CN111287223A - Shock isolation system and method - Google Patents
Shock isolation system and method Download PDFInfo
- Publication number
- CN111287223A CN111287223A CN202010163910.7A CN202010163910A CN111287223A CN 111287223 A CN111287223 A CN 111287223A CN 202010163910 A CN202010163910 A CN 202010163910A CN 111287223 A CN111287223 A CN 111287223A
- Authority
- CN
- China
- Prior art keywords
- liquid
- pebble layer
- shock
- cavity
- building structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035939 shock Effects 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000002955 isolation Methods 0.000 title claims description 38
- 239000007788 liquid Substances 0.000 claims abstract description 204
- 238000010521 absorption reaction Methods 0.000 claims abstract description 42
- 238000005086 pumping Methods 0.000 claims abstract description 34
- 239000002245 particle Substances 0.000 claims abstract description 33
- 230000000694 effects Effects 0.000 claims abstract description 27
- 230000008859 change Effects 0.000 claims abstract description 10
- 238000012806 monitoring device Methods 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 238000006073 displacement reaction Methods 0.000 claims description 24
- 230000001133 acceleration Effects 0.000 claims description 22
- 238000010276 construction Methods 0.000 claims description 21
- 230000005284 excitation Effects 0.000 claims description 19
- 230000009471 action Effects 0.000 claims description 15
- 239000011148 porous material Substances 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 11
- 238000013016 damping Methods 0.000 claims description 11
- 239000004927 clay Substances 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000001802 infusion Methods 0.000 claims description 5
- 230000002457 bidirectional effect Effects 0.000 claims description 4
- 239000004567 concrete Substances 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 229920005906 polyester polyol Polymers 0.000 claims description 3
- 239000011150 reinforced concrete Substances 0.000 claims description 3
- 230000004044 response Effects 0.000 abstract description 6
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000005553 drilling Methods 0.000 description 15
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000003673 groundwater Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000009527 percussion Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- KLDZYURQCUYZBL-UHFFFAOYSA-N 2-[3-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCN=CC1=CC=CC=C1O KLDZYURQCUYZBL-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 201000001098 delayed sleep phase syndrome Diseases 0.000 description 1
- 208000033921 delayed sleep phase type circadian rhythm sleep disease Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03C—DOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
- E03C1/00—Domestic plumbing installations for fresh water or waste water; Sinks
- E03C1/12—Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
- E03C1/18—Sinks, whether or not connected to the waste-pipe
- E03C1/182—Sinks, whether or not connected to the waste-pipe connected to the waste-pipe
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D33/00—Testing foundations or foundation structures
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
本发明公开了一种减隔震系统及方法,该减隔震系统包括抽注液装置和设于地基上的容腔,所述容腔中填筑有卵石层,所述容腔中保持有液体,所述抽注液装置用于向所述容腔中注液或者抽液,所述卵石层用于作为建筑结构的地基。该减震系统,能够通过向容腔中卵石层抽注液体改变卵石层的质量,实现卵石层惯性力大小的调整和自振频率的调节,改变卵石层惯性同时基本不改变卵石层的承载性能,使卵石颗粒与颗粒间液体相互作用,通过卵石层运动发挥谐振作用和液体晃动摩擦消能,减少建筑结构震动响应,大幅提高了系统的减震耗能效率,有效减轻地震灾害;该减隔震系统具有开创性的工程意义和实用价值。
The invention discloses a shock-absorbing and isolating system and method. The shock-absorbing and isolating system comprises a liquid pumping device and a cavity set on the foundation, wherein the cavity is filled with a pebble layer, and the cavity is kept in The liquid pumping device is used for injecting or pumping liquid into the cavity, and the pebble layer is used as the foundation of the building structure. The shock absorption system can change the quality of the pebble layer by pumping liquid into the pebble layer in the cavity, realize the adjustment of the inertial force of the pebble layer and the adjustment of the natural vibration frequency, change the inertia of the pebble layer without changing the bearing performance of the pebble layer basically , make the pebble particles interact with the liquid between the particles, play a resonance effect through the movement of the pebble layer and dissipate the frictional energy of the liquid sloshing, reduce the vibration response of the building structure, greatly improve the shock absorption and energy consumption efficiency of the system, and effectively reduce earthquake disasters; The seismic system has pioneering engineering significance and practical value.
Description
技术领域technical field
本发明涉及建筑工程领域,特别是涉及一种减隔震系统及方法。The invention relates to the field of construction engineering, in particular to a shock-absorbing and isolating system and method.
背景技术Background technique
随着城市建设的扩张,应对复杂地质工程环境的需求愈加紧迫,在复杂地基条件场地修建的上部建筑结构面临抗震性能不足的问题,如何提高地震激励下上部建筑结构的抗震性能越来越重要。因此,通过改良复杂地基的工程特性,使地基整体刚度和阻尼处于有利状态,从而实现消能减震效果成为了一种经济有效的手段,通过改良天然地层工程特性而实现上部建筑结构抗震及消能减震的地基减隔震技术在工程中具有广阔前景。With the expansion of urban construction, the need to deal with complex geological engineering environments is becoming more and more urgent. The superstructures built on complex foundation conditions face the problem of insufficient seismic performance. How to improve the seismic performance of superstructures under seismic excitation is more and more important. Therefore, by improving the engineering characteristics of complex foundations, the overall stiffness and damping of the foundations are in a favorable state, so as to achieve the effect of energy dissipation and shock absorption, which has become an economical and effective means. The ground vibration isolation technology that can absorb shock has broad prospects in engineering.
对于地基减隔震技术而言,其从控制理论方面可分为减震控制和隔震控制,减震控制通过在上部建筑结构中附设消能减震装置或调谐减震阻尼器装置实现上部建筑结构震动响应最小化;隔震控制通过在地基基础与上部建筑结构间增设隔震支座使结构免受震动影响。For the ground vibration isolation technology, it can be divided into shock absorption control and vibration isolation control from the control theory. Structural vibration response is minimized; isolation control protects the structure from vibration by adding isolation bearings between the foundation and the superstructure.
常规地基减隔震技术对地基只在承载力方面作出要求,因此常见的地基处理方式均通过加固地基策略达到,将减隔震措施均通过改进上部建筑结构的方式实现,如针对高层结构地震控制问题,使用较多的手段是在楼顶设置调谐质量阻尼器、调谐液体阻尼器或在地基基础与上部建筑结构间设置粘滞阻尼器等,这类金属结构的阻尼器主要通过在结构中增设质量、阻尼、弹簧等三类基本力学元件来实现改变结构的动力特性、降低结构动力响应的目的;金属阻尼器存在材料造价成本高,金属阻尼器屈服点集中,减震能力有限等问题。Conventional foundation seismic isolation technology only requires the bearing capacity of the foundation, so the common foundation treatment methods are achieved by strengthening the foundation strategy. Problems, the most used means are to set tuned mass dampers on the roof, tuned liquid dampers or set viscous dampers between the foundation and the upper building structure, etc. The dampers of such metal structures are mainly added in the structure. Three basic mechanical elements such as mass, damping and spring are used to achieve the purpose of changing the dynamic characteristics of the structure and reducing the dynamic response of the structure; the metal damper has problems such as high material cost, concentrated yield point and limited shock absorption capacity.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于:针对现有技术存在的常规地基减隔震技术对地基只在承载力方面作出要求,因此常见的地基处理方式均通过加固地基策略达到,将减隔震措施均通过改进上部建筑结构的方式实现,但是减隔震措施所采用的金属阻尼器存在材料造价成本高,金属阻尼器屈服点集中,减震能力有限的问题,提供一种地层减隔震系统及方法。The purpose of the present invention is: in view of the conventional foundation seismic isolation technology existing in the prior art, the foundation only requires the bearing capacity, so the common foundation treatment methods are all achieved by strengthening the foundation strategy, and the seismic isolation measures are all improved by improving the upper part of the foundation. However, the metal damper used in the seismic reduction and isolation measures has the problems of high material cost, concentrated yield point of the metal damper, and limited shock absorption capacity.
为了实现上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种减隔震系统,包括抽注液装置和设于地基上的容腔,所述容腔中填筑有卵石层,所述容腔中保持有液体,所述抽注液装置用于向所述容腔中注液或者抽液,所述卵石层用于作为建筑结构的地基。A shock-absorbing and isolating system includes a liquid pumping device and a cavity set on the foundation, the cavity is filled with a pebble layer, and the liquid is kept in the cavity, and the liquid pumping device is used for injecting Liquid is injected or pumped into the cavity, and the pebble layer is used as the foundation of the building structure.
卵石在自然界中广泛存在,实际工程的施工过程中经常遇到卵石地层地质条件,卵石地层本身具有压实性能好,透水性强,抗剪强度高,地震荷载作用下不易液化等优良工程特性。对于天然卵石地层的研究,研究者多偏重于考察卵石地层承载能力或卵石地层加固施工方法,如何改良卵石地层工程特性,使卵石地层具有更好的减隔震性能的研究却尚未涉及,罕有研究。Pebble exists widely in nature, and the geological conditions of the pebble stratum are often encountered in the construction process of the actual project. The pebble stratum itself has excellent engineering properties such as good compaction performance, strong water permeability, high shear strength, and not easy to liquefy under earthquake loads. For the study of natural pebble strata, researchers mostly focus on examining the bearing capacity of pebble strata or the construction method of pebble strata reinforcement, and how to improve the engineering characteristics of pebble strata to make pebble strata have better seismic isolation performance. .
根据布设于结构顶部的调谐液体阻尼器的经验,建筑结构在地震激励作用下的位移幅值随着阻尼器内部水量的增加而减小,导致楼层减震系统需布设过多调谐液体阻尼器,带来建造成本高,所占空间大等问题。According to the experience of the tuned liquid dampers arranged on the top of the structure, the displacement amplitude of the building structure under the action of earthquake excitation decreases with the increase of the water volume inside the damper, which leads to the need to deploy too many tuned liquid dampers in the floor shock absorption system. It brings problems such as high construction cost and large space occupation.
卵石地层通常含有一定水量,通过一个容器的容腔,在其中填筑卵石层及液体,来形成自然界中的卵石地层地质条件,将容腔及其内物质整体视为深水调频液体阻尼器,卵石层中液体晃动阻尼对震动控制效果的影响更为显著,因而改造容腔中卵石层水量实现地基减隔震效果具有可行性,但如何有效提高容腔中卵石层液体晃动阻尼仍是需要研究的问题。通过研究得知,调谐液体阻尼器中水体的晃动频率接近或稍小于建筑结构自振频率时,调谐液体阻尼器系统的减震控制效果最优。液体的晃动频率与液体密度呈正相关,且液体密度也与晃动阻尼呈正相关,因此,通过改变一定体积液体的密度可以得到所需液体晃动频率和阻尼。The pebble stratum usually contains a certain amount of water. The pebble layer and liquid are filled in the cavity of a container to form the geological conditions of the pebble stratum in nature. The impact of the liquid sloshing damping in the layer on the vibration control effect is more significant, so it is feasible to transform the water volume of the pebble layer in the cavity to achieve the effect of ground vibration isolation. However, how to effectively improve the liquid sloshing damping of the pebble layer in the cavity still needs to be studied. question. The research shows that when the sloshing frequency of the water body in the tuned liquid damper is close to or slightly smaller than the natural vibration frequency of the building structure, the damping control effect of the tuned liquid damper system is optimal. The sloshing frequency of the liquid is positively correlated with the liquid density, and the liquid density is also positively correlated with the sloshing damping. Therefore, the required liquid sloshing frequency and damping can be obtained by changing the density of a certain volume of liquid.
通过控制容腔中卵石层液体含量可以改变整个卵石层质量,同时放大了液体晃动阻尼,将卵石层作为调频液体阻尼器装置能整体减小建筑结构的位移幅值,卵石层整体以第一振型为主,当卵石层的第一自振频率与建筑结构的第一自振频率相近时,容腔中卵石层减隔震系统将发挥较好的控制作用。By controlling the liquid content of the pebble layer in the cavity, the quality of the entire pebble layer can be changed, and the liquid sloshing damping can be amplified at the same time. Using the pebble layer as a frequency-modulated liquid damper device can reduce the overall displacement amplitude of the building structure. When the first natural frequency of the pebble layer is similar to the first natural frequency of the building structure, the seismic isolation system of the pebble layer in the cavity will play a better control role.
因此,相比于传统减震系统,本发明所述的减震系统具有如下优势:一方面利用了卵石层,其承载性能好,卵石间孔隙大,储水量大;另一方面能够通过向体积一定的容腔中卵石层抽注液体改变卵石层的质量(卵石层的质量包括其中土石的质量以及液体的质量),实现卵石层惯性力大小的调整和自振频率的调节,改变卵石层惯性同时基本不改变卵石层的承载性能,使卵石颗粒与颗粒间液体相互作用,通过卵石层运动发挥谐振作用和液体晃动摩擦消能,减少建筑结构震动响应,大幅提高了系统的减震耗能效率,有效减轻地震灾害;该减隔震系统具有开创性的工程意义和实用价值。Therefore, compared with the traditional shock absorption system, the shock absorption system of the present invention has the following advantages: on the one hand, the pebble layer is used, which has good bearing performance, large pores between the pebble, and large water storage capacity; In a certain cavity, the pebble layer is pumped with liquid to change the quality of the pebble layer (the quality of the pebble layer includes the mass of soil and stone and the quality of the liquid), so as to realize the adjustment of the inertial force of the pebble layer and the adjustment of the natural vibration frequency, and change the inertia of the pebble layer. At the same time, the load-bearing performance of the pebble layer is basically not changed, so that the pebble particles interact with the liquid between the particles, and the movement of the pebble layer plays a resonance effect and the liquid sloshing friction energy dissipation, reducing the vibration response of the building structure and greatly improving the system's shock absorption and energy consumption efficiency. , effectively reduce earthquake disasters; the seismic isolation system has pioneering engineering significance and practical value.
优选地,所述容腔壁为混凝土壁或者钢筋混凝土壁。Preferably, the cavity wall is a concrete wall or a reinforced concrete wall.
优选地,所述容腔中填筑有软粘土层,所述软粘土层位于所述卵石层顶部。Preferably, the cavity is filled with a soft clay layer, and the soft clay layer is located on top of the pebble layer.
优选地,所述卵石层包括砾卵石粗颗粒和细砂粒,其中,所述砾卵石粗颗粒作为所述卵石层的主要承重载体,保证所述卵石层的强度要求。Preferably, the pebble layer includes coarse gravel particles and fine sand particles, wherein the coarse gravel particles serve as the main load-bearing carrier of the pebble layer to ensure the strength requirements of the pebble layer.
进一步优选地,所述砾卵石粗颗粒的粒径为6cm-20cm。Further preferably, the particle size of the coarse gravel particles is 6cm-20cm.
采用这种结构设置,粒径为6cm-20cm的所述砾卵石粗颗粒满足该减隔震系统剪切强度和刚度要求。With this structural arrangement, the coarse gravel particles with a particle size of 6cm-20cm meet the shear strength and stiffness requirements of the shock-absorbing and isolating system.
进一步优选地,所述细砂粒的粒径为0.075cm-6cm。Further preferably, the particle size of the fine sand particles is 0.075cm-6cm.
优选地,所述抽注液装置包括:Preferably, the infusion device comprises:
储液单元,用于储存备用液体;Liquid storage unit for storing spare liquid;
动力泵,连通所述储液单元和所述卵石层,所述动力泵用于将所述备用液体注入所述卵石层成为孔隙液体、或者用于将所述孔隙液体抽吸进入所述储液单元。A power pump, connecting the liquid storage unit and the pebble layer, the power pump is used for injecting the backup liquid into the pebble layer to become pore liquid, or for pumping the pore liquid into the storage liquid unit.
通过所述抽注液装置,保证了所述容腔中容腔水位保持在一定范围内,避免了地下水位下降造成的地基沉降,能够动态控制所述卵石层浆液含量,解决了复杂地层条件下的所述建筑结构在地震激励下的抗震性能不佳技术难题,方法操作简便、经济效能高、消能减震效果好,能保证所述卵石层在地震激励下满足预期消能减震要求,有效减轻所述建筑结构地震灾害程度。Through the liquid pumping device, it is ensured that the water level of the cavity in the cavity is kept within a certain range, the foundation settlement caused by the drop of the groundwater level is avoided, the slurry content of the pebble layer can be dynamically controlled, and the problem of complex formation conditions is solved. The technical problem of poor seismic performance of the building structure under earthquake excitation, the method is easy to operate, has high economic efficiency, and has good energy dissipation and shock absorption effect, which can ensure that the pebble layer meets the expected energy dissipation and shock absorption requirements under earthquake excitation, The earthquake disaster degree of the building structure is effectively reduced.
进一步优选地,所述动力泵为双向泵,所述双向泵能够用于注液和抽液;Further preferably, the power pump is a bidirectional pump, and the bidirectional pump can be used for liquid injection and pumping;
或者所述动力泵为两个单向泵,一个所述单向泵用于注液,另一个所述单向泵用于抽液。Alternatively, the power pump is two one-way pumps, one of the one-way pumps is used for liquid injection, and the other one-way pump is used for liquid extraction.
进一步优选地,该减隔震系统包括若干个所述动力泵,所述动力泵并联设置和/或串联设置,从而提高泵液输送效率。Further preferably, the shock-absorbing and isolating system includes a plurality of the power pumps, and the power pumps are arranged in parallel and/or in series, so as to improve the pump fluid delivery efficiency.
进一步优选地,所述动力泵和所述储液单元通过管路连通,所述动力泵和所述卵石层通过所述管路连通。Further preferably, the power pump and the liquid storage unit are communicated through a pipeline, and the power pump and the pebble layer are communicated through the pipeline.
进一步优选地,所述动力泵和所述储液单元之间的所述管路上设有控制阀,以启闭所述动力泵和所述储液单元的连通。Further preferably, a control valve is provided on the pipeline between the power pump and the liquid storage unit to open and close the communication between the power pump and the liquid storage unit.
进一步优选地,该减隔震系统还包括管路井,所述管路井深入所述卵石层。Further preferably, the shock isolation system further comprises a pipeline well, and the pipeline well penetrates into the pebble layer.
进一步优选地,所述管路井的井底低于所述容腔内容腔水位。Further preferably, the bottom of the pipeline well is lower than the water level of the inner cavity of the cavity.
进一步优选地,所述管路井的井底位于所述卵石层深度方向中部位置至底部位置。Further preferably, the bottom hole of the pipeline well is located from the middle position to the bottom position in the depth direction of the pebble layer.
进一步优选地,所述管路井为钻孔井。Further preferably, the pipeline well is a borehole well.
进一步优选地,所述管路井内设有井管,所述井管顶端连接所述动力泵。Further preferably, a well pipe is provided in the pipeline well, and the top of the well pipe is connected to the power pump.
进一步优选地,所述井管的底端低于容腔水位。Further preferably, the bottom end of the well pipe is lower than the water level of the cavity.
进一步优选地,所述井管管壁上设有若干渗水孔。Further preferably, a plurality of seepage holes are provided on the wall of the well pipe.
进一步优选地,所述渗水孔为圆孔或者方孔。Further preferably, the water seepage hole is a round hole or a square hole.
进一步优选地,所述井管为钢井管。Further preferably, the well pipe is a steel well pipe.
进一步优选地,所述管路井的管靴与所述钢井管通过螺栓连接或焊接。Further preferably, the pipe shoe of the pipeline well and the steel well pipe are bolted or welded.
所述钻孔井的施工方法为,在重力冲击器的作用下液压中心钻具实现冲击钻井,将具有扩张和收缩功能的扩孔钻具对井壁进行扩孔形成所述管路井,所述扩孔钻具的外侧设有管靴,所述管靴顶端与所述井管通过螺栓连接或焊接方式固定,所述扩孔钻具和所述液压中心钻具在冲击钻井的过程中,由管靴与所述井管构成的井壁在重力作用下下沉,当钻井深度到达所述卵石层内设计位置(中部位置)时,所述扩孔钻具的钻头收拢,将所述扩孔钻具、所述液压中心钻具及潜孔冲击器提出所述管路井实现成井,重复上述步骤实现所述管路井阵列。The construction method of the drilling well is as follows: under the action of the gravity impactor, the hydraulic center drilling tool realizes the impact drilling, and the reaming drilling tool with expansion and contraction functions is used to ream the well wall to form the pipeline well, so the pipeline well is formed. The outer side of the reaming drill is provided with a tube shoe, and the top of the tube shoe and the well pipe are fixed by bolting or welding. During the percussion drilling process, the reaming drill and the hydraulic center drill are The well wall formed by the tube shoe and the well tube sinks under the action of gravity. When the drilling depth reaches the design position (the middle position) in the pebble layer, the drill bit of the reaming drill is retracted, and the reaming drill bit is closed. The hole drilling tool, the hydraulic center drilling tool and the down-the-hole impactor propose that the pipeline well is formed into a well, and the above steps are repeated to realize the pipeline well array.
进一步优选地,所述储液单元包括至少一个储液箱。Further preferably, the liquid storage unit includes at least one liquid storage tank.
进一步优选地,所述备用液体为水体、聚酯多元醇液体或者多元卤代物液体。Further preferably, the standby liquid is water, polyester polyol liquid or polyhydric halide liquid.
优选地,该减隔震系统还包括控制装置,所述控制装置连接所述抽注液装置,所述控制装置用于控制所述抽注液装置向所述容腔中注液或者抽液,以控制所述卵石层的质量。Preferably, the shock-absorbing and isolating system further includes a control device, the control device is connected to the liquid pumping device, and the control device is used to control the liquid pumping device to inject or pump liquid into the cavity, to control the quality of the pebble layer.
进一步优选地,所述控制装置包括计算机。Further preferably, the control device includes a computer.
优选地,该减隔震系统还包括数据监测装置,所述数据监测装置连接所述控制装置,所述数据监测装置用于监测地震激励作用下所述建筑结构的位移以及用于监测所述卵石层的质量,并将所述位移和所述质量的数据传输至所述控制装置。Preferably, the seismic isolation system further includes a data monitoring device, the data monitoring device is connected to the control device, and the data monitoring device is used for monitoring the displacement of the building structure under the action of earthquake excitation and for monitoring the pebbles the quality of the layer and transmit the displacement and the quality data to the control device.
通过所述控制装置和所述数据监测装置,所述数据监测装置能够实时监测地震激励作用下所述卵石层对所述建筑结构的减震效果,并实时反馈数据给所述控制装置,所述控制装置根据减震效果控制所述抽注液装置向所述容腔中注液或者抽液,对所述卵石层质量进行动态修正,获取最佳减震性能。Through the control device and the data monitoring device, the data monitoring device can monitor the shock absorption effect of the pebble layer on the building structure under the action of earthquake excitation in real time, and feed back data to the control device in real time. The control device controls the liquid pumping device to inject or pump liquid into the cavity according to the shock absorption effect, and dynamically corrects the quality of the pebble layer to obtain the best shock absorption performance.
进一步优选地,所述数据监测装置包括加速度传感器,所述加速度传感器设于所述建筑结构上,通过加速度传感器获取所述建筑结构的顶层位移幅值和/或层间位移,来监测所述建筑结构在地震激励作用下的位移。Further preferably, the data monitoring device includes an acceleration sensor, the acceleration sensor is provided on the building structure, and the acceleration sensor is used to obtain the displacement amplitude of the top layer and/or the inter-story displacement of the building structure to monitor the building. Displacement of a structure under seismic excitation.
进一步优选地,每层楼设置至少一个所述加速度传感器。Further preferably, at least one acceleration sensor is provided on each floor.
进一步优选地,所述数据监测装置包括液体密度传感器,所述液体密度传感器设于所述卵石层内。Further preferably, the data monitoring device includes a liquid density sensor, and the liquid density sensor is arranged in the pebble layer.
由于所述卵石层体积一定,通过增加所述卵石层内液体密度能够增加液体的质量,从而增加所述卵石层的质量,因而可以通过所述液体密度传感器监测所述卵石层内液体密度间接计算所述卵石层的质量。Since the volume of the pebble layer is constant, increasing the liquid density in the pebble layer can increase the quality of the liquid, thereby increasing the quality of the pebble layer. Therefore, the liquid density in the pebble layer can be monitored indirectly by the liquid density sensor. The quality of the pebble layer.
进一步优选地,所述液体密度传感器连接于所述井管外壁上。Further preferably, the liquid density sensor is connected to the outer wall of the well pipe.
进一步优选地,所述数据监测装置包括液体压力传感器,所述液体压力传感器设于所述卵石层内。Further preferably, the data monitoring device includes a liquid pressure sensor, and the liquid pressure sensor is arranged in the pebble layer.
由于所述卵石层体积一定,通过增加所述卵石层内砾卵石粗颗粒之间孔隙液体的体积能够增加液体的质量,从而增加所述卵石层的质量,因而可以通过所述液体压力传感器监测所述卵石层内水压力间接计算容腔水位高度而获取所述卵石层的质量。Since the volume of the pebble layer is constant, by increasing the volume of pore liquid between the coarse gravel particles in the pebble layer, the quality of the liquid can be increased, thereby increasing the quality of the pebble layer. The water pressure in the pebble layer indirectly calculates the water level of the cavity to obtain the quality of the pebble layer.
进一步优选地,所述液体压力传感器设于所述管路井底部。Further preferably, the liquid pressure sensor is arranged at the bottom of the pipeline well.
本发明还提供了一种减隔震系统的施工方法,包括以下步骤:The present invention also provides a construction method for the shock-absorbing and isolating system, comprising the following steps:
在地基上挖坑,坑表面进行防水处理,形成容腔;Dig a pit on the foundation, and waterproof the surface of the pit to form a cavity;
在所述容腔中填筑卵石层,所述卵石层用于作为建筑结构的地基;A pebble layer is filled in the cavity, and the pebble layer is used as the foundation of the building structure;
在所述容腔中设置井管,所述井管深入所述卵石层,所述井管顶端连接管路,所述管路连接储液单元,所述储液单元内储存有备用液体。A well pipe is arranged in the cavity, the well pipe goes deep into the pebble layer, the top of the well pipe is connected to a pipeline, and the pipeline is connected to a liquid storage unit, and the liquid storage unit stores a backup liquid.
采用本发明所述的一种减隔震系统的施工方法,利用了卵石的特性,挖坑和防水处理均可采用现有常规技术手段,施工方便,造价低,适用于不同地基条件。The construction method of the shock-absorbing and isolating system of the present invention utilizes the characteristics of pebbles, and the existing conventional technical means can be adopted for digging and waterproofing, which is convenient for construction and low in cost, and is suitable for different foundation conditions.
优选地,挖坑后所述地基进行加固处理。Preferably, the foundation is reinforced after the pit is dug.
优选地,所述管路连接动力泵,所述动力泵连接所述储液单元,所述动力泵用于将所述备用液体注入所述卵石层、或者用于将所述卵石层中孔隙液体抽入所述储液单元。Preferably, the pipeline is connected to a power pump, the power pump is connected to the liquid storage unit, and the power pump is used for injecting the backup liquid into the pebble layer, or for injecting pore liquid in the pebble layer Draw into the reservoir.
进一步优选地,该施工方法还包括以下步骤:Further preferably, the construction method also comprises the following steps:
所述动力泵连接控制装置,所述控制装置连接数据监测装置,所述数据监测装置包括加速度传感器、液体密度传感器和液体压力传感器;The power pump is connected to a control device, the control device is connected to a data monitoring device, and the data monitoring device includes an acceleration sensor, a liquid density sensor and a liquid pressure sensor;
所述加速度传感器设于所述建筑结构上,所述液体密度传感器和所述液体压力传感器设于所述卵石层内。The acceleration sensor is arranged on the building structure, and the liquid density sensor and the liquid pressure sensor are arranged in the pebble layer.
优选地,所述容腔内施工设置管路井,井管位于所述管路井内。Preferably, a pipeline well is constructed in the cavity, and the well pipe is located in the pipeline well.
本发明还提供了一种如以上任一项所述减隔震系统的实现方法,The present invention also provides a method for realizing the shock-absorbing and isolating system according to any one of the above,
获取所述建筑结构的自振周期和/或自振频率;obtaining the natural vibration period and/or the natural vibration frequency of the building structure;
获取所述容腔中所述卵石层的自振周期和/或自振频率;obtaining the natural vibration period and/or the natural vibration frequency of the pebble layer in the cavity;
通过所述抽注液装置向所述容腔中注液或者抽液,以此改变所述卵石层的质量,从而改变所述卵石层的自振周期和/或自振频率,使所述卵石层自振频率达到所述建筑结构自振频率的[0.8,1.2]。The liquid pumping device injects or draws liquid into the cavity, thereby changing the quality of the pebble layer, thereby changing the natural vibration period and/or the natural vibration frequency of the pebble layer, so that the pebble layer is The floor natural frequency reaches [0.8, 1.2] of the building structure natural frequency.
采用本发明所述的一种减隔震系统的实现方法,能够使所述卵石层自振频率接近所述建筑结构自振频率,从而将体积一定的所述容腔中所述卵石层模拟成一个超大型调谐液体阻尼器,获取最优的减震控制效果。By adopting the realization method of the shock-absorbing and isolating system according to the present invention, the natural vibration frequency of the pebble layer can be made close to the natural vibration frequency of the building structure, so that the pebble layer in the cavity with a certain volume can be simulated as a An oversized tuned liquid damper for optimum shock control.
优选地,根据所述建筑结构的自振周期和/或自振频率和所述卵石层的自振周期和/或自振频率,得到所述建筑结构和所述卵石层自振周期和/或自振频率的差值;Preferably, according to the natural vibration period and/or the natural frequency of the building structure and the natural vibration period and/or the natural frequency of the pebble layer, the natural vibration period and/or the natural vibration period of the building structure and the pebble layer are obtained. The difference between the natural frequencies;
根据所述差值确定所述抽注液装置向所述卵石层中注液或者抽液。According to the difference value, it is determined that the liquid pumping device injects or draws liquid into the pebble layer.
优选地,建立所述建筑结构的数值模型,进行模态分析得到所述建筑结构的自振周期和/或自振频率。Preferably, a numerical model of the building structure is established, and modal analysis is performed to obtain the natural vibration period and/or the natural vibration frequency of the building structure.
优选地,建立所述容腔中所述卵石层的数值模型,进行模态分析得到所述卵石层的自振周期和/或自振频率。Preferably, a numerical model of the pebble layer in the cavity is established, and modal analysis is performed to obtain the natural vibration period and/or the natural vibration frequency of the pebble layer.
优选地,所述卵石层自振频率达到所述建筑结构自振频率的[0.8,1.2]后,在地震激励作用下,通过监测所述建筑结构顶层位移幅值和/或层间位移的数据指标,判定改变质量后的所述卵石层是否发挥减震作用;Preferably, after the natural vibration frequency of the pebble layer reaches [0.8, 1.2] of the natural vibration frequency of the building structure, under the action of earthquake excitation, by monitoring the data of the displacement amplitude and/or the displacement of the top layer of the building structure index, to determine whether the pebble layer after the quality change has a shock absorption effect;
若减震效果未达预期,根据所述数据指标进行所述卵石层质量的动态修正。If the shock absorption effect is not as expected, dynamic correction of the quality of the pebble layer is performed according to the data index.
本发明还提供了一种电子设备,包括:The present invention also provides an electronic device, comprising:
存储器,其上存储有计算机程序;a memory on which a computer program is stored;
处理器,用于执行所述存储器中的所述程序,以实现如以上任一项所述的减隔震系统的实现方法。A processor, configured to execute the program in the memory, so as to implement the method for implementing the shock isolation system according to any one of the above.
本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如以上任一项所述的减隔震系统的实现方法。The present invention also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the method for implementing the vibration reduction and isolation system as described in any of the above.
综上所述,由于采用了上述技术方案,本发明的有益效果是:To sum up, due to the adoption of the above-mentioned technical solutions, the beneficial effects of the present invention are:
1、本发明所述的减震系统具有如下优势:一方面利用了卵石层,其承载性能好,卵石间孔隙大,储水量大;另一方面能够通过向体积一定的容腔中卵石层抽注液体改变卵石层的质量,实现卵石层惯性力大小的调整和自振频率的调节,改变卵石层惯性同时基本不改变卵石层的承载性能,使卵石颗粒与颗粒间液体相互作用,通过卵石层运动发挥谐振作用和液体晃动摩擦消能,减少建筑结构震动响应,大幅提高了系统的减震耗能效率,有效减轻地震灾害;该减隔震系统具有开创性的工程意义和实用价值;1. The shock absorption system of the present invention has the following advantages: on the one hand, the pebble layer is used, and its bearing performance is good, the pores between the pebble are large, and the water storage capacity is large; The injection of liquid changes the quality of the pebble layer, realizes the adjustment of the inertial force of the pebble layer and the adjustment of the natural vibration frequency, changes the inertia of the pebble layer without changing the bearing performance of the pebble layer basically, and makes the pebble particles interact with the liquid between particles, through the pebble layer. The movement exerts the resonance effect and the liquid sloshing friction energy dissipation, reduces the vibration response of the building structure, greatly improves the system's shock absorption and energy consumption efficiency, and effectively reduces the earthquake disaster; the shock isolation system has pioneering engineering significance and practical value;
2、本发明所述的减震系统,通过所述抽注液装置,保证了所述容腔中容腔水位保持在一定范围内,避免了地下水位下降造成的地基沉降,能够动态控制所述卵石层浆液含量,解决了复杂地层条件下的所述建筑结构在地震激励下的抗震性能不佳技术难题,方法操作简便、经济效能高、消能减震效果好,能保证所述卵石层在地震激励下满足预期消能减震要求,有效减轻所述建筑结构地震灾害程度;2. The shock absorption system of the present invention, through the liquid pumping device, ensures that the water level in the cavity is kept within a certain range, avoids the foundation subsidence caused by the decline of the groundwater level, and can dynamically control the The slurry content of the pebble layer solves the technical problem of poor seismic performance of the building structure under seismic excitation under complex stratum conditions. Under earthquake excitation, it can meet the expected energy dissipation and shock absorption requirements, and effectively reduce the earthquake disaster degree of the building structure;
3、本发明所述的减震系统,通过所述控制装置和所述数据监测装置,所述数据监测装置能够实时监测地震激励作用下所述卵石层对所述建筑结构的减震效果,并实时反馈数据给所述控制装置,所述控制装置根据减震效果控制所述抽注液装置向所述容腔中注液或者抽液,对所述卵石层质量进行动态修正,获取最佳减震性能;3. The shock absorption system of the present invention, through the control device and the data monitoring device, the data monitoring device can monitor the shock absorption effect of the pebble layer on the building structure under the action of earthquake excitation in real time, and Real-time feedback data to the control device, the control device controls the liquid pumping device to inject or pump liquid into the cavity according to the shock absorption effect, and dynamically corrects the quality of the pebble layer to obtain the best reduction. shock performance;
4、本发明所述的一种减隔震系统的施工方法,利用了卵石的特性,挖坑和防水处理均可采用现有常规技术手段,施工方便,造价低,适用于不同地基条件;4. The construction method of a shock-absorbing and isolating system according to the present invention utilizes the characteristics of pebbles, and the existing conventional technical means can be used for digging and waterproofing, which is convenient for construction and low in cost, and is suitable for different foundation conditions;
5、本发明所述的一种减隔震系统的实现方法,能够使所述卵石层自振频率接近所述建筑结构自振频率,从而将体积一定的所述容腔中所述卵石层模拟成一个超大型调谐液体阻尼器,获取最优的减震控制效果。5. The realization method of a shock isolation system according to the present invention can make the natural vibration frequency of the pebble layer close to the natural vibration frequency of the building structure, so as to simulate the pebble layer in the cavity with a certain volume. into an oversized tuned liquid damper for optimal damping control.
附图说明Description of drawings
图1是本发明所述容腔的结构示意图;Fig. 1 is the structural schematic diagram of the cavity of the present invention;
图2是本发明所述卵石层的设置示意图;Fig. 2 is the arrangement schematic diagram of the pebble layer of the present invention;
图3是本发明所述的减隔震系统的结构示意图;Fig. 3 is the structural schematic diagram of the shock-absorbing and isolating system of the present invention;
图4是本发明所述的减隔震系统的控制示意图;Fig. 4 is the control schematic diagram of the shock-absorbing and isolating system of the present invention;
图5是不同液位下所述卵石地层减震效果对比图(峰值加速度);Figure 5 is a comparison diagram (peak acceleration) of the shock absorption effect of the pebble formation under different liquid levels;
图6是不同液位下所述卵石地层减震效果对比图(位移)。FIG. 6 is a comparison diagram (displacement) of the shock absorption effect of the pebble formation under different liquid levels.
图标:01-地基,1-容腔,2-卵石层,3-软粘土层,4-砾卵石粗颗粒,5-细砂粒,6-孔隙液体,7-流动方向,8-管路,9-管路井,10-井管,11-容腔水位,12-动力泵,13-液体压力传感器,14-液体密度传感器,15-加速度传感器,16-储液单元,17-备用液体,18-控制阀,19-控制装置,20-建筑结构。Icons: 01-foundation, 1-cavity, 2-pebble layer, 3-soft clay layer, 4-coarse gravel, 5-fine sand, 6-pore liquid, 7-flow direction, 8-pipeline, 9 -Pipeline well, 10-well tube, 11-water level in volume chamber, 12-power pump, 13-liquid pressure sensor, 14-liquid density sensor, 15-acceleration sensor, 16-liquid storage unit, 17-standby liquid, 18 - Control valve, 19 - Control device, 20 - Building structure.
具体实施方式Detailed ways
下面结合附图,对本发明作详细的说明。The present invention will be described in detail below with reference to the accompanying drawings.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
实施例1Example 1
如图1-4所示,本发明所述的一种减隔震系统,包括设于地基01上的容腔1,还包括管路井9、抽注液装置、控制装置19和数据监测装置,所述容腔1中保持有液体。As shown in Figures 1-4, a shock isolation system according to the present invention includes a
所述容腔1壁为混凝土壁或者钢筋混凝土壁,所述容腔1中填筑有卵石层2和软粘土层3,所述软粘土层3位于所述卵石层2顶部。The wall of the
所述卵石层2用于作为建筑结构20的地基,所述卵石层2包括砾卵石粗颗粒4和细砂粒5,其中,所述砾卵石粗颗粒4作为所述卵石层2的主要承重载体,保证所述卵石层2的强度要求;所述砾卵石粗颗粒4的粒径为6cm-20cm,粒径为6cm-20cm的所述砾卵石粗颗粒满足该减隔震系统剪切强度和刚度要求,所述细砂粒5的粒径为0.075cm-6cm。The
所述管路井9深入所述卵石层2,所述管路井9的井底低于所述容腔1内容腔水位11,所述管路井9的井底位于所述卵石层2深度方向中部位置至底部位置,优选所述管路井9的井底位于所述卵石层2深度方向中部位置;具体地,所述管路井9为钻孔井。The pipeline well 9 goes deep into the
所述抽注液装置用于向所述容腔1中注液或者抽液,所述抽注液装置包括储液单元16、动力泵12和设于所述管路井9中的井管10,所述动力泵12和所述储液单元16通过管路8连通,所述动力泵12和所述井管10通过所述管路8连通,所述储液单元16用于储存备用液体17,所述储液单元16可包括至少一个储液箱,所述备用液体17为水体、聚酯多元醇液体或者多元卤代物液体,所述动力泵12用于将所述备用液体17注入所述卵石层2成为孔隙液体6、或者用于将所述孔隙液体6抽吸进入所述储液单元16,所述动力泵12和所述储液单元16之间的所述管路8上设有控制阀18,以启闭所述动力泵12和所述储液单元16的连通。The liquid pumping device is used for injecting or pumping liquid into the
所述井管10顶端连接所述动力泵12,所述井管10的底端低于所述容腔水位11,所述井管10管壁上设有若干渗水孔,所述渗水孔为圆孔或者方孔,具体地,所述井管10为钢井管。The top end of the
作为本实施例的一个优选方案,所述动力泵12为双向泵,所述双向泵能够用于注液和抽液;或者所述动力泵12为两个单向泵,一个所述单向泵用于注液,另一个所述单向泵用于抽液。As a preferred solution of this embodiment, the
该减隔震系统包括若干个所述动力泵12,所述动力泵12并联设置和/或串联设置,从而提高泵液输送效率。The shock isolation system includes a plurality of the power pumps 12 , and the power pumps 12 are arranged in parallel and/or in series, so as to improve the pump fluid delivery efficiency.
所述管路井9的管靴与所述钢井管通过螺栓连接或焊接,所述钻孔井的施工方法为,在重力冲击器的作用下液压中心钻具实现冲击钻井,将具有扩张和收缩功能的扩孔钻具对井壁进行扩孔形成所述管路井9,所述扩孔钻具的外侧设有管靴,所述管靴顶端与所述井管通过螺栓连接或焊接方式固定,所述扩孔钻具和所述液压中心钻具在冲击钻井的过程中,由管靴与所述井管10构成的井壁在重力作用下下沉,当钻井深度到达所述卵石层2内设计位置(中部位置)时,所述扩孔钻具的钻头收拢,将所述扩孔钻具、所述液压中心钻具及潜孔冲击器提出所述管路井9实现成井,重复上述步骤实现所述管路井9阵列。The pipe shoe of the pipeline well 9 and the steel well pipe are connected or welded by bolts, and the construction method of the drilling well is that the hydraulic center drilling tool realizes the impact drilling under the action of the gravity impactor, which will have expansion and The reaming tool with shrinking function reams the well wall to form the pipeline well 9. The outer side of the reaming drill is provided with a tube shoe, and the top of the tube shoe is connected with the well pipe by bolting or welding. Fixed, during the percussion drilling process of the reaming drilling tool and the hydraulic center drilling tool, the well wall formed by the tube shoe and the
通过所述抽注液装置,保证了所述容腔1中容腔水位11保持在一定范围内,避免了地下水位下降造成的地基01沉降,能够动态控制所述卵石层2浆液含量,解决了复杂地层条件下的所述建筑结构20在地震激励下的抗震性能不佳技术难题,方法操作简便、经济效能高、消能减震效果好,能保证所述卵石层2在地震激励下满足预期消能减震要求,有效减轻所述建筑结构20地震灾害程度。Through the liquid pumping device, it is ensured that the
所述控制装置19包括计算机,所述控制装置19连接所述抽注液装置,所述控制装置19用于控制所述抽注液装置向所述容腔1中注液或者抽液,以控制所述卵石层2的质量。The
所述数据监测装置连接所述控制装置19,所述数据监测装置包括加速度传感器15、液体密度传感器14和液体压力传感器13,所述数据监测装置用于监测地震激励作用下所述建筑结构20的位移以及用于监测所述卵石层2的质量,并将所述位移和所述质量的数据传输至所述控制装置19。The data monitoring device is connected to the
所述加速度传感器15设于所述建筑结构20上,对于低层建筑,可以每层楼设置至少一个所述加速度传感器15,对于高层建筑,可以在上部楼层中至少三层分别设置一个所述加速度传感器15,加速度可以经过计算机计算出位移,即可通过所述加速度传感器15获取所述建筑结构20的顶层位移幅值和/或层间位移,来监测所述建筑结构20在地震激励作用下的位移。The
所述液体密度传感器14设于所述卵石层2内,具体设于所述井管10外壁上;由于所述卵石层2体积一定,通过增加所述卵石层2内液体密度能够增加液体的质量,从而增加所述卵石层2的质量,因而可以通过所述液体密度传感器14监测所述卵石层2内液体密度间接计算所述卵石层2的质量;具体地,通过获取的液体密度与注入的液体体积、先前已控制好的所述卵石层2体积与密度,可以计算出整个所述卵石层2的质量。The
所述液体压力传感器13设于所述卵石层2内,具体设于所述管路井9底部;由于所述卵石层2体积一定,通过增加所述卵石层2内砾卵石粗颗粒之间孔隙液体6的体积能够增加液体的质量,从而增加所述卵石层2的质量,因而可以通过所述液体压力传感器13监测所述卵石层2内水压力间接计算所述容腔水位11高度而获取所述卵石层2的质量。The
通过所述控制装置19和所述数据监测装置,所述数据监测装置能够实时监测地震激励作用下所述卵石层2对所述建筑结构20的减震效果,并实时反馈数据给所述控制装置19,所述控制装置19根据减震效果控制所述抽注液装置向所述容腔1中注液或者抽液,对所述卵石层2质量进行动态修正,获取最佳减震性能。Through the
相比于传统减震系统,本发明所述的减震系统具有如下优势:一方面利用了卵石层2,其承载性能好,卵石间孔隙大,储水量大;另一方面能够通过向体积一定的容腔1中卵石层2抽注液体改变卵石层2的质量,实现卵石层2惯性力大小的调整和自振频率的调节,改变卵石层2惯性同时基本不改变卵石层2的承载性能,使卵石颗粒与颗粒间液体相互作用,通过卵石层2运动发挥谐振作用和液体晃动摩擦消能,减少建筑结构震动响应,大幅提高了系统的减震耗能效率,有效减轻地震灾害;该减隔震系统具有开创性的工程意义和实用价值。Compared with the traditional shock absorption system, the shock absorption system of the present invention has the following advantages: on the one hand, the
实施例2Example 2
如图1-4所示,本发明所述的一种减隔震系统的施工方法,用于施工如实施例1所述的减隔震系统,包括以下步骤:As shown in Figures 1-4, the construction method of a vibration reduction and isolation system according to the present invention is used to construct the vibration reduction and isolation system as described in
A、如图1所示,在地基01上挖坑,坑表面进行防水处理,形成容腔1;A. As shown in Figure 1, a pit is dug on the
B、对所述地基01进行加固处理;B. Reinforcing the
C、如图2-3所示,在所述容腔1中填筑卵石层2和软粘土层3,所述软粘土层3位于所述卵石层2顶部,所述软粘土层3顶部与所述地基01顶部齐平,所述卵石层2用于作为建筑结构20的地基;C. As shown in Figure 2-3, fill the
D、在所述容腔1内施工设置管路井9,所述管路井9深入所述卵石层2,所述管路井9的井底低于所述容腔1中的容腔水位11;D. A pipeline well 9 is constructed in the
E、在所述管路井9中设置井管10,所述井管10的底端低于所述容腔水位11,所述井管10顶端连接管路8,所述管路8连接动力泵12,所述动力泵12连接所述储液单元16,所述储液单元16内储存有备用液体17;E. A well
所述动力泵12用于将所述备用液体17注入所述卵石层2、或者用于将所述卵石层2中孔隙液体6抽入所述储液单元16;The
F、所述动力泵12连接控制装置19,所述控制装置19连接数据监测装置,所述数据监测装置包括加速度传感器15、液体密度传感器14和液体压力传感器13;所述加速度传感器15设于所述建筑结构20上,所述液体密度传感器14和所述液体压力传感器13设于所述卵石层2内。F. The
运用本发明所述的一种减隔震系统的施工方法,利用了卵石的特性,挖坑和防水处理均可采用现有常规技术手段,施工方便,造价低,适用于不同地基01条件。The construction method of the shock-absorbing and isolating system of the present invention utilizes the characteristics of pebbles. Existing conventional technical means can be adopted for digging and waterproofing. The construction is convenient, the cost is low, and it is suitable for different foundation conditions.
实施例3Example 3
如图1-6所示,本发明所述的一种如以上任一项所述减隔震系统的实现方法,As shown in Figures 1-6, the implementation method of the shock-absorbing and isolating system according to any one of the above described in the present invention,
利用数值仿真软件,建立所述建筑结构20的数值模型,进行模态分析得到所述建筑结构20的自振周期和/或自振频率;Using numerical simulation software, a numerical model of the
利用数值仿真软件,建立所述容腔1中所述卵石层2的数值模型,进行模态分析得到所述卵石层2的自振周期和/或自振频率;Using numerical simulation software, a numerical model of the
将所述建筑结构20的自振周期和/或自振频率和所述卵石层2的自振周期和/或自振频率进行对比,得到所述建筑结构20和所述卵石层2自振周期和/或自振频率的差值;The natural vibration period and/or the natural vibration frequency of the
所述控制装置19根据所述差值得出所述卵石层2的预设质量,所述控制装置19控制所述动力泵12向所述容腔1中注液或者抽液,调节所述卵石层2的液体密度和/或容腔水位11高度,调节通过所述液体密度传感器14和所述液体压力传感器13监测,使所述卵石层2的质量达到预设值,从而改变所述卵石层2的自振周期和/或自振频率,使所述卵石层2自振频率达到所述建筑结构20自振频率的[0.8,1.2];The
然后在地震激励作用下,通过所述加速度传感器15监测所述建筑结构20顶层位移幅值和/或层间位移的数据指标,判定改变质量后的所述卵石层2是否发挥减震作用;Then, under the action of earthquake excitation, the
若减震效果未达预期,根据所述数据指标所述控制装置19控制所述动力泵12向所述容腔1中注液或者抽液,进行所述卵石层2质量的动态修正,最终实现最佳减震性能。If the shock absorption effect is not as expected, the
如图5和6所示,不同液位下所述卵石层2减震效果对比图(峰值加速度和位移),利用所述加速度传感器15监测所述建筑结构20的位移数据,分析可知,使用所述抽注液装置对所述卵石层2注液后,所述卵石层2的减震效果随时间的推移愈发明显,且注液越多即使所述卵石层2质量提升越多,从而使所述卵石层2自振频率接近所述建筑结构20自振频率,对比不注液的情况来说减震效果相当明显。As shown in Figures 5 and 6, the comparison diagrams (peak acceleration and displacement) of the shock absorption effect of the
运用本发明所述的一种减隔震系统的实现方法,能够使所述卵石层2自振频率接近所述建筑结构20自振频率,从而将体积一定的所述容腔1中所述卵石层2模拟成一个超大型调谐液体阻尼器,获取最优的减震控制效果。By using the method for realizing a shock-absorbing and isolating system according to the present invention, the natural vibration frequency of the
实施例4Example 4
本发明所述的一种电子设备,包括:An electronic device according to the present invention includes:
存储器,其上存储有计算机程序;a memory on which a computer program is stored;
处理器,用于执行所述存储器中的所述程序,以实现如实施例3所述的一种减隔震系统的实现方法。The processor is configured to execute the program in the memory, so as to implement the method for implementing a vibration reduction and isolation system as described in Embodiment 3.
作为本实施例的一个优选方案,该电子设备可以包括:处理器、存储器,该电子设备还可以包括多媒体组件、输入/输出(I/O)接口、以及通信组件中的一者或多者。As a preferred solution of this embodiment, the electronic device may include: a processor and a memory, and the electronic device may further include one or more of a multimedia component, an input/output (I/O) interface, and a communication component.
其中,处理器用于控制该电子设备的整体操作,以完成上述处理方法或者上述显示方法中的全部或部分步骤。Wherein, the processor is used to control the overall operation of the electronic device, so as to complete all or part of the steps in the above-mentioned processing method or the above-mentioned display method.
存储器用于存储各种类型的数据以支持在该电子设备的操作,这些数据例如可以包括用于在该电子设备上操作的任何应用程序或方法的指令,以及应用程序相关的数据;存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM),可编程只读存储器(Programmable Read-Only Memory,PROM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。The memory is used to store various types of data to support the operation of the electronic device, such data may include, for example, instructions for any application or method for operation on the electronic device, as well as application-related data; the memory may be composed of Any type of volatile or non-volatile storage device or their combined implementation, such as Static Random Access Memory (SRAM), Electrically Erasable Programmable Read-Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (Read-Only Memory, ROM) , magnetic memory, flash memory, magnetic disk or optical disk.
多媒体组件可以包括屏幕和音频组件,其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号;例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号,所接收的音频信号可以被进一步存储在存储器或通过通信组件发送;音频组件还包括至少一个扬声器,用于输出音频信号。The multimedia component can include a screen and an audio component, where the screen can be, for example, a touch screen, and the audio component is used to output and/or input audio signals; for example, the audio component can include a microphone, the microphone is used to receive external audio signals, the received audio signals may be further stored in memory or transmitted through the communication component; the audio component also includes at least one speaker for outputting the audio signal.
I/O接口为处理器和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等;这些按钮可以是虚拟按钮或者实体按钮。The I/O interface provides an interface between the processor and other interface modules, and the above-mentioned other interface modules can be keyboards, mice, buttons, etc.; these buttons can be virtual buttons or physical buttons.
通信组件用于该电子设备与其他设备之间进行有线或无线通信;无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,NFC),2G、3G、4G或5G,或它们中的一种或几种的组合,因此相应的该通信组件可以包括:Wi-Fi模块,蓝牙模块,NFC模块,手机通讯模块。Communication components are used for wired or wireless communication between the electronic device and other devices; wireless communication, such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G or 5G, or any of them One or a combination of several, so the corresponding communication components may include: Wi-Fi module, Bluetooth module, NFC module, and mobile phone communication module.
作为本实施例的一个优选方案,该电子设备可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital SignalProcessor,DSP)、数字信号处理设备(Digital Signal Processing Device,DSPD)、可编程逻辑器件(Programmable Logic Device,PLD)、现场可编程门阵列(Field ProgrammableGate Array,FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行所述一种减隔震系统的实现方法。As a preferred solution of this embodiment, the electronic device may be configured by one or more application specific integrated circuits (Application Specific Integrated Circuit, ASIC), digital signal processors (Digital Signal Processor, DSP), digital signal processing devices (Digital Signal Processing) Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), controller, microcontroller, microprocessor or other electronic components are implemented to perform all A method for implementing a shock isolation system is described.
实施例5Example 5
本发明所述的一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如实施例3所述的一种减隔震系统的实现方法。A computer-readable storage medium according to the present invention stores a computer program thereon, and when the program is executed by a processor, implements the method for implementing a shock-absorbing and isolating system as described in Embodiment 3.
本实施例提供的计算机可读存储介质即可以为实施例4中所述包括程序指令的存储器,上述程序指令可由电子设备的处理器执行以完成所述一种减隔震系统的实现方法。The computer-readable storage medium provided in this embodiment can be the memory including program instructions described in
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (35)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010163910.7A CN111287223A (en) | 2020-03-10 | 2020-03-10 | Shock isolation system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010163910.7A CN111287223A (en) | 2020-03-10 | 2020-03-10 | Shock isolation system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111287223A true CN111287223A (en) | 2020-06-16 |
Family
ID=71029377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010163910.7A Pending CN111287223A (en) | 2020-03-10 | 2020-03-10 | Shock isolation system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111287223A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112765910A (en) * | 2021-01-22 | 2021-05-07 | 成都理工大学 | Construction method of shock absorption structure of spacecraft liquid storage system |
CN113356387A (en) * | 2021-06-22 | 2021-09-07 | 福建省昊立建设工程有限公司 | Building anti-seismic system with shock absorption support |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19921982A1 (en) * | 1999-05-12 | 2000-11-16 | Gerd Gudehus | Earthquake protection for buildings has a layer of coarse gravel beneath building foundations with pumps for its rapid flooding with water once longitudinal pressure waves have been detected indicating imminent shear waves |
JP2010101013A (en) * | 2008-10-21 | 2010-05-06 | Takenaka Komuten Co Ltd | Base isolation structure |
JP5181281B2 (en) * | 2008-06-06 | 2013-04-10 | 清水建設株式会社 | Additional damping mechanism for floating base-isolated structures |
US20160283622A1 (en) * | 2015-03-23 | 2016-09-29 | Alstom Renewable Technologies Wind B.V. | Obtaining Dynamic Properties of a Part of Wind Turbine |
WO2016171411A1 (en) * | 2015-04-22 | 2016-10-27 | 김해남 | Floating method for earthquake resistant design |
CN109299571A (en) * | 2018-10-25 | 2019-02-01 | 内蒙古科技大学 | A Design Method of Tuned Liquid Damper Based on Building Fire Water Tank |
CN211948589U (en) * | 2020-03-10 | 2020-11-17 | 广西大学 | Vibration isolation system |
-
2020
- 2020-03-10 CN CN202010163910.7A patent/CN111287223A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19921982A1 (en) * | 1999-05-12 | 2000-11-16 | Gerd Gudehus | Earthquake protection for buildings has a layer of coarse gravel beneath building foundations with pumps for its rapid flooding with water once longitudinal pressure waves have been detected indicating imminent shear waves |
JP5181281B2 (en) * | 2008-06-06 | 2013-04-10 | 清水建設株式会社 | Additional damping mechanism for floating base-isolated structures |
JP2010101013A (en) * | 2008-10-21 | 2010-05-06 | Takenaka Komuten Co Ltd | Base isolation structure |
US20160283622A1 (en) * | 2015-03-23 | 2016-09-29 | Alstom Renewable Technologies Wind B.V. | Obtaining Dynamic Properties of a Part of Wind Turbine |
WO2016171411A1 (en) * | 2015-04-22 | 2016-10-27 | 김해남 | Floating method for earthquake resistant design |
CN109299571A (en) * | 2018-10-25 | 2019-02-01 | 内蒙古科技大学 | A Design Method of Tuned Liquid Damper Based on Building Fire Water Tank |
CN211948589U (en) * | 2020-03-10 | 2020-11-17 | 广西大学 | Vibration isolation system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112765910A (en) * | 2021-01-22 | 2021-05-07 | 成都理工大学 | Construction method of shock absorption structure of spacecraft liquid storage system |
CN112765910B (en) * | 2021-01-22 | 2022-10-18 | 成都理工大学 | Construction method of shock absorption structure of spacecraft liquid storage system |
CN113356387A (en) * | 2021-06-22 | 2021-09-07 | 福建省昊立建设工程有限公司 | Building anti-seismic system with shock absorption support |
CN113356387B (en) * | 2021-06-22 | 2022-04-15 | 福建省昊立建设工程有限公司 | Building anti-seismic system with shock absorption support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103437371B (en) | Construction method of water drainage uplift pile | |
CN100455731C (en) | Guide pit type manual pot holing pile reinforing and underpinning method for building foundation and composite supporting pile | |
JP4098777B2 (en) | How to reduce the possibility of liquefaction of the basic soil | |
CN105507610B (en) | The lower base isolation reinforcement method for digging increasing layer of existing pile foundation building | |
CN108360547B (en) | A bridge composite foundation suitable for deep water and strong earthquake conditions | |
CN102888834B (en) | A kind of construction method of major diameter broken stone pile | |
CN110359497A (en) | A kind of existing construction of structures ground base high-performance broken stone pile anti-liquefying treatment method | |
CN108411889A (en) | A kind of cementing broken stone pile of structuring and its construction method | |
CN105113478A (en) | Dynamic compaction treatment method of deep foundation displacement | |
CN107090842A (en) | A kind of processing method of the big thickness collapsible loess foundation in subway station | |
CN111287223A (en) | Shock isolation system and method | |
CN106368219A (en) | Supporting reinforcing structure of deep foundation pit and construction method | |
CN101691760B (en) | Composite foundation combining anchor rods with excavation and construction method thereof | |
CN211948589U (en) | Vibration isolation system | |
CN108797578A (en) | Crushed stone grouting pile and its construction method with classification enlarged footing | |
CN102839683B (en) | Granular pile-permeable concrete stake dual compound foundation and processing method | |
CN105464395B (en) | A kind of building inclination rectification method for disturbing bearing course at pile end | |
CN103967056A (en) | Junked tire vibration damping and isolating building foundation and construction method thereof | |
CN103590390B (en) | A kind of stream is moulded shape reinforced soft soil ground structure and adds solid method | |
CN212561630U (en) | A shock isolation system | |
CN212336070U (en) | A kind of karst foundation variable stiffness sub-pile | |
CN106049413B (en) | A kind of composite power drain consolidation system and construction method applied to deep layer foundation in saturated soft soil | |
CN204343341U (en) | Staged vibration isolate ditch | |
CN106120790A (en) | The special equipment of the compacted guncreting pile of high frequency and method | |
CN111305280A (en) | A shock isolation system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |