CN111286810A - 积雪草苷生物相容可降解电纺丝及其制备方法和应用 - Google Patents
积雪草苷生物相容可降解电纺丝及其制备方法和应用 Download PDFInfo
- Publication number
- CN111286810A CN111286810A CN201910756031.2A CN201910756031A CN111286810A CN 111286810 A CN111286810 A CN 111286810A CN 201910756031 A CN201910756031 A CN 201910756031A CN 111286810 A CN111286810 A CN 111286810A
- Authority
- CN
- China
- Prior art keywords
- plga
- spinning
- asiaticoside
- spun yarn
- peo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/16—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/23—Carbohydrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Textile Engineering (AREA)
- Dermatology (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Manufacturing & Machinery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种纺丝,由PLGA、PEO和积雪草苷经稳定射流静电纺丝技术混纺制得,具有相同的取向性。其中,PLGA与PEO的重量比为4∶1,积雪草苷用量为PLGA的10wt%。本发明的纺丝,其亲水性显著提高,具有调控体内巨噬细胞表型转化和抗炎的作用,可用于制备调控体内巨噬细胞表型转化和抗炎的药物或医疗器械(如:支架)。
Description
技术领域
本发明涉及一种生物材料,尤其涉及一种含有积雪苷的生物材料,具有生物可降解和生物相容性,以及其制备方法和应用。
背景技术
积雪草苷又称积雪草甙,淡黄色至淡棕黄色的粉末;无臭,味苦,稍具有引湿性,有促进创伤愈合作用。其主要用于治疗外伤,手术创伤,烧伤,疤痕疙瘩及硬皮病等症。
PLGA(即聚乳酸羟基乙酸酯)具有优异的生物相容性,良好的机械性能和可调节的生物降解时间,作为组织工程合成材料被广泛应用。PLGA电纺丝和支架已经广泛应用于组织工程的组织构建,例如:骨、软骨、皮肤和神经再生,以及用于药物递送系统。然而,PLGA本身及其植入体内后引发的降解反应、降解产物都能导致体内严重的炎症反应,导致炎症细胞例如树突细胞,肥大细胞,粒细胞和巨噬细胞等的高度浸润,致使PLGA降解加速,病理细胞过度增生,从而影响PLGA支架介导的再生能力。
发明内容
本发明的一个目的在于提供一种纺丝,其采用稳定射流静电纺丝技术,经混纺制得。
本发明的另一个目的在于提供一种纺丝,其以PLGA/PEO为材料,加入积雪草苷,经稳定射流静电纺丝混纺制得,具有生物相容和生物可降解特性。
本发明的再一个目的在于提供一种纺丝,作为组织工程材料构件用于制备调控体内巨噬细胞表型转化和抗炎的作用的药物或医疗器械。
本发明的又一个目的在于提供一种纺丝,作为支架材料用于制备抗炎和诱导组织再生的医疗器械。
一种纺丝,由PLGA、PEO和积雪草苷经稳定射流静电纺丝技术混纺制得,其中PLGA与PEO的重量比为4∶1,积雪草苷用量为PLGA的10wt%。
另一种纺丝的具体实施方式,其直径为1269±188.2纳米。
另一种纺丝的具体实施方式,其亲水角为17.47°±0.5360°。
另一种纺丝的具体实施方式,其在傅立叶变换的红外光谱下,于1756厘米-1和2886厘米-1具有特征峰。
一种纺丝,由如下方法制备:
分子量100,000的PLGA和分子量500万以上的聚环氧乙烷(PEO)(重量比为4∶1)溶解在2,2,2-三氟乙醇(TFE)中,质量浓度为5%,然后将积雪草苷DMSO溶液和PLGA混合(积雪草苷用量为PLGA的10wt%),得纺丝原液。采用稳定射流静电纺丝技术,将纺丝原液以1.0毫升/小时的速率进行混纺,电压为5千伏~6千伏,喷丝头尖端和收集鼓旋转之间的距离为20厘米,收集鼓的旋转速度为1000转/分钟,在静电纺丝过程中,环境温度为20℃,相对湿度为50%。
本发明的纺丝,其亲水性显著提高,具有调控体内巨噬细胞表型转化和抗炎的作用,可用于制备调控体内巨噬细胞表型转化和抗炎的药物或医疗器械(如:支架)。
本发明的纺丝,其亲水性显著提高,可用作为体内植入后抗炎和诱导组织再生诱导的一种支架材料。
附图说明
图1为本发明的方法制得纺丝在扫描电镜下形态示意图;
图2为本发明制得纺丝直径分布示意图;
图3为本发明制得纺丝所具有的傅立叶变换的红外光谱图;
图4为本发明制得纺丝亲水角统计图;
图5A为本发明制得纺丝埋植入受试动物14天后,经CD86免疫组化染色观察M1巨噬细胞的变化情况;
图5B为本发明制得纺丝埋植入受试动物28天后,经CD86免疫组化染色观察M1巨噬细胞的变化情况;
图6A为本发明制得纺丝埋植入受试动物14天后,经CD163免疫组化染色观察M2巨噬细胞的变化情况;
图6B为本发明制得纺丝埋植入受试动物28天后,经CD163免疫组化染色观察M2巨噬细胞的变化情况;
图7为本发明制得纺丝基质对成纤维细胞、M1和M2巨噬细胞共培养48小时后,对三种细胞基因表达的影响,其中“(a)”图为纺丝对成纤维细胞基因表达的影响,“(b)”图纺丝对M1巨噬细胞基因表达的影响,“(c)”图纺丝对M2巨噬细胞基因表达的影响。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
本实施例的纺丝,采用如下方法制得:
PLGA和聚环氧乙烷(PEO)(重量比为4∶1)溶解在2,2,2-三氟乙醇(TFE)中,质量浓度为5%,然后积雪草苷DMSO溶液和PLGA混合(积雪草苷与PLGA的重量比为10wt%),得纺丝原液。采用稳定射流静电纺丝技术,将纺丝原液以1.0毫升/小时的速率进行混纺,电压为5千伏~6千伏,喷丝头尖端和收集鼓旋转之间的距离为20厘米,收集鼓的旋转速度为1000转/分钟,在静电纺丝过程中,环境温度为20℃,相对湿度为50%。
本实施例制取的纺丝,具有高度取向结构(参见图1),能很好地仿生一些具有各向异性结构的天然组织,如:肌腱,韧带和血管等,对于细胞的功能表达以及组织的修复效果具有重要的作用。因此,通过稳定射流技术制备的取向纤维负载积雪草苷对于再生具有各向异性结构的组织过程中的缓解炎症反应有着更好的优势。
实施例1纺丝特性考察
制得的纺丝喷金后,使用扫描电子显微镜观察。如图1所示,未载药的PLGA电纺丝(PLGA)和载药PLGA电纺丝(AS-PLGA)的形态。如图2所示,发现未载药的PLGA电纺丝直径为1265±170.5纳米,载药PLGA的平均直径为1269±188.2纳米,两者相似。该直径能显著地促进成纤维细胞地增殖、铺展,以及胶原蛋白的表达,更利于创伤的修复。
机械分析两者最大负载,杨氏模量、机械张力以及应力-应变曲线,发现载药后的PLGA机械强度和性能稍稍减弱。
应用傅立叶变换的红外光谱(FTIR)来鉴定未载药和载药电纺丝的性质。分析显示载药PLGA的特征峰在1756厘米-1和2886厘米-1,相当于羧基键(-COO-)和碳氢键(CH),这些数据表明积雪苷成功载入到PLGA纳米纤维中。
通过滴水至两种PLGA表面,观察其接触角以计算两者的亲水性,并拍下液滴在垂直于纤维轴线的照片。如图4所示,观察发现载药PLGA的亲水角(17.47°±0.5360°)远高于未载药PLGA亲水角(40.56°±2.208°),表面积雪苷增加PLGA电纺丝亲水性。材料经功能化后((即对材料实施改性或者引入其他材料和药物)),亲水性得到增强,其表面形貌,化学结构的变化,能很好地改善材料与细胞之间的相互作用,比如:黏附,铺展等,从而提高材料的生物相容性,对于创伤修复具有积极作用。
实施例2纺丝功能验证
将SD大鼠随机分为两组:分别植入未载药的PLGA电纺丝和载药PLGA电纺丝。SD大鼠用10%水合氯醛(4毫升/公斤)麻醉。两种PLGA电纺丝被压缩成圆筒状(直径9毫米,厚度1毫米)。在大鼠脊柱的两侧制作两个长度为1cm的切口,分离皮下组织后将PLGA和载药PLGA电纺丝分别埋入,然后用缝线进行伤口闭合。在手术后2周和4周收集材料通过HE染色和免疫组化染色观察。结果发现,载药PLGA组宿主产生的炎症反应明显减弱,材料降解也稍有减轻。通过对巨噬细胞表型蛋白的染色发现,如图5A和图5B所示,载药PLGA电纺丝周围组织中浸润的促炎型M1型巨噬细胞明显减少在14天和28天结果都是如此。如图6A和图6B所示,抗炎型M2型巨噬细胞明显增多,在14天和28天结果都是如此。
在电纺丝上培养成纤维细胞(人皮肤成纤维细胞取自包皮环切手术患者,已得到患者同意和书面告知)和或巨噬细胞。将PLGA电纺丝负载在圆形载玻片(直径35mm,厚度为0.45mm)上,。将原代巨噬细胞系(RAW 264.7)以2×106细胞/孔的密度接种到6孔板上,在含有10%胎牛血清的RPMI1640培养液中培养24小时。然后用脂多糖(LPS,100纳克/毫升)和重组IL-4(20纳克/毫升)分别刺激RAW 264.7细胞12小时,使其分别分化为M1和M2巨噬细胞,收集极化的M1和M2巨噬细胞用于随后的实验。将1×106的成纤维细胞,M1/M2巨噬细胞分别接种到普通6孔培养板,铺好PLGA电纺丝或载药PLGA电纺丝的6孔培养板上,用2.5毫升含有10%胎牛血清的相应培养基培养48小时后进行PCR检测基因表达,包括白细胞介素类生长因子(IL-1β、IL-4、IL-6、IL-8、IL-10、IL-12、IL-17、IL-18)、血小板衍生生长因子(PDGF)、血管内皮生长因子(VEGF)、诱导型一氧化氮合成酶(INOS)、肿瘤坏死因子α(TNF-α)、Kruppel样因子4(KLF4)、细胞标记物CD206和转化生长因子-β1(TGF-β1)。
如图7所示,48小时后,培养在未载药PLGA电纺丝上的成纤维细胞较培养在普通培养皿上的细胞炎症因子表达明显升高,但培养在载药PLGA电纺丝的细胞这种情况可明显改善。
培养在未载药PLGA电纺丝上的M1型巨噬细胞较培养在普通培养皿上的细胞炎症因子表达明显升高,但载药PLGA电纺丝可明显改善这种促炎情况。
培养在未载药的PLGA电纺丝上的M2型巨噬细胞和培养在普通培养皿上的细胞表达的抗炎基因基本无差异,但载药PLGA电纺丝可明显提高M2型巨噬细胞和抗炎基因表达。
Claims (10)
1.一种纺丝,由PLGA、PEO和积雪草苷经稳定射流静电纺丝技术混纺制得,具有相同的取向性。
2.根据权利要求1所述的纺丝,其特征在于所述的PLGA与所述的PEO的重量比为4∶1,所述的积雪草苷用量为所述PLGA的10wt%。
3.根据权利要求1所述的纺丝,其特征在于所述的PLGA分子量为10万。
4.根据权利要求1所述的纺丝,其特征在于所述的PEO分子量大于500万。
5.根据权利要求1所述的纺丝,其特征在于所述的纺丝直径为1269±188.2纳米。
6.根据权利要求1所述的纺丝,其特征在于所述的纺丝亲水角为17.47±0.5360。
7.一种权利要求1~6之一所述的纺丝在制备调控体内巨噬细胞表型转化和抗炎的药物或医疗器械中的应用。
8.一种支架材料,其特征在于包含权利要求1~6之一所述的纺丝。
9.一种制取权利要求1~6之一所述纺丝的方法,其特征在于包括如下步骤:
PLGA和PEO按重量比为4∶1溶解在2,2,2-三氟乙醇中,质量浓度为5%,然后将积雪草苷DMSO溶液和PLGA混合,得纺丝原液;
采用稳定射流静电纺丝技术,将纺丝原液以1.0毫升/小时的速率进行混纺,电压为5千伏~6千伏,喷丝头尖端和收集鼓旋转之间的距离为20厘米,收集鼓的旋转速度为1,000转/分钟,在静电纺丝过程中,环境温度为20℃,相对湿度为50%。
10.根据权利要求9所述的方法,其特征在于所述的积雪草苷用量为PLGA的10wt%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910756031.2A CN111286810B (zh) | 2019-08-14 | 2019-08-14 | 积雪草苷生物相容可降解电纺丝及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910756031.2A CN111286810B (zh) | 2019-08-14 | 2019-08-14 | 积雪草苷生物相容可降解电纺丝及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111286810A true CN111286810A (zh) | 2020-06-16 |
CN111286810B CN111286810B (zh) | 2022-04-15 |
Family
ID=71029890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910756031.2A Active CN111286810B (zh) | 2019-08-14 | 2019-08-14 | 积雪草苷生物相容可降解电纺丝及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111286810B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112972767A (zh) * | 2021-02-05 | 2021-06-18 | 浙江大学 | 一种具有促进成骨作用的磁响应组织工程材料及其制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102349924A (zh) * | 2011-08-16 | 2012-02-15 | 上海师范大学 | 一种积雪草三萜酸单葡萄糖苷组合物及其制备方法、定量分析方法和应用 |
KR20160015418A (ko) * | 2014-07-30 | 2016-02-15 | 주식회사 원바이오젠 | 의료용 나노섬유시트 제조장치 |
CN106075539A (zh) * | 2016-06-20 | 2016-11-09 | 浙江大学城市学院 | 负载中药积雪草苷的核/壳结构的纳米纤维膜制备方法和伤口敷料应用 |
CN109512801A (zh) * | 2018-12-12 | 2019-03-26 | 广东省医疗器械研究所 | 一种载药共混电纺纤维膜及其制备方法 |
CN109875930A (zh) * | 2019-03-11 | 2019-06-14 | 华南理工大学 | 一种用于皮肤鱼尾纹修复活性成份包覆的精华液及其制备方法 |
-
2019
- 2019-08-14 CN CN201910756031.2A patent/CN111286810B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102349924A (zh) * | 2011-08-16 | 2012-02-15 | 上海师范大学 | 一种积雪草三萜酸单葡萄糖苷组合物及其制备方法、定量分析方法和应用 |
KR20160015418A (ko) * | 2014-07-30 | 2016-02-15 | 주식회사 원바이오젠 | 의료용 나노섬유시트 제조장치 |
CN106075539A (zh) * | 2016-06-20 | 2016-11-09 | 浙江大学城市学院 | 负载中药积雪草苷的核/壳结构的纳米纤维膜制备方法和伤口敷料应用 |
CN109512801A (zh) * | 2018-12-12 | 2019-03-26 | 广东省医疗器械研究所 | 一种载药共混电纺纤维膜及其制备方法 |
CN109875930A (zh) * | 2019-03-11 | 2019-06-14 | 华南理工大学 | 一种用于皮肤鱼尾纹修复活性成份包覆的精华液及其制备方法 |
Non-Patent Citations (1)
Title |
---|
刘晓妍等: "载积雪草总苷同轴和混纺纳米纤维膜的制备和缓释性能评价", 《国际药学研究杂志》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112972767A (zh) * | 2021-02-05 | 2021-06-18 | 浙江大学 | 一种具有促进成骨作用的磁响应组织工程材料及其制备方法与应用 |
CN112972767B (zh) * | 2021-02-05 | 2022-03-11 | 浙江大学 | 一种具有促进成骨作用的磁响应组织工程材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111286810B (zh) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Novel bi-layered dressing patches constructed with radially-oriented nanofibrous pattern and herbal compound-loaded hydrogel for accelerated diabetic wound healing | |
Zhang et al. | Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration | |
Dong et al. | Oriented nanofibrous P (MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization | |
Mohammadi et al. | An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing | |
Shahverdi et al. | Fabrication and structure analysis of poly (lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications | |
US8628787B2 (en) | Method for producing a device applicable to biological tissues, particularly a patch for treating damaged tissues, and a device obtained by said method | |
Zhang et al. | A careob-like nanofibers with a sustained drug release profile for promoting skin wound repair and inhibiting hypertrophic scar | |
Wu et al. | Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering | |
Tanha et al. | G‐CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo | |
US20130177623A1 (en) | Preparation Rich in Growth Factor-Based Fibrous Matrices for Tissue Engeering, Growth Factor Delivery, and Wound Healling | |
Rahmani et al. | Development of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering | |
Mirhaj et al. | Platelet rich fibrin containing nanofibrous dressing for wound healing application: Fabrication, characterization and biological evaluations | |
Mao et al. | Potential of a facile sandwiched electrospun scaffold loaded with ibuprofen as an anti-adhesion barrier | |
Sadeghi-Aghbash et al. | Fabrication and development of PVA/Alginate nanofibrous mats containing Arnebia Euchroma extract as a burn wound dressing | |
CN115487358B (zh) | 一种用于软骨组织修复的凝胶复合支架及制备方法 | |
Li et al. | A native sericin wound dressing spun directly from silkworms enhances wound healing | |
KR100953366B1 (ko) | 조직재생용 나노섬유 지지체 및 이의 제조방법 | |
Pham‐Nguyen et al. | Preparation of stretchable nanofibrous sheets with sacrificial coaxial electrospinning for treatment of traumatic muscle injury | |
CN111286810B (zh) | 积雪草苷生物相容可降解电纺丝及其制备方法和应用 | |
Dong et al. | Micro-nanofiber composite biomimetic conduits promote long-gap peripheral nerve regeneration in canine models | |
Talebi et al. | Polycaprolactone/gelatin/polypyrrole/graphene conductive aligned fibrous scaffold with ferulic acid encapsulation for tissue engineering applications | |
Nicolae et al. | Polymer fibers in biomedical engineering | |
Shakiba et al. | A bi‐functional nanofibrous composite membrane for wound healing applications | |
CN116549742A (zh) | 具有止血、抗炎、防粘连的复合材料及其制备方法和应用 | |
Miele et al. | Design and development of polydioxanone scaffolds for skin tissue engineering manufactured via green process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |