CN111303471A - 一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法 - Google Patents

一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法 Download PDF

Info

Publication number
CN111303471A
CN111303471A CN202010193613.7A CN202010193613A CN111303471A CN 111303471 A CN111303471 A CN 111303471A CN 202010193613 A CN202010193613 A CN 202010193613A CN 111303471 A CN111303471 A CN 111303471A
Authority
CN
China
Prior art keywords
titanium dioxide
film
nano titanium
ptfe
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010193613.7A
Other languages
English (en)
Inventor
吕亮
何明平
王玉林
吴越超
朱鹏江
黄振轩
谢作法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quzhou University
Original Assignee
Quzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quzhou University filed Critical Quzhou University
Priority to CN202010193613.7A priority Critical patent/CN111303471A/zh
Publication of CN111303471A publication Critical patent/CN111303471A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

本发明公开了一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法。采用激光照射法,在聚四氟乙烯(PTFE)薄膜表面焊接纳米二氧化钛,制得纳米二氧化钛/聚四氟乙烯薄膜,具有亲水性好、耐磨性好和自洁净化空气的作用。具体制备方法包括下述步骤:1)将PTFE薄膜平铺,在其表面均匀铺上一层纳米二氧化钛,再以一定压力进行冷压,使纳米二氧化钛嵌入PTFE薄膜表面;2)再对PTFE薄膜表面进行激光照射,利用激光束的热效应使薄膜表面被照射到的微小区域瞬间熔融,熔体将该区域表面粘附的纳米片包围起来,待熔体冷却固化时,就可以将纳米二氧化钛锚定在PTFE薄膜表面,从而实现粉末材料与PTFE表面的有效焊接,制得纳米二氧化钛/聚四氟乙烯薄膜。本发明采用的激光焊接法工艺简单,成本低,且可有效改善PTFE薄膜的表面耐磨性、亲水性,并起到自洁净化空气的作用。

Description

一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法
技术领域
本发明涉及一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,特别是提供了一种利用激光热效应将纳米二氧化钛焊接于聚四氟乙烯表面制备复合薄膜的方法。
背景技术
聚四氟乙烯(PTFE)薄膜是由聚四氟乙烯悬浮树脂经冷压烧结、车削、压延制成。PTFE分子中的—CF2-重复单元呈锯齿形状排列,由于氟原子半径比氢原子稍大,所以相邻的-CF2-单元不能完全按反式交叉取向,而是形成一个螺旋状的扭曲链,氟原子几乎覆盖了整个高分子链的表面,这种几乎无间隙的空间屏障使得任何原子或基团都不能进入其结构内部而破坏碳链。PTFE 自身的结构特点使它具有优异的自润滑性能、化学稳定性能和耐高低温性能,良好的电绝缘性能、耐候性能和不燃性能。
然而,其分子结构特点也造成了PTFE 薄膜比表面积较小、表面能较低、与其它材料间的粘接性能较差等缺点,不利于涂装和粘接,耐摩擦性能也不太理想,应用于高端建筑用薄膜上还需进行表面改性。
近年来,国内外研究人员通过对PTFE薄膜进行表面改性处理,以期提高PTFE 薄膜的相关性能。聚四氟乙烯薄膜表面改性的目的主要是为了提高其表面亲水性,改善与其他材料的粘接性能。PTFE薄膜表面改性的技术种类较多,例如钠-萘络合物化学处理、激光辐射改性、离子注入改性、高温熔融法、高能辐射接枝改性、等离子体改性方法等。这些方法但都具有相应的缺点。钠-萘络合物处理剂有毒,有腐蚀性,处理后表面变色,长时间暴露在光照下,粘结性能严重降低;激光辐射改性方法对使用的激光源要求苛刻,需满足以下条件:激光束的振荡波长能被 PTFE 吸收,激光束的光子能量大于 PTFE 的 C-F 键能;离子注入改性是将高能量的离子束入射到材料中,离子束与材料中的原子或者分子发生一系列的物理化学反应,改变材料的结构和性能,但是处理设备价格昂贵;高温熔融法的缺点是聚四氟乙烯在高温下尺寸稳定性较差,不易保持形状,且高温可能造成材料本体的损伤;高能辐射改性问题是,辐射不仅会对表面起作用,而且会对本体造成损害,聚四氟乙烯不耐辐射,会造成降解,机械性能下降,而且辐射对操作人员也可能有不良的影响,需做好防护措施;等离子体改性存在处理设备价格昂贵、处理后效果维持时间不长等不足。因此,构建一种简单、廉价、处理效果稳定的PTFE薄膜表面改性工艺,是提高PTFE薄膜性能的重要挑战。
激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。激光焊接具有深度比大、热影响区域小、表面成形好等特点。不仅可以应用于焊接金属,也可用于焊接塑料,或者是将塑料与金属焊接结合。但是目前的激光焊接基本上都是对块体材料之间进行焊接,鲜有报道块体材料与纳米粉末材料之间的焊接。
根据现有技术存在的问题,为了改善PTFE薄膜的耐磨性能、亲水性能等,本发明利用激光热效应将纳米材料焊接于聚四氟乙烯薄膜表面进行改性,具有工艺简单,设备价格低廉,而且纳米二氧化钛与聚四氟乙烯薄膜结合牢固,稳定性好、耐候性好,同时还具有自洁净化空气作用。
发明内容
本发明的目的是提供一种利用激光热效应将纳米二氧化钛焊接于聚四氟乙烯表面制备复合薄膜的方法。
其特征在于,所述改性方法包括:
(1)纳米二氧化钛在PTFE薄膜表面的嵌入
将PTFE薄膜平铺,在其表面均匀铺上一层纳米二氧化钛,再以一定压力进行冷压,使纳米二氧化钛嵌入PTFE薄膜表面,得到纳米二氧化钛覆盖膜;
(2)纳米二氧化钛在PTFE表面的焊接
对所得纳米二氧化钛覆盖膜表面进行激光照射,利用激光束的热效应使薄膜表面被照射到的微小区域瞬间熔融,熔体将该区域表面粘附的纳米片包围起来,待熔体冷却固化时,就可以将纳米二氧化钛锚定在PTFE薄膜表面,从而实现纳米二氧化钛与PTFE薄膜表面的有效焊接,制得纳米二氧化钛/聚四氟乙烯薄膜。
上述所述纳米二氧化钛/聚四氟乙烯薄膜,其特征在于:所述纳米二氧化钛用量为聚四氟乙烯的0.1-10 wt%。
上述所述纳米二氧化钛/聚四氟乙烯薄膜,其特征在于:所述聚四氟乙烯薄膜厚度为0.1-2 mm。
上述所述纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,其特征在于:所述步骤1)中,冷压压力为100-140 MPa。
上述所述纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,其特征在于:所述步骤2)中,所用激光功率为0.1-1 W。
上述所述纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,其特征在于:所述步骤2)中,所用激光焊接厚度为0.1-1 mm。
具体实施方式
以下结合具体实施例对本发明进一步描述。
实施例1
本实施例的制备方法为:
(1)将厚度为1mm的PTFE薄膜裁成边长为20 cm的正方形,称取2g纳米二氧化钛,将其均匀铺展于PTFE薄膜表面,在100 MPa压力下进行冷压,保压一段时间。
(2)将步骤(1)所得覆膜放于激光雕刻机下,调节激光雕刻机的激光光斑,使其聚焦,调节激光功率为0.1 W,雕刻深度为0.1 mm,对PTFE薄膜表面进行照射,使PTFE薄膜表面被照射到的微小区域瞬间熔融,冷却固化,制得纳米二氧化钛/PTFE薄膜。
对上述制备的复合薄膜样品进行磨损性能、亲水性测试,其磨耗量为0.0154g,水接触角为65.4°。
实施例2
本实施例的制备方法为:
(1)将厚度为2mm的PTFE薄膜裁成边长为20 cm的正方形,称取5g纳米二氧化钛,将其均匀铺展于PTFE薄膜表面,在140 MPa压力下进行冷压,保压一段时间。
(2)将步骤(1)所得覆膜放于激光雕刻机下,调节激光雕刻机的激光光斑,使其聚焦,调节激光功率为0.2 W,雕刻深度为0.5 mm,对PTFE薄膜表面进行照射,使PTFE薄膜表面被照射到的微小区域瞬间熔融,冷却固化,制得纳米二氧化钛/PTFE薄膜。
对上述制备的复合薄膜样品进行磨损性能、亲水性测试,其磨耗量为0.0113g,水接触角为60.1°。
实施例3
本实施例的制备方法为:
(1)将厚度为1.5mm的PTFE薄膜裁成边长为20 cm的正方形,称取5g纳米二氧化钛,将其均匀铺展于PTFE薄膜表面,在120 MPa压力下进行冷压,保压一段时间。
(2)将步骤(1)所得覆膜放于激光雕刻机下,调节激光雕刻机的激光光斑,使其聚焦,调节激光功率为0.2 W,雕刻深度为0.5 mm,对PTFE薄膜表面进行照射,使PTFE薄膜表面被照射到的微小区域瞬间熔融,冷却固化,制得纳米二氧化钛/PTFE薄膜。
对上述制备的复合材料样品进行测试,其磨耗量为0.0123 g,水接触角为63.8°。
上述对实施例的描述是为了便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域的技术人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用于其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (6)

1.一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,其特征在于:采用激光照射焊接法,在聚四氟乙烯(PTFE)薄膜表面焊接纳米二氧化钛,从而提高薄膜表面耐磨性和亲水性,并具有自洁净化空气的功能。具体制备方法步骤如下:
(1)纳米二氧化钛在PTFE薄膜表面的嵌入
将PTFE薄膜平铺,在其表面均匀铺上一层纳米二氧化钛,再以一定压力进行冷压,使纳米二氧化钛嵌入PTFE薄膜表面,得到纳米二氧化钛覆盖膜;
(2)纳米二氧化钛在PTFE表面的焊接
对所得纳米二氧化钛覆盖膜表面进行激光照射,利用激光束的热效应使薄膜表面被照射到的微小区域瞬间熔融,熔体将该区域表面粘附的纳米片包围起来,待熔体冷却固化时,就可以将纳米二氧化钛锚定在PTFE薄膜表面,从而实现纳米二氧化钛与PTFE薄膜表面的有效焊接,制得纳米二氧化钛/聚四氟乙烯薄膜。
2.根据权利要求1所述纳米二氧化钛/聚四氟乙烯薄膜,其特征在于:所述纳米二氧化钛用量为聚四氟乙烯的0.1-10 wt%:。
3.根据权利要求1所述纳米二氧化钛/聚四氟乙烯薄膜,其特征在于:所述聚四氟乙烯薄膜厚度为0.1-2 mm。
4.根据权利要求1所述纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,其特征在于:所述步骤1)中,冷压压力为100-140 MPa。
5.根据权利要求1所述纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,其特征在于:所述步骤2)中,所用激光功率为0.1-1 W。
6.根据权利要求1所述纳米二氧化钛/聚四氟乙烯薄膜及其制备方法,其特征在于:所述步骤2)中,所用激光焊接厚度为0.1-1 mm。
CN202010193613.7A 2020-03-18 2020-03-18 一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法 Pending CN111303471A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010193613.7A CN111303471A (zh) 2020-03-18 2020-03-18 一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010193613.7A CN111303471A (zh) 2020-03-18 2020-03-18 一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN111303471A true CN111303471A (zh) 2020-06-19

Family

ID=71158751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010193613.7A Pending CN111303471A (zh) 2020-03-18 2020-03-18 一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111303471A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073796A (zh) * 2022-08-13 2022-09-20 电子科技大学中山学院 一种聚四氟乙烯表面改性方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073796A (zh) * 2022-08-13 2022-09-20 电子科技大学中山学院 一种聚四氟乙烯表面改性方法

Similar Documents

Publication Publication Date Title
Ravi‐Kumar et al. Laser ablation of polymers: a review
Lambiase et al. Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with Polyetheretherketone (PEEK)
US5320789A (en) Surface modification of fluorine resin with laser light
US20090142638A1 (en) Composite porous membrane, method for producing composite porous membrane, solid polymer electrolyte membrane, and fuel cell
RU2447012C1 (ru) Способ получения наноструктурированной поверхности сталей методом лазерно-плазменной обработки
CN111303471A (zh) 一种纳米二氧化钛/聚四氟乙烯薄膜及其制备方法
Badkar et al. Effects of laser phase transformation hardening parameters on heat input and hardened-bead profile quality of unalloyed titanium
CN110466162B (zh) 一种双层透明塑料板激光焊接方法
EP3878910A1 (en) High molecular polymer powder material and preparation method thereof
US20230173763A1 (en) Method of bonding thermoplastic resin and metal
CN111303472A (zh) 一种基于激光焊接改性聚四氟乙烯的方法
KR20020042531A (ko) 도핑된 탄화불소의 레이저 에블레이션 및 그의 응용
JP3188320U (ja) レーザー放射によって非金属透明材料を処理するためのテーブル
CN111361161A (zh) 一种聚四氟乙烯片材表面改性的方法
Tao et al. High-efficiency, thermal stable, and self-floating silver nanowires/Ti3C2Tx MXene/aramid nanofibers composite aerogel for photothermal water evaporation and antibacterial application
WO2007047790A3 (en) Process and composition for laser welding
Visco et al. Modification in polyethylene–iron oxide joints induced by laser irradiation
Jiang et al. Surface modification of bisphenol A polycarbonate using an ultraviolet laser with high-speed, direct-writing technology
Raciukaitis et al. Processing of polymers by UV picosecond lasers
JP3174147B2 (ja) 紫外レーザー光によるフッ素樹脂の表面改質方法
CN113187820A (zh) 新型高性能粘合复合自润滑复合材料和复合轴承
Lucas et al. Experimental Design of the Adhesion between a PEI/Glass Fiber Composite and the AA1100 Aluminum Alloy with Oxide Coating Produced via Plasma Electrolytic Oxidation (PEO)
Rodriguez-Vidal et al. Hybrid joints of polymer and thin metal parts fabricated by laser technology: performance under realistic conditions
CN108327301B (zh) 一种激光焊接塑料的方法
Xiaohong et al. Al superhydrophobic surfaces fabricated with femtosecond laser pulses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200619

WD01 Invention patent application deemed withdrawn after publication