pressure to the rubber plug to enable the cement paste to reach the preset position and the preset temperature of the annular space, enabling the cement paste to move and enable the high-temperature fusible aerated particles to be melted, enabling the gas in the particles to burst to generate vibration, enabling the cement paste to generate strong vibration with uniform vibration points in the waiting solidification stage, and improving the vibration effect, so that the cement paste solidification effect is improved. Thereby improving the well cementation quality.

Description

High-pressure gas impact vibration well cementation system and vibration method
Technical Field
The invention belongs to the field of oil and gas well engineering, and particularly relates to a high-pressure gas impact vibration well cementation system and a vibration well cementation method.
Background
The well cementation is one of the most key parts in the petroleum exploitation project, and the excellent well cementation technology and process can improve the well cementation quality and prolong the service life of an oil-gas well. The vibration can improve the property of the fluid, improve the displacement efficiency, improve the cementing strength of the cement surface, shorten the cement gelling time, reduce or even eliminate the static shearing force of cement paste, so the well cementation quality can be effectively improved through vibration well cementation. However, the existing vibration cementing technology still has the problems of weak vibration strength and uneven vibration distribution. When the hydraulic pulse type vibration well cementation tool which is widely applied at present is used, the vibration of the tool only exists in the cement injection and cement slurry replacement processes, the tool cannot generate vibration in a waiting setting period, and the hydraulic pulse device is usually arranged on a casing close to the bottom of a well, the generated vibration is gradually weakened when being uploaded along the casing, so that the vibration strength of the casing in a long distance is weak, and the well cementation quality is influenced. Therefore, there is a strong need in the art for a well cementing technique that achieves uniformly distributed vibration without significant vibration attenuation, to overcome the various deficiencies in the prior art.
The invention provides a high-pressure gas impact vibration well cementation technology which comprises the following steps: under the condition of not changing the conventional well cementation process, the cement slurry can vibrate in the waiting setting stage, vibration attenuation is avoided, the vibration distribution is uniform, the vibration effect is improved, the cement slurry solidification effect is improved, and the well cementation quality is improved.
Disclosure of Invention
The invention aims to provide a high-pressure gas impact vibration well cementation system and a vibration well cementation method, which are characterized in that the underground vibration well cementation system comprises the following components: a sleeve 3 is preset in the center of a well wall 1, an annular space 8 is formed between the sleeve 3 and the well wall 1, a rubber plug 6 is put in a proper position in the sleeve 3, and the upper end of the rubber plug 6 is sealed with the inner wall of the sleeve 3 through a sealing ring 7; the injected drilling fluid 2 is arranged above a sealing ring 7 in the casing 3, cement slurry 4 is injected into a rubber plug 6 in the casing 3 and an annular space 8 of an inner cavity and an outer wall below the rubber plug, and the cement slurry 4 contains high-temperature fusible aerated particles 5.
A vibration well cementation method of a high-pressure gas impact vibration well cementation system is characterized by comprising the following steps:
step 1, a casing is put into a preset position in an oil-gas well, and an annular space is formed between the casing and a well wall of the oil-gas well;
step 2, adding high-temperature fusible aerated particles into prepared cement slurry in advance;
step 3, injecting the cement slurry added with the high-temperature fusible aerated particles in advance in the step 2 into the casing;
step 4, injecting a rubber plug and a sealing ring into the sleeve;
step 5, injecting drilling fluid into the casing;
step 6, applying pressure to the rubber plug to move cement paste;
step 7, applying pressure to the rubber plug in the step 6 to enable the cement paste to reach the preset position of the annular space and the preset temperature T through the lower port of the inner cavity of the sleeve, and melting the high-temperature fusible aerated particles;
and 8, jetting high-pressure gas to generate vibration when the high-temperature fusible aerated particles are melted.
The high-temperature fusible aerated particles and cement paste are uniformly prepared, and the preparation ratio is 1000 particles/m3-5000 particles/m3When in specific preparation, the content of the high-temperature fusible aerated particles is determined according to the well cementation requirement and the material of cement paste.
The pressure applied to the rubber plug, namely the internal pressure building, is determined according to the well cementation requirement, and the applied pressure range is 1MPa-50 MPa; in the actual process, the pressure required by the movement of the rubber plug in the front half section is smaller, the pressure required in the rear half section and before the collision pressure is larger, and the pressure is related to the liquid density difference, the well depth and the upward return distance of cement paste.
And 7, determining the preset temperature T according to the relation between the depth of the oil-gas well and the geothermal energy.
The high-pressure inert gas filled into the high-temperature fusible aerated particles is argon, nitrogen or carbon dioxide.
The shell of the high-temperature fusible aerated particle is made of a high-temperature fusible material, and the high-temperature fusible material is based on the condition that the temperature in an oil-gas well can reach the melting point of the shell; the selection of specific particle shell material needs to be calculated according to the deep well temperature
Figure BDA0002390427770000031
Post-calculation selection, wherein: t is a preset temperature; t is the wellhead temperature; and h is the downhole depth.
The high-temperature fusible aerated particle shell is made of high-temperature fusible alloy or hot melt adhesive (EVA); the fusible alloy comprises one or more of Sn, Ag, Pb, In, Au, Bi and Cd.
The invention has the beneficial effects that the tool for the high-pressure gas impact vibration well cementation technology is provided, so that the cement slurry can generate strong vibration with uniform vibration points in the waiting setting stage without changing the conventional well cementation process, the vibration attenuation is avoided, the vibration distribution is uniform, and the vibration effect is improved, so that the cement slurry solidification effect is improved, and the well cementation quality is improved. Meanwhile, the tool is simple in design and low in processing cost. The tool does not need to change the existing well cementation process, thereby simplifying the vibration well cementation process; further improving the well cementation quality.
Drawings
FIG. 1 is a schematic structural view of a vibratory cementing system.
Reference numerals in the drawings: 1-well wall, 2-drilling fluid, 3-casing, 4-cement paste, 5-high-temperature fusible aerated particles, 6-rubber plug, 7-sealing ring and 8-annular space.
FIG. 2 is a graph of oil and gas well depth versus geothermal heat.
Detailed Description
The invention provides a high-pressure gas impact vibration well cementation system and a vibration well cementation method. The invention is further described with reference to the following figures and examples.
Fig. 1 is a schematic structural view of a vibration cementing system. The underground vibration well cementation system comprises the following components: a sleeve 3 is preset in the center of the well wall 1, an annular space 8 is formed between the sleeve 3 and the well wall 1, a rubber plug 6 is put in a proper position in the sleeve 3, and the upper end of the rubber plug 6 is sealed with the inner wall of the sleeve 3 through a sealing ring 7; the injected drilling fluid 2 is arranged above a sealing ring 7 in the casing 3, cement slurry 4 is injected into a rubber plug 6 in the casing 3 and an annular space 8 of an inner cavity and an outer wall below the rubber plug, and the cement slurry 4 contains high-temperature fusible aerated particles 5.
The vibration well cementation method of the high-pressure gas impact vibration well cementation system comprises the following steps:
step 1, a casing is put into a preset position in an oil-gas well, and an annular space is formed between the casing and a well wall of the oil-gas well;
step 2, adding high-temperature fusible aerated particles into prepared cement slurry in advance;
step 3, injecting the cement slurry added with the high-temperature fusible aerated particles in advance in the step 2 into the casing;
step 4, injecting a rubber plug and a sealing ring into the sleeve;
step 5, injecting drilling fluid into the casing;
step 6, applying pressure to the rubber plug to move cement paste;
step 7, applying pressure to the rubber plug in the step 6 to enable the cement paste to reach the preset position of the annular space and the preset temperature T through the lower port of the inner cavity of the sleeve, and melting the high-temperature fusible aerated particles;
and 8, jetting high-pressure gas to generate vibration when the high-temperature fusible aerated particles are melted.
The high-temperature fusible aerated particles are uniformly prepared with cement slurry, the content of the high-temperature fusible aerated particles is determined according to the well cementation requirement and the material of the cement slurry, and the reference proportion is 1000 particles/m3-5000 particles/m3
The pressure applied to the rubber plug (namely, the internal pressure building) in the step 6 is determined according to the well cementation requirement, and the reference range is 1MPa-50 MPa. The pressure required by the movement of the rubber plug in the front half section is smaller, the pressure required in the rear half section before impact is larger, and the pressure is related to the liquid density difference, the well depth and the upward return distance of cement slurry.
The preset temperature T in the step 7 is determined according to the relation between the depth of the oil-gas well and the geothermal heat, and the relation curve diagram of the depth of the oil-gas well and the geothermal heat shown in figure 2 is referred.
The high-pressure inert gas filled into the high-temperature fusible aerated particles is argon, nitrogen or carbon dioxide, and the gas pressure is 50-100 times of the atmospheric pressure.
The high-temperature fusible aerated particle shell is made of a high-temperature fusible material, and the high-temperature fusible material is a melting point of the shell which can be reached by the temperature in an oil-gas wellThe method comprises the following steps of (1) taking; the selection of specific particle shell material needs to be calculated according to the deep well temperature
Figure BDA0002390427770000051
Post-calculation selection, wherein: t is a preset temperature; t is the wellhead temperature; h is the downhole depth, with reference to the data shown in table 1.
The high-temperature fusible aerated particle shell is made of high-temperature fusible alloy or hot melt adhesive (EVA); the fusible alloy comprises one or more of Sn, Ag, Pb, In, Au, Bi and Cd.
Examples
As shown in fig. 1, a vibratory cementing system comprising: the cement slurry 4 added with the high-temperature fusible aerated particles 5 and prepared in advance outside the well can be put into the casing 3 at a preset position in the oil gas well, an annular space 8 is formed between the casing 3 and the wall 1 of the oil gas well, and the annular space 8 is used for containing the cement slurry 4; a rubber plug 6 with a sealing ring 7 is pressed into the sleeve 3; the upper part of the sleeve is provided with drilling fluid 2; high-temperature fusible aerated particles 5 are arranged in the cement paste 4 in advance, and high-pressure gas is sprayed out after the high-temperature fusible aerated particles 5 are melted and generates vibration to act on the cement paste 4.
In the implementation method, the high-temperature fusible aerated particles are arranged at the preset position of the deep well, after the temperature reaches the melting point of the shell material of the particles, the particles are melted, high-pressure gas in the particles bursts out and generates strong impact, and the strong impact acts on the surrounding cement slurry to vibrate the cement slurry. On one hand, the high-temperature fusible aerated particles uniformly distributed in the cement paste are melted, and impact vibration is generated at each position in the cement paste, so that the whole cement paste is uniformly vibrated. Meanwhile, the high-temperature fusible inflatable particles are distributed in the cement paste body, vibration attenuation during external vibration transmission is avoided, impact vibration is fully utilized due to internal direct vibration, and a large amount of high-temperature fusible inflatable particles vibrate sequentially, so that the vibration effect is long in duration and better in effect. In the whole process, the dense high-temperature fusible aerated particles vibrate continuously, impact and influence each other at multiple points, so that the cement paste is vibrated uniformly, intensively and intensively for a long time, the aim of vibrating well cementation is fulfilled, and the quality of well cementation is improved.
In the present embodiment, the usable gas of the high-pressure gas inside the high-temperature fusible aerated granule includes inert gas such as argon gas and nitrogen gas, which is easy to obtain and low in cost, and common gas such as carbon dioxide, which does not affect cement setting or is beneficial to cement setting, may be used.
In this embodiment, the shell material of the high-temperature fusible aerated particle is a high-temperature fusible material, and generally, a high-temperature fusible alloy or a hot melt adhesive (EVA) material can be used; a partial alloy melting point reference table is provided as in table 1; the melting point requirements of different well depths on materials are different, and the specific material selection needs to be according to a deep well temperature calculation formula
Figure BDA0002390427770000061
Post-calculation selection, wherein: t is a preset temperature; t is the wellhead temperature; and h is the downhole depth.
Table 1 partial alloy melting point reference table
Figure BDA0002390427770000062
Figure BDA0002390427770000071

Claims (8)

1. A high-pressure gas impact vibration well cementation system is characterized in that the high-pressure gas impact vibration well cementation system is as follows: a sleeve (3) is preset in the center of the well wall (1), an annular space (8) is formed between the sleeve (3) and the well wall (1), a rubber plug (6) is put in a proper position in the sleeve (3), and the upper end of the rubber plug (6) is sealed with the inner wall of the sleeve (3) through a sealing ring (7); the injected drilling fluid (2) is arranged above a sealing ring (7) in the casing (3), cement slurry (4) is injected into a rubber plug (6) in the casing (3) and an annular space (8) between the lower inner cavity and the outer wall, and the cement slurry (4) contains high-temperature fusible aerated particles (5).
2. A method of vibratory cementing in a high pressure gas shock vibratory cementing system as set forth in claim 1, comprising the steps of:
step 1, a casing is put into a preset position in an oil-gas well, and an annular space is formed between the casing and a well wall of the oil-gas well;
step 2, adding high-temperature fusible aerated particles into prepared cement slurry in advance;
step 3, injecting the cement slurry added with the high-temperature fusible aerated particles in advance in the step 2 into the casing;
step 4, injecting a rubber plug and a sealing ring into the sleeve;
step 5, injecting drilling fluid into the casing;
step 6, applying pressure to the rubber plug to move cement paste;
step 7, applying pressure to the rubber plug in the step 6 to enable the cement paste to reach the preset position of the annular space and the preset temperature T through the lower port of the inner cavity of the sleeve, and melting the high-temperature fusible aerated particles;
and 8, jetting high-pressure gas to generate vibration when the high-temperature fusible aerated particles are melted.
3. The method for vibrating and cementing a well of a high-pressure gas shock vibration well cementing system according to claim 2, wherein the high-temperature fusible aerated particles are uniformly mixed with cement slurry at a ratio of 1000 particles/m3-5000 particles/m3(ii) a During the specific preparation, the content of the high-temperature fusible aerated particles is determined according to the well cementation requirement and the material of cement slurry.
4. The vibration well cementation method of the high pressure gas impact vibration well cementation system according to claim 2, wherein the pressure applied to the rubber plug in the step 6, namely the internal pressure holding, is determined according to the well cementation requirement, and the reference range is 1MPa-50 MPa; in the implementation process, the pressure required by the movement of the rubber plug in the front half section is smaller, the pressure required in the rear half section and before the collision pressure is larger, and the pressure is related to the liquid density difference, the well depth and the upward return distance of cement slurry.
5. The method for vibration cementing of a high pressure gas shock vibration cementing system according to claim 2, wherein said preset temperature T of step 7 is determined according to the relation between the depth of the well and the geothermal heat.
6. The vibration well cementation method of the high-pressure gas impact vibration well cementation system according to claim 2, wherein the high-pressure inert gas filled in the high-temperature fusible aerated particles is argon, nitrogen or carbon dioxide, and the gas pressure is 50-100 times of the atmospheric pressure.
7. The method for vibration cementing of a high pressure gas shock vibration cementing system according to claim 2, wherein the high temperature fusible aerated particle shell is a high temperature fusible material, the high temperature fusible material being based on the temperature in the oil and gas well being able to reach the melting point of the shell; the selection of specific particle shell material needs to be calculated according to the deep well temperature
Figure FDA0002390427760000021
Post-calculation selection, wherein: t is a preset temperature; t is the wellhead temperature; and h is the downhole depth.
8. The method for vibratory well cementation of a high pressure gas shock vibratory well cementation system of claim 7, wherein the high temperature fusible aerated granular shell is a high temperature fusible alloy or a hot melt adhesive (EVA) material; the fusible alloy comprises one or more of Sn, Ag, Pb, In, Au, Bi and Cd.
CN202010112234.0A 2020-02-24 2020-02-24 High-pressure gas impact vibration well cementation system and vibration method Active CN111305780B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010112234.0A CN111305780B (en) 2020-02-24 2020-02-24 High-pressure gas impact vibration well cementation system and vibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010112234.0A CN111305780B (en) 2020-02-24 2020-02-24 High-pressure gas impact vibration well cementation system and vibration method

Publications (2)

Publication Number Publication Date
CN111305780A true CN111305780A (en) 2020-06-19
CN111305780B CN111305780B (en) 2021-04-30

Family

ID=71145235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010112234.0A Active CN111305780B (en) 2020-02-24 2020-02-24 High-pressure gas impact vibration well cementation system and vibration method

Country Status (1)

Country Link
CN (1) CN111305780B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093761A1 (en) * 2006-02-15 2007-08-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
CN102108846A (en) * 2011-02-10 2011-06-29 曹凤英 Followed vibration well cementation method
CN102877813A (en) * 2012-09-30 2013-01-16 中国石油集团西部钻探工程有限公司 Halfway gas-filling well cementing method
CN202850942U (en) * 2012-10-31 2013-04-03 中国海洋石油总公司 Well cementing device capable of vibrating in multi-direction
CN104806197A (en) * 2015-04-22 2015-07-29 中国石油天然气股份有限公司 Vibrating well cementation system and vibrating well cementation method
GB2562090B (en) * 2017-05-04 2019-06-26 Ardyne Holdings Ltd Improvements in or relating to well abandonment and slot recovery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093761A1 (en) * 2006-02-15 2007-08-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
CN102108846A (en) * 2011-02-10 2011-06-29 曹凤英 Followed vibration well cementation method
CN102877813A (en) * 2012-09-30 2013-01-16 中国石油集团西部钻探工程有限公司 Halfway gas-filling well cementing method
CN202850942U (en) * 2012-10-31 2013-04-03 中国海洋石油总公司 Well cementing device capable of vibrating in multi-direction
CN104806197A (en) * 2015-04-22 2015-07-29 中国石油天然气股份有限公司 Vibrating well cementation system and vibrating well cementation method
GB2562090B (en) * 2017-05-04 2019-06-26 Ardyne Holdings Ltd Improvements in or relating to well abandonment and slot recovery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王友文等: "振动对水泥颗粒堆积效果影响规律研究", 《天然气与石油》 *
韩玉安等: "国内外振动固井技术的发展现状", 《钻采工艺》 *

Also Published As

Publication number Publication date
CN111305780B (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US6059035A (en) Subterranean zone sealing methods and compositions
NO336269B1 (en) A method for controlling an underbalance condition in a wellbore.
CN101857799A (en) Curable leaking stoppage spacer fluid and preparation method thereof
JP2017190441A (en) Additive added to muddy water, groundwater, oil or cement slurry, method for excavation, repair, cutoff or landfill of pit, and container filled with additive
RU2001126935A (en) METHOD OF DRILLING USING METAL MELT
CN106198933B (en) A kind of device of gradient layer simulation for the weak consolidated formation well cementation intensity of deep water
FR2544762A1 (en) METHOD FOR INJECTING A SOLIDIFYING AGENT INTO A POL AND APPARATUS FOR CARRYING OUT SAID METHOD
CN111305780B (en) High-pressure gas impact vibration well cementation system and vibration method
EA011132B1 (en) Method of cementing expandable well tubing
CN109026101A (en) A kind of mining anchor dispensing device and its application method
CN111561848A (en) Deep hole liquid carbon dioxide cold explosion method
CN206722796U (en) A kind of fast hard mining hole packer of filter-press type
CN101967964B (en) Method for prewashing multi-density double-setting long-sealing gas channeling prevention well cementing
CN203905895U (en) Multifunctional rotary jet grouting device for core drilling
CN207960553U (en) A kind of advanced drilling tool
CN115522591A (en) Rock breaking equipment and method for breaking soft rock by using gas expansion
CN214276687U (en) CO2 fracturing device
US10533394B2 (en) Radiation induced thickening for cement
CN110939405A (en) Process method for injecting cement in well cementation project
CN112431624A (en) One-step anchor rod and supporting operation method thereof
CN112502633A (en) Sealing method and sealing device for conduit in loess layer well bore
CN215949426U (en) Metal air-tight sealing well cementation mechanism
CN211314248U (en) Solid anchor rod slip casting tray device
RU2330933C1 (en) Method of producing formation insulation during cementation of casing pipe
CN110259412B (en) Method for temporarily blocking oil-gas well shaft

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant