CN111304509A - A kind of refined magnesium alloy by adding VN particles and preparation method thereof - Google Patents
A kind of refined magnesium alloy by adding VN particles and preparation method thereof Download PDFInfo
- Publication number
- CN111304509A CN111304509A CN201811510362.XA CN201811510362A CN111304509A CN 111304509 A CN111304509 A CN 111304509A CN 201811510362 A CN201811510362 A CN 201811510362A CN 111304509 A CN111304509 A CN 111304509A
- Authority
- CN
- China
- Prior art keywords
- magnesium alloy
- magnesium
- block
- aluminum
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 139
- 239000002245 particle Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 claims abstract description 69
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 61
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 51
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000011777 magnesium Substances 0.000 claims abstract description 42
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 34
- 239000002994 raw material Substances 0.000 claims abstract description 27
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 27
- 239000011701 zinc Substances 0.000 claims abstract description 27
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 25
- 239000011572 manganese Substances 0.000 claims abstract description 25
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 21
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000003723 Smelting Methods 0.000 claims abstract description 7
- 230000001681 protective effect Effects 0.000 claims abstract description 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- 239000011888 foil Substances 0.000 claims description 42
- 239000000843 powder Substances 0.000 claims description 31
- 230000005674 electromagnetic induction Effects 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 230000008018 melting Effects 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 7
- 230000000284 resting effect Effects 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 abstract description 3
- 238000000465 moulding Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 238000007670 refining Methods 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 241001062472 Stokellia anisodon Species 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- -1 rare earths Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及合金材料领域,具体涉及一种添加VN颗粒细化镁合金及其制备方法。The invention relates to the field of alloy materials, in particular to a refined magnesium alloy by adding VN particles and a preparation method thereof.
背景技术Background technique
镁合金为轻质合金,其具有低密度、高比强度、高阻尼性、高导电性、良好电磁屏蔽性能的优点,目前广泛应用于汽车,航空以及通信等领域。然而,与铝合金相比,镁合金的强度低和塑性变形性能差限制了其进一步在工商业中的应用。因此,近年来许多学者针对提高镁合金强度和变形性能做了大量的研究,根据Hall-Patch公式(σ=σ0+Kd-1/2)可知,细化晶粒是增强镁合金的有效方式,与此同时,细化晶粒也能有效的改善镁合金的变形性能。镁合金晶粒细化研究和应用主要集中于两个方面,一是熔铸过程中的细化,一是热加工过程中的细化。目前,熔铸过程中镁合金的细化主要是通过加入细化剂得以实现,其中包括含碳物质、单质金属、稀土、化合物颗粒、中间合金等。当前最为广泛应用的镁合金为Mg-Al系合金,加入化合物颗粒能够有效细化其晶粒。Magnesium alloys are lightweight alloys with the advantages of low density, high specific strength, high damping, high electrical conductivity, and good electromagnetic shielding performance. They are currently widely used in automobiles, aviation, and communications. However, the low strength and poor plastic deformation properties of magnesium alloys limit their further industrial and commercial applications compared with aluminum alloys. Therefore, in recent years, many scholars have done a lot of research on improving the strength and deformation properties of magnesium alloys. According to the Hall-Patch formula (σ=σ 0 +Kd -1/2 ), it can be seen that grain refinement is an effective way to strengthen magnesium alloys. At the same time, grain refinement can also effectively improve the deformation properties of magnesium alloys. The research and application of magnesium alloy grain refinement mainly focus on two aspects, one is the refinement in the melting and casting process, and the other is the refinement in the hot working process. At present, the refining of magnesium alloys in the process of melting and casting is mainly achieved by adding refining agents, including carbonaceous substances, elemental metals, rare earths, compound particles, and master alloys. At present, the most widely used magnesium alloys are Mg-Al alloys, and the addition of compound particles can effectively refine their grains.
含碳物质作为细化剂目前应用较多,但如何精准控制其加入合适总量目前仍需研究,添加较少细化效果受到影响,添加过多,则剩余的碳物质将影响材料的耐腐蚀性能;单质金属、稀土的加入也能有效细化镁合金,但冶炼过程中,由于单质金属、稀土的熔点较高,其有效添加对工艺有较高的要求,其次,熔入基体的部分金属和稀土易产生偏析,此外,单质金属、稀土的提高了合金生产的成本;化合物颗粒、中间合金也存在熔点高,及加入后成分均匀的问题。Carbon-containing substances are currently used as refiners, but how to accurately control the appropriate amount of addition of carbon-containing substances still needs to be studied. The refining effect will be affected by adding less, and if adding too much, the remaining carbon substances will affect the corrosion resistance of the material. Performance; the addition of elemental metals and rare earths can also effectively refine magnesium alloys, but in the smelting process, due to the high melting point of elemental metals and rare earths, their effective additions have higher requirements for the process, and secondly, some metals melted into the matrix. It is easy to segregate with rare earths. In addition, elemental metals and rare earths increase the cost of alloy production; compound particles and intermediate alloys also have problems of high melting point and uniform composition after addition.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是克服现有技术的不足,提供一种晶粒细化均匀且力学性能好的添加VN颗粒细化镁合金及其制备方法。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and to provide a VN particle-added refined magnesium alloy with uniform grain refinement and good mechanical properties and a preparation method thereof.
为解决上述技术问题,本发明采用以下技术方案:In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions:
一种添加VN颗粒细化镁合金,所述合金包括镁、锌、铝、锰、氮化钒,其中各组分质量分数为:铝2.5~3.5%,锌0.6~1.4%,锰0.2~1.0%,氮化钒0.5~2%,余量为镁。A refined magnesium alloy by adding VN particles, the alloy includes magnesium, zinc, aluminum, manganese, and vanadium nitride, wherein the mass fraction of each component is: aluminum 2.5-3.5%, zinc 0.6-1.4%, manganese 0.2-1.0% %, vanadium nitride is 0.5 to 2%, and the balance is magnesium.
作为一个总的发明构思,本发明还提供一种添加VN颗粒细化镁合金的制备方法,包括以下步骤:As a general inventive concept, the present invention also provides a method for preparing a refined magnesium alloy by adding VN particles, comprising the following steps:
按原料配比将镁合金原料镁、锌、铝、锰和氮化钒置于反应容器中,在保护气体氛围下进行加热熔炼和浇铸成型,得添加VN颗粒细化镁合金,氮化钒在镁合金原料中的质量分数为0.5~2%。The magnesium alloy raw materials magnesium, zinc, aluminum, manganese and vanadium nitride are placed in the reaction vessel according to the raw material ratio, and heated, smelted and casted in a protective gas atmosphere, and the magnesium alloy must be refined by adding VN particles. The mass fraction in the magnesium alloy raw material is 0.5-2%.
作为对上述技术方案的进一步改进:As a further improvement to the above technical solution:
所述加热熔炼的方式为电磁感应熔炼,具体步骤为:The heating and smelting method is electromagnetic induction smelting, and the specific steps are:
S1、按原料配比称取镁合金原料镁、铝、锰、锌和氮化钒,并将镁合金原料分成镁合金块I、镁合金粉Ⅱ和箔Ⅲ,将镁合金块I置于反应容器中,在保护气体氛围下进行电磁感应熔炼,直至镁合金块I熔化,得熔化的镁合金I;S1, take by weighing magnesium alloy raw material magnesium, aluminum, manganese, zinc and vanadium nitride by raw material ratio, and divide magnesium alloy raw material into magnesium alloy block I, magnesium alloy powder II and foil III, and place magnesium alloy block I in the reaction In the container, electromagnetic induction smelting is carried out under protective gas atmosphere, until the magnesium alloy block 1 is melted to obtain the molten magnesium alloy I;
S2、将镁合金粉Ⅱ和氮化钒粉混合均匀后压制成块,并用箔Ⅲ包覆后加入至熔化的镁合金块I中继续进行电磁感应熔炼,搅拌均匀,得熔炼后的镁合金。S2. The magnesium alloy powder II and the vanadium nitride powder are mixed uniformly and then pressed into a block, which is covered with foil III and added to the molten magnesium alloy block I to continue electromagnetic induction melting, and stir evenly to obtain a molten magnesium alloy.
所述步骤S2中,电磁感应熔炼的温度为720~760℃,时间为15~30min。In the step S2, the temperature of the electromagnetic induction melting is 720-760° C., and the time is 15-30 minutes.
所述步骤S2中,在电磁感应熔炼的同时还进行搅拌步骤,时间为10~20min。In the step S2, a stirring step is also performed while the electromagnetic induction melting is performed, and the time is 10-20 min.
所述步骤S2中,电磁感应熔炼后还包括静置步骤,所述静置时间为10~20min。In the step S2, after the electromagnetic induction melting, a resting step is further included, and the resting time is 10-20 min.
所述镁合金粉Ⅱ为镁粉,所述氮化钒粉与镁粉的质量比为1∶5,所述镁合金块I为铝块、锰块、锌块和镁块,所述箔Ⅲ为铝箔或镁箔。The magnesium alloy powder II is magnesium powder, the mass ratio of the vanadium nitride powder to the magnesium powder is 1:5, the magnesium alloy block I is aluminum block, manganese block, zinc block and magnesium block, and the foil III For aluminum foil or magnesium foil.
所述箔Ⅲ为铝箔,所述铝箔和铝块在合金原料中的质量分数为3%。The foil III is an aluminum foil, and the mass fraction of the aluminum foil and the aluminum block in the alloy raw material is 3%.
所述保护气体为CO2和SF6混合气体。The protective gas is a mixed gas of CO 2 and SF 6 .
所述氮化钒的粒径为1μm。The particle size of the vanadium nitride is 1 μm.
与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
本发明的制备方法,向镁合金原料加入细化剂氮化钒后,镁合金晶粒内部均匀分布大量氮化钒(VN)颗粒,该颗粒作为镁基体凝固时的异质形核作用,从而细化了镁合金晶粒。同时,通过本发明制备的镁合金力学性能得到了极大的改善,工艺简单,细化剂氮化钒便宜,成本低。In the preparation method of the present invention, after the refining agent vanadium nitride is added to the magnesium alloy raw material, a large number of vanadium nitride (VN) particles are uniformly distributed in the magnesium alloy crystal grains, and the particles act as heterogeneous nucleation when the magnesium matrix solidifies, thereby Magnesium alloy grains are refined. At the same time, the mechanical properties of the magnesium alloy prepared by the invention are greatly improved, the process is simple, the refining agent vanadium nitride is cheap, and the cost is low.
本发明的添加VN颗粒细化镁合金:改变镁合金的成分配比,保持Al、Zn、Mn质量分数不变,添加0.5~2%的VN作为晶粒细化剂细化镁合金晶粒。VN为面心立方结构,其晶格常数为a=4.1371 nm,α-Mg是密排六方结构,晶格常数为a=0.3209nm 和 c=0.5211 nm,用Bramfitt公式计算得知,VN和α-Mg的晶格错配度为6.85%,远小于15%,因此,VN可以作为α-Mg在凝固时的有效异质形核核心,从而细化镁合金晶粒。The present invention adds VN particles to refine the magnesium alloy: changing the composition ratio of the magnesium alloy, keeping the mass fractions of Al, Zn and Mn unchanged, adding 0.5-2% VN as a grain refiner to refine the magnesium alloy crystal grains. VN is a face-centered cubic structure, its lattice constant is a=4.1371 nm, α-Mg is a close-packed hexagonal structure, and the lattice constants are a=0.3209nm and c=0.5211 nm, calculated by Bramfitt formula, VN and α The lattice mismatch degree of -Mg is 6.85%, which is much less than 15%. Therefore, VN can serve as an effective heterogeneous nucleation core for α-Mg during solidification, thereby refining the grains of magnesium alloys.
附图说明Description of drawings
图1是本发明实施例1的添加VN颗粒细化镁合金的显微组织图。FIG. 1 is a microstructure diagram of the refined magnesium alloy by adding VN particles in Example 1 of the present invention.
图2是本发明对比例1的未添加VN颗粒细化镁合金的显微组织图。2 is a microstructure diagram of the refined magnesium alloy without adding VN particles of Comparative Example 1 of the present invention.
图3是本发明实施例2的添加VN颗粒细化镁合金的显微组织图。3 is a microstructure diagram of the refined magnesium alloy by adding VN particles in Example 2 of the present invention.
图4是本发明实施例3的添加VN颗粒细化镁合金的显微组织图。4 is a microstructure diagram of the refined magnesium alloy by adding VN particles in Example 3 of the present invention.
图5是本发明实施例1~3和对比例1的镁合金的拉伸测试结果对比图。FIG. 5 is a comparison diagram of the tensile test results of the magnesium alloys of Examples 1 to 3 of the present invention and Comparative Example 1. FIG.
具体实施方式Detailed ways
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1:Example 1:
一种添加VN颗粒细化镁合金,包括Mg、Al、Mn、VN,其中各组分质量分数为:3%Al、1%Zn、0.2%Mn、0.5%VN,余量为Mg。A refined magnesium alloy by adding VN particles includes Mg, Al, Mn and VN, wherein the mass fraction of each component is: 3% Al, 1% Zn, 0.2% Mn, 0.5% VN, and the balance is Mg.
本实施例的一种添加VN颗粒镁合金制备方法,具体步骤如下:A preparation method of a magnesium alloy with VN particles added in the present embodiment, the specific steps are as follows:
(1)配料:按照前述合金的设计成分质量分数称取原料:(1) Ingredients: Weigh the raw materials according to the mass fraction of the design components of the aforementioned alloys:
将镁合金中的镁、铝、锰、锌分成三组,第一组为镁合金块I,本实施例为铝块、锰块、锌块和镁块,第二组为镁合金粉Ⅱ,本实施例为镁粉,第三组为镁合金箔Ⅲ,本实施例为铝箔,其中,镁合金I块中的镁块和镁合金Ⅱ中的镁粉质量之和在原料中的质量分数为95.3%,镁合金块I中的铝块和镁合金箔Ⅲ中的铝箔质量之和在原料中所占的质量分数为3%,氮化钒(VN)粉和镁合金粉Ⅱ中的镁粉的质量比为1∶5,铝块和铝箔质量比为100∶1。The magnesium, aluminum, manganese and zinc in the magnesium alloy are divided into three groups, the first group is magnesium alloy block I, the present embodiment is aluminum block, manganese block, zinc block and magnesium block, and the second group is magnesium alloy powder II, This embodiment is magnesium powder, the third group is magnesium alloy foil III, and this embodiment is aluminum foil, wherein the mass fraction of the sum of the mass of the magnesium block in the magnesium alloy block I and the magnesium powder in the magnesium alloy II in the raw material is 95.3%, the mass fraction of the sum of the mass of the aluminum block in the magnesium alloy block I and the aluminum foil in the magnesium alloy foil III is 3% in the raw material, and the magnesium powder in the vanadium nitride (VN) powder and the magnesium alloy powder II The mass ratio of aluminum block and aluminum foil is 1:5, and the mass ratio of aluminum block and aluminum foil is 100:1.
(2)将步骤(1)配比好的镁合金块I放入不锈钢坩埚中,在CO2和SF6混合气体保护下电磁感应炉熔炼,将电磁感应炉温度升至750℃,直至镁合金块I完全熔化,得熔化的镁合金块I。(2) Put the magnesium alloy block I proportioned in step (1) into a stainless steel crucible, smelt in an electromagnetic induction furnace under the protection of CO 2 and SF 6 mixed gas, and raise the temperature of the electromagnetic induction furnace to 750 ° C until the magnesium alloy The block I was completely melted, and a molten magnesium alloy block I was obtained.
(3)将镁合金粉Ⅱ与VN粉用球磨机混合均匀,压制成5mm厚的小块,用镁合金箔Ⅲ包覆,向熔化的镁合金块I中加入用镁合金箔Ⅲ包覆的VN粉和镁合金粉Ⅱ,搅拌并继续进行电磁感应熔炼15分钟,静置10分钟,得熔炼后的镁合金。(3) Mix the magnesium alloy powder II and VN powder uniformly with a ball mill, press them into small pieces with a thickness of 5 mm, cover with magnesium alloy foil III, and add VN covered with magnesium alloy foil III to the molten magnesium alloy block I. Powder and magnesium alloy powder II, stir and continue electromagnetic induction melting for 15 minutes, and let stand for 10 minutes to obtain the magnesium alloy after melting.
(4)用铁钳将不锈钢坩埚取出,将熔炼后的合金浇铸成型,得添加VN颗粒细化镁合金。(4) Take out the stainless steel crucible with iron tongs, cast the smelted alloy into shape, and add VN particles to refine the magnesium alloy.
本实施例中,将镁合金的镁、铝、锰、锌分成三组,氮化钒粉和镁粉混合压制成块并用铝箔包覆,这样可使得氮化钒与镁合金中的其他成分更好的融合,混合均匀。在其他实施例中,将氮化钒粉和镁粉(或镁合金的镁、铝、锰、锌的一种或多种)混合压制成块用镁箔包覆。In this embodiment, magnesium, aluminum, manganese and zinc of magnesium alloy are divided into three groups, vanadium nitride powder and magnesium powder are mixed and pressed into blocks and covered with aluminum foil, which can make vanadium nitride and other components in magnesium alloy more stable. Good fusion, mix well. In other embodiments, vanadium nitride powder and magnesium powder (or one or more of magnesium, aluminum, manganese, and zinc of magnesium alloys) are mixed and pressed into a block and wrapped with magnesium foil.
本实施例制备的添加VN颗粒的镁合金组织见图1,晶粒尺寸为62.5μm。The structure of the magnesium alloy prepared by adding VN particles is shown in Figure 1, and the grain size is 62.5 μm.
对本实施例制得的镁合金进行拉伸测试,其屈服强度、最大拉伸强度和延伸率分别为47.1±1.13MPa、197.4±6.8MPa和17.8±1.3%。The magnesium alloy prepared in this example is subjected to tensile test, and its yield strength, maximum tensile strength and elongation are 47.1±1.13MPa, 197.4±6.8MPa and 17.8±1.3%, respectively.
对比例1Comparative Example 1
一种未添加VN颗粒的镁合金,包括Mg、Al、Mn,其中各组分质量分数为:3%Al、1%Zn、0.2%Mn,余量为Mg。A magnesium alloy without adding VN particles, comprising Mg, Al and Mn, wherein the mass fraction of each component is: 3% Al, 1% Zn, 0.2% Mn, and the balance is Mg.
作为空白对比例,本对比例提供一种镁合金的制备方法,具体制备步骤如下:As a blank comparative example, this comparative example provides a preparation method of a magnesium alloy, and the specific preparation steps are as follows:
(1)配料:合金的设计成分质量分数为:3%Al、1%Zn、0.2%Mn,余量为Mg。(1) Ingredients: The mass fraction of the alloy's design components is: 3% Al, 1% Zn, 0.2% Mn, and the balance is Mg.
(2)将步骤(1)配比好的合金锭放入不锈钢坩埚中,在CO2和SF6混合气体保护下电磁感应炉熔炼,将感应炉温度升至750℃,待合金锭完全熔化后,静置10分钟。(2) Put the alloy ingot proportioned in step (1) into a stainless steel crucible, smelt in an electromagnetic induction furnace under the protection of CO 2 and SF 6 mixed gas, raise the temperature of the induction furnace to 750°C, and wait until the alloy ingot is completely melted. , let stand for 10 minutes.
(3)用铁钳将不锈钢坩埚取出,将熔融的合金浇铸成型,得镁合金。(3) Take out the stainless steel crucible with iron tongs, and cast the molten alloy to obtain magnesium alloy.
本对比例制备的未添加VN颗粒的镁合金组织见图2,晶粒尺寸为115.7μm。The structure of the magnesium alloy without adding VN particles prepared in this comparative example is shown in Figure 2, and the grain size is 115.7 μm.
对本对比例制得的镁合金进行拉伸测试,其屈服强度、最大拉伸强度和延伸率分别为39.5±0.85MPa、140.7±9.9MPa和10.6±1.4%。Tensile tests were performed on the magnesium alloys prepared in this comparative example, and the yield strength, maximum tensile strength and elongation were 39.5±0.85MPa, 140.7±9.9MPa and 10.6±1.4%, respectively.
实施例2Example 2
一种添加VN颗粒细化镁合金,包括Mg、Al、Mn、VN,其中各组分质量分数为:3%Al、1%Zn、0.2%Mn、1%VN,余量为Mg。A refined magnesium alloy by adding VN particles includes Mg, Al, Mn, and VN, wherein the mass fraction of each component is: 3% Al, 1% Zn, 0.2% Mn, 1% VN, and the balance is Mg.
(1)配料:按照前述合金的设计成分质量分数称取原料:(1) Ingredients: Weigh the raw materials according to the mass fraction of the design components of the aforementioned alloys:
将镁合金中的镁、铝、锰、锌分成三组,第一组为镁合金块I,本实施例为铝块、锰块、锌块和镁块,第二组为镁合金粉Ⅱ,本实施例为镁粉,第三组为镁合金箔Ⅲ,本实施例为铝箔,其中,镁合金I块中的镁块和镁合金Ⅱ中的镁粉质量之和在原料中的质量分数为94.8%,镁合金块I中的铝块和镁合金箔Ⅲ中的铝箔质量之和在原料中所占的质量分数为3%,氮化钒(VN)粉和镁合金粉Ⅱ中的镁粉的质量比为1∶5,铝块和铝箔质量比为100∶1。The magnesium, aluminum, manganese and zinc in the magnesium alloy are divided into three groups, the first group is magnesium alloy block I, the present embodiment is aluminum block, manganese block, zinc block and magnesium block, and the second group is magnesium alloy powder II, This embodiment is magnesium powder, the third group is magnesium alloy foil III, and this embodiment is aluminum foil, wherein the mass fraction of the sum of the mass of the magnesium block in the magnesium alloy block I and the magnesium powder in the magnesium alloy II in the raw material is 94.8%, the sum of the mass of the aluminum block in the magnesium alloy block I and the aluminum foil in the magnesium alloy foil III is 3% in the raw material, and the vanadium nitride (VN) powder and the magnesium powder in the magnesium alloy powder II The mass ratio of aluminum block and aluminum foil is 1:5, and the mass ratio of aluminum block and aluminum foil is 100:1.
(2)将步骤(1)配比好的镁合块金I放入不锈钢坩埚中,在CO2和SF6混合气体保护下电磁感应炉熔炼,将电磁感应炉温度升至750℃,直至镁合金块I完全熔化,得熔化的镁合金块I。(2) Put the good magnesium alloy gold I in step (1) into a stainless steel crucible, smelt in an electromagnetic induction furnace under the protection of CO 2 and SF 6 mixed gas, and raise the temperature of the electromagnetic induction furnace to 750 ° C until the magnesium The alloy block I is completely melted to obtain a molten magnesium alloy block I.
(3)将镁合金粉Ⅱ与VN粉用球磨机混合均匀,压制成5mm厚的小块,用镁合金箔Ⅲ包覆,向熔化的镁合金块I中加入用镁合金箔Ⅲ包覆的VN粉和镁合金粉Ⅱ,搅拌并继续进行电磁感应熔炼15分钟,静置10分钟,得熔炼后的镁合金。(3) Mix the magnesium alloy powder II and VN powder uniformly with a ball mill, press them into small pieces with a thickness of 5 mm, cover with magnesium alloy foil III, and add VN covered with magnesium alloy foil III to the molten magnesium alloy block I. Powder and magnesium alloy powder II, stir and continue electromagnetic induction melting for 15 minutes, and let stand for 10 minutes to obtain the magnesium alloy after melting.
(4)用铁钳将不锈钢坩埚取出,将熔炼后的合金浇铸成型,得添加VN颗粒细化镁合金。(4) Take out the stainless steel crucible with iron tongs, cast the smelted alloy into shape, and add VN particles to refine the magnesium alloy.
本实施例制备的添加VN颗粒的镁合金组织见图3,其晶粒尺寸为67.5μm。The structure of the magnesium alloy prepared in this example with the addition of VN particles is shown in Figure 3, and the grain size is 67.5 μm.
对本实施例制备的添加VN颗粒的镁合金进行拉伸测试,其屈服强度、最大拉伸强度和延伸率分别为50.3±1.35MPa、184.3±10.2MPa和12.4±1.9%。Tensile tests were carried out on the magnesium alloys with VN particles added in this example, and the yield strength, maximum tensile strength and elongation were 50.3±1.35MPa, 184.3±10.2MPa and 12.4±1.9%, respectively.
实施例3Example 3
一种添加VN颗粒细化镁合金,包括Mg、Al、Mn、VN,其中各组分质量分数为:3%Al、1%Zn、0.2%Mn、2%VN,余量为Mg。A refined magnesium alloy by adding VN particles includes Mg, Al, Mn and VN, wherein the mass fraction of each component is: 3% Al, 1% Zn, 0.2% Mn, 2% VN, and the balance is Mg.
(1)配料:按照前述合金的设计成分质量分数称取原料:(1) Ingredients: Weigh the raw materials according to the mass fraction of the design components of the aforementioned alloys:
将镁合金中的镁、铝、锰、锌分成三组,第一组为镁合金块I,本实施例为铝块、锰块、锌块和镁块,第二组为镁合金粉Ⅱ,本实施例为镁粉,第三组为镁合金箔Ⅲ,本实施例为铝箔,其中,镁合金I块中的镁块和镁合金Ⅱ中的镁粉质量之和在原料中的质量分数为93.8%,镁合金块I中的铝块和镁合金箔Ⅲ中的铝箔质量之和在原料中所占的质量分数为3%,氮化钒(VN)粉和镁合金粉Ⅱ中的镁粉的质量比为1∶5,铝块和铝箔质量比为100:1。The magnesium, aluminum, manganese and zinc in the magnesium alloy are divided into three groups, the first group is magnesium alloy block I, the present embodiment is aluminum block, manganese block, zinc block and magnesium block, and the second group is magnesium alloy powder II, This embodiment is magnesium powder, the third group is magnesium alloy foil III, and this embodiment is aluminum foil, wherein the mass fraction of the sum of the mass of the magnesium block in the magnesium alloy block I and the magnesium powder in the magnesium alloy II in the raw material is 93.8%, the mass fraction of the sum of the mass of the aluminum block in the magnesium alloy block I and the aluminum foil in the magnesium alloy foil III is 3% in the raw material, and the magnesium powder in the vanadium nitride (VN) powder and the magnesium alloy powder II The mass ratio of aluminum block and aluminum foil is 1:5, and the mass ratio of aluminum block and aluminum foil is 100:1.
(2)将步骤(1)配比好的镁合金块I(放入不锈钢坩埚中,在CO2和SF6混合气体保护下电磁感应炉熔炼,将电磁感应炉温度升至750℃,直至镁合金块I完全熔化。(2) Put the magnesium alloy block I (in the proportion of step (1)) into a stainless steel crucible, smelt in an electromagnetic induction furnace under the protection of CO 2 and SF 6 mixed gas, and raise the temperature of the electromagnetic induction furnace to 750 ° C until the magnesium alloy Ingot I was completely melted.
(3)将镁合金粉Ⅱ与VN粉用球磨机混合均匀,压制成5mm厚的小块,用镁合金箔Ⅲ包覆,向熔化的镁合金I中加入用镁合金箔Ⅲ包覆的VN粉和镁合粉Ⅱ,搅拌并继续进行电磁感应熔炼15分钟,静置10分钟,得熔炼后的镁合金。(3) Mix the magnesium alloy powder II and VN powder uniformly with a ball mill, press them into small pieces with a thickness of 5 mm, cover with magnesium alloy foil III, and add the VN powder covered with magnesium alloy foil III to the molten magnesium alloy I Mix powder II with magnesium, stir and continue electromagnetic induction melting for 15 minutes, and let stand for 10 minutes to obtain the magnesium alloy after melting.
(4)用铁钳将不锈钢坩埚取出,将熔炼后的合金浇铸成型,得添加VN颗粒细化镁合金。(4) Take out the stainless steel crucible with iron tongs, cast the smelted alloy into shape, and add VN particles to refine the magnesium alloy.
本实施例所制备的添加VN颗粒的镁合金组织见图4,其晶粒尺寸为69.8μm。The structure of the magnesium alloy prepared with VN particles added in this example is shown in Figure 4, and the grain size is 69.8 μm.
对所制备的添加VN颗粒的AZ31镁合金进行拉伸测试,其屈服强度、最大拉伸强度和延伸率分别为45.1±0.95MPa、145.2±8.6MPa和7.6±0.8%。The yield strength, maximum tensile strength and elongation were 45.1±0.95MPa, 145.2±8.6MPa and 7.6±0.8% respectively for the prepared AZ31 magnesium alloys with VN particles added.
相对于对比例1,经本发明方法制备的添加VN颗粒细化镁合金,其晶粒尺寸由115.7μm降至最小为62.5μm,晶粒细化效果十分显著。Compared with Comparative Example 1, the grain size of the refined magnesium alloy by adding VN particles prepared by the method of the present invention is reduced from 115.7 μm to a minimum of 62.5 μm, and the grain refining effect is very significant.
图5为实施例1~3和对比例1所制备的镁合金的拉伸测试结果对比,由图可知,添加VN后镁合金的力学性能也得到了明显的改善。Figure 5 is a comparison of the tensile test results of the magnesium alloys prepared in Examples 1 to 3 and Comparative Example 1. It can be seen from the figure that the mechanical properties of the magnesium alloys are also significantly improved after VN is added.
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art, without departing from the scope of the technical solution of the present invention, can make many possible changes and modifications to the technical solution of the present invention by using the technical content disclosed above, or modify it into an equivalent implementation of equivalent changes. example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention should fall within the protection scope of the technical solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811510362.XA CN111304509A (en) | 2018-12-11 | 2018-12-11 | A kind of refined magnesium alloy by adding VN particles and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811510362.XA CN111304509A (en) | 2018-12-11 | 2018-12-11 | A kind of refined magnesium alloy by adding VN particles and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111304509A true CN111304509A (en) | 2020-06-19 |
Family
ID=71144681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811510362.XA Pending CN111304509A (en) | 2018-12-11 | 2018-12-11 | A kind of refined magnesium alloy by adding VN particles and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111304509A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112831739A (en) * | 2020-12-31 | 2021-05-25 | 长沙理工大学 | Processing Method for Improving High Temperature Creep Properties of Magnesium Alloys by Rolling and Hammering |
CN112921226A (en) * | 2021-02-16 | 2021-06-08 | 河南工学院 | Mg-AlN master alloy grain refiner for magnesium-aluminum alloy and preparation method thereof |
CN113174519A (en) * | 2021-03-23 | 2021-07-27 | 山东科技大学 | Superfine vanadium particle reinforced fine-grain magnesium-based composite material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101259522A (en) * | 2008-04-11 | 2008-09-10 | 东北大学 | A continuous rheological forming method for preparing magnesium alloy profiles |
CN102758110A (en) * | 2012-07-09 | 2012-10-31 | 无锡福镁轻合金科技有限公司 | Magnesium alloy LED (Light Emitting Diode) tube profile and extrusion molding process thereof |
CN105088041A (en) * | 2015-08-10 | 2015-11-25 | 东莞粤鲁特同鑫数控设备有限公司 | Magnesium Alloy Phone Case |
CN107227415A (en) * | 2017-06-26 | 2017-10-03 | 重庆文理学院 | Magnesium intermediate alloy grain refiner containing vanadium and its preparation method and application |
-
2018
- 2018-12-11 CN CN201811510362.XA patent/CN111304509A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101259522A (en) * | 2008-04-11 | 2008-09-10 | 东北大学 | A continuous rheological forming method for preparing magnesium alloy profiles |
CN102758110A (en) * | 2012-07-09 | 2012-10-31 | 无锡福镁轻合金科技有限公司 | Magnesium alloy LED (Light Emitting Diode) tube profile and extrusion molding process thereof |
CN105088041A (en) * | 2015-08-10 | 2015-11-25 | 东莞粤鲁特同鑫数控设备有限公司 | Magnesium Alloy Phone Case |
CN107227415A (en) * | 2017-06-26 | 2017-10-03 | 重庆文理学院 | Magnesium intermediate alloy grain refiner containing vanadium and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
WEI QIU等: "Utilization of VN particles for grain refinement and mechanical properties of AZ31 magnesium alloy", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112831739A (en) * | 2020-12-31 | 2021-05-25 | 长沙理工大学 | Processing Method for Improving High Temperature Creep Properties of Magnesium Alloys by Rolling and Hammering |
CN112831739B (en) * | 2020-12-31 | 2022-01-28 | 长沙理工大学 | Processing Method for Improving High Temperature Creep Properties of Magnesium Alloys by Rolling and Hammering |
CN112921226A (en) * | 2021-02-16 | 2021-06-08 | 河南工学院 | Mg-AlN master alloy grain refiner for magnesium-aluminum alloy and preparation method thereof |
CN112921226B (en) * | 2021-02-16 | 2022-05-17 | 河南工学院 | A kind of Mg-AlN master alloy grain refiner for magnesium-aluminum alloy and preparation method thereof |
CN113174519A (en) * | 2021-03-23 | 2021-07-27 | 山东科技大学 | Superfine vanadium particle reinforced fine-grain magnesium-based composite material and preparation method thereof |
CN113174519B (en) * | 2021-03-23 | 2022-04-29 | 山东科技大学 | Superfine vanadium particle reinforced fine-grain magnesium-based composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102154580B (en) | High-intensity heat-resistant magnesium alloy material and preparation process thereof | |
CN106676357A (en) | High-plasticity magnesium alloy and preparation method thereof | |
CN103602865A (en) | Copper-containing heat-resistant magnesium-tin alloy and preparation method thereof | |
CN104099502B (en) | A kind of magnesium lithium alloy and preparation method thereof and magnesium lithium alloy preparation of plates method | |
CN101857934B (en) | Heat-resistant magnesium alloy and preparation method thereof | |
CN107858574A (en) | A kind of weak texture wrought magnesium alloy of multielement complex intensifying and preparation method thereof | |
CN110408807A (en) | A kind of hypoeutectic Al-Si casting alloy and preparation method thereof | |
CN111304509A (en) | A kind of refined magnesium alloy by adding VN particles and preparation method thereof | |
CN107815575A (en) | A kind of magnesium alloy ingot casting | |
CN112030047A (en) | Preparation method of high-hardness fine-grain rare earth aluminum alloy material | |
CN117646138A (en) | Explosion-proof aluminum alloy material and preparation method thereof | |
CN108642357B (en) | A kind of Nd-containing casting ultra-light high-strength magnesium-lithium alloy and its preparation method | |
CN102011072A (en) | Preparation and ageing treatment process for novel Al-Mg-Si-Er aluminum alloy plate material | |
CN103233138B (en) | Mg-Al series magnesium alloy grain-refining agent and preparation method thereof | |
CN102212724A (en) | Al-Zr-B intermediate alloy as well as preparation method and application thereof | |
CN104862567A (en) | High-Sn wrought magnesium alloy and preparation method of high-Sn wrought magnesium alloy panel | |
CN105112828B (en) | Regulating method for LPSO (long period stacking ordered) structure phase of casting Mg-Zn-Y magnesium alloy | |
CN108570586B (en) | High-plasticity heat-resistant magnesium alloy and preparation method thereof | |
CN106978557A (en) | A kind of magnesium lithium alloy and preparation method thereof | |
CN107177764A (en) | A kind of high strength and low cost cast magnesium alloy and preparation method thereof | |
CN106244838B (en) | Niobium titanium carbon Al-alloy alterant and preparation method thereof | |
CN102277521A (en) | High-temperature high-tenacity single-phase solid-solution magnesium rare earth base alloy and preparation method thereof | |
CN101880806B (en) | Heatproof magnesium alloy and preparation method thereof | |
CN105063448B (en) | Enhanced LPSO structures Mg Zn Y magnesium alloys of a kind of Icosahedral phases and preparation method thereof | |
CN104894402A (en) | Refining method for aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200619 |
|
RJ01 | Rejection of invention patent application after publication |