CN111286327A - 一种用于pH检测的量子点荧光探针及其制备方法和应用 - Google Patents

一种用于pH检测的量子点荧光探针及其制备方法和应用 Download PDF

Info

Publication number
CN111286327A
CN111286327A CN202010096857.3A CN202010096857A CN111286327A CN 111286327 A CN111286327 A CN 111286327A CN 202010096857 A CN202010096857 A CN 202010096857A CN 111286327 A CN111286327 A CN 111286327A
Authority
CN
China
Prior art keywords
nanocrystal
citric acid
quantum dot
detection
fluorescent probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010096857.3A
Other languages
English (en)
Inventor
陆阳清
王凯
陈泽楷
张鑫洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Zhongdao Photoelectric Technology Co ltd
Original Assignee
Hangzhou Zhongdao Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Zhongdao Photoelectric Technology Co ltd filed Critical Hangzhou Zhongdao Photoelectric Technology Co ltd
Priority to CN202010096857.3A priority Critical patent/CN111286327A/zh
Publication of CN111286327A publication Critical patent/CN111286327A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于无机发光材料领域,涉及一种钙离子与铕离子共掺杂的硫氧化铋纳米晶的制备及其在pH检测方面的应用,一种用于pH检测的量子点荧光探针,该量子点荧光探针由柠檬酸配体表面修饰10Ca/6Eu:Bi2O2S纳米晶构成,柠檬酸配体与10Ca/6Eu:Bi2O2S纳米晶的摩尔比为2‑10:1。在制备纳米晶的过程中,通过加入碱土钙离子,降低硫氧化铋纳米晶的形核能垒,进而促进硫氧化铋纳米晶的生长。在此基础上,通过表面配体交换,使纳米晶表面带有柠檬酸配体。随着pH增大,柠檬酸中的羧基逐渐电离,纳米晶表面的电负性逐渐降低,抑制了电荷迁移带上的电子布局,进而降低了Eu3+离子的荧光强度。这种简单的荧光pH检测方法,探索新型的pH探针提供了新的思路。

Description

一种用于pH检测的量子点荧光探针及其制备方法和应用
技术领域
本发明属于无机发光材料领域,涉及一种钙离子与铕离子共掺杂的硫氧化铋纳米晶的制备及其在pH检测方面的应用。
背景技术
pH值会影响材料的性能,生物组织的活性,农作物的生长等,因而pH检测被广泛应用于工业、农业、环境以及生物医学领域。常见的pH检测方法主要是基于pH电极的电化学法,其具有较高的准确性,容易操作,检测范围宽,但是设备尺寸大,设计复杂,且不适用于单点检测。与之相比,荧光pH检测具有很多优势,比如响应快,空间分辨率高,非接触式远距离测量。到目前为止,主要的荧光pH探针包含有机染料,金属有机框架与量子点材料,这些体系不稳定,不可逆且检测范围窄。
柠檬酸含有三个羧基,有三种不同的pKa值,分别为5.21,4.28与2.92,随着pH的增大,羧基逐渐电离,相应的电负性值也会发生改变。在硫氧化物体系中,可以形成O2−/S2−→Eu3+电荷迁移带,其布局的电子容易受环境的影响。根据以上思路,本申请提出,采用湿化学法,通过钙离子(Ca2+)与铕离子(Eu3+)共掺杂的方法,成功制备出Ca/Eu:Bi2O2S纳米晶材料,在紫外区域220-400nm范围内,形成宽带O2−/S2−→ Eu3+电荷迁移带,其布局的电子可以有效的传递给Eu3+离子,发出明亮的红光,荧光量子效率为13.2%。通过配体交换法,将表面的油酸配体变为柠檬酸配体。随着pH增大,柠檬酸中的羧基逐渐电离,使得纳米晶表面的电负性逐渐降低,抑制了电荷迁移带上的电子布局,进而降低了Eu3+离子的荧光强度。研究结果表明,Eu3+离子的荧光强度与pH值的变化呈线性关系,非常适合于pH检测。
发明内容
本发明公开一种用于pH检测的量子点荧光探针,具体是通过湿化学法以及异价离子掺杂制备出Ca/ Eu:Bi2O2S纳米晶,再通过配体交换,使纳米晶表面带有柠檬酸配体。随着pH逐渐增大,柠檬酸中的羧基逐渐电离,纳米晶表面的电负性逐渐降低,抑制电荷迁移带上的电子布局数,减弱了Eu3+离子的荧光强度。这一特性使得本发明体系适用于荧光pH检测。
实现上述目的,本发明所采取的技术方案是:
一种用于pH检测的量子点荧光探针,该量子点荧光探针由柠檬酸配体表面修饰10Ca/6Eu:Bi2O2S纳米晶构成,柠檬酸配体与10Ca/6Eu:Bi2O2S纳米晶的摩尔比为2-10:1。
另外一方面,本申请还提供了一种用于pH检测的量子点荧光探针的制备方法,该制备方法包括以下的步骤:
1)将(1-x-y)毫摩尔乙酸铋,x毫摩尔乙酰丙酮铕,y毫摩尔醋酸钙,(4-6)毫升油酸,在室温下加入到50毫升三颈瓶中,升温至100~130℃,并保温1-2小时;其中,x为0.02-0.08,y为0.1-0.2;
2)待步骤1)中的溶液冷却至50℃以下,加入(5-10)毫摩尔硫粉,(15-20)毫升油胺,用机械泵将三颈瓶内抽真空约10分钟,然后升温至120 ℃,并保温(30-60)分钟,随后在氩气保护条件下,迅速升温至(300-320 ℃),并保温(1-2)小时;
3)待步骤2)中的溶液冷却至室温后,加入乙醇离心得到沉淀,并用乙醇:环己烷为3:1的混合液洗涤产物,然后于40℃~80 ℃烘干后得到最终产物;
4)将步骤3)所得纳米晶用浓度为(0.1-0.3)摩尔/升的盐酸溶液超声5-10分钟,然后用乙醇:水为3:1的混合液洗涤,将产物分散在去(2-4)毫升离子水中;
5)将步骤4)所得纳米晶水溶液放入双口烧瓶中,然后加入浓度(1-3)摩尔/升的柠檬酸三钠水溶液,通入氮气作为保护气氛,在50℃~70 ℃保温(24-36)小时,并不定期的补充去离子水;
6)将步骤5)所得纳米晶用乙醇:水为3:1的混合液洗涤,然后于40℃~60 ℃烘干后得到最终产物。
另外一方面,本申请还提供了一种用于pH检测的试剂盒,该试剂盒包括量子点荧光探针,量子点荧光探针由柠檬酸配体表面修饰10Ca/6Eu:Bi2O2S纳米晶构成,柠檬酸配体与10Ca/6Eu:Bi2O2S纳米晶的摩尔比为2-10:1。
另外一方面,本申请还提供了一种用于pH检测的设备,其特征在于,该设备包括紫外灯、量子点荧光探针和检测单元,所述的量子点荧光探针由柠檬酸配体表面修饰10Ca/6Eu:Bi2O2S纳米晶构成,柠檬酸配体与10Ca/6Eu:Bi2O2S纳米晶的摩尔比为2-10:1。
本申请由于采用了上述的技术方案,特殊之处在于,在制备纳米晶的过程中,通过加入碱土钙离子,降低硫氧化铋纳米晶的形核能垒,进而促进硫氧化铋纳米晶的生长。在此基础上,通过表面配体交换,使纳米晶表面带有柠檬酸配体。随着pH增大,柠檬酸中的羧基逐渐电离,纳米晶表面的电负性逐渐降低,抑制了电荷迁移带上的电子布局,进而降低了Eu3+离子的荧光强度。这种简单的荧光pH检测方法,探索新型的pH探针提供了新的思路。
附图说明
图1:本专利实施例中10Ca/6Eu:Bi2O2S纳米晶的X射线衍射图。
图2:本专利实施例中10Ca/6Eu:Bi2O2S纳米晶的透射电镜图。
图3:本专利实施例中10Ca/6Eu:Bi2O2S纳米晶的下转换发光谱图。
图4:本专利实施例中10Ca/6Eu:Bi2O2S纳米晶配体交换前(下)与交换后(上)的傅里叶红外光谱图。
图5:在254nm激发条件下,本专利实施例中10Ca/6Eu:Bi2O2S纳米晶的荧光强度与pH的关系曲线。
图6:在254nm激发条件下,本专利实施例中10Ca/6Eu:Bi2O2S纳米晶的荧光强度随pH变化的荧光照片,从左至右的pH值分别为3,5,8,10。
图7:本专利实施例中10Ca/6Eu:Bi2O2S纳米晶在pH=3(上)与pH=10(下)条件下,不同循环次数的荧光强度。
图8:本专利对比例中10Ca/6Eu:Bi2O2S纳米晶的荧光强度与pH的关系曲线。
具体实施方式
实施例
(1)将0.84毫摩尔乙酸铋,0.06毫摩尔乙酰丙酮铕,0.1毫摩尔醋酸钙,5毫升油酸,在室温下加入到50毫升三颈瓶中,升温至110℃,并保温1小时;
(2)待步骤(1)中的溶液冷却至50℃以下,加入10毫摩尔硫粉,20毫升油胺,用机械泵将三颈瓶内抽真空约10分钟,然后升温至120 ℃,并保温30分钟,随后在氩气保护条件下,迅速升温至310℃,并保温1小时;
(3)待步骤(2)中的溶液冷却至室温后,加入乙醇离心得到沉淀,并用乙醇:环己烷为3:1的混合液洗涤产物,然后于40 ℃烘干后得到最终产物。
(4)将步骤(3)所得纳米晶用浓度为0.1摩尔/升的盐酸溶液超声5分钟,然后用乙醇:水为3:1的混合液洗涤,将产物分散在去3毫升离子水中;
(5)将步骤(4)所得纳米晶水溶液放入双口烧瓶中,然后加入浓度1摩尔/升的柠檬酸三钠水溶液5毫升,通入氮气作为保护气氛,在50℃保温36小时,并不定期的补充去离子水。
(6)将步骤(5)所得纳米晶用乙醇:水为3:1的混合液洗涤,然后于40℃烘干后得到最终产物。
粉末X射线衍射分析与透射电子显微镜观察分析表明:产物为正交晶系(图1),尺寸约为30nm的花瓣状(图2)。在254nm紫外灯照射下,样品的发出明亮的红光,发射谱包含5D07F1, 5D07F2的跃迁(图3)。通过配体交换后,纳米晶表面的油酸配体被替换为柠檬酸(图4),纳米晶表面因带有羧基而转变为水性。将纳米晶分散在水溶液中,然后将溶液的pH值逐渐从3增大到10,Eu3+离子的发光强度逐渐减弱,并呈线性关系(图5),减弱的趋势可以通过肉眼判断(图6)。Eu3+离子依赖于pH发光强度的变化趋势与纳米晶浓度无关,且该变化趋势为可逆变化(图7),这主要是由于纳米晶表面柠檬酸配体的质子化与去质子化过程是可逆过程。因此,本发明体系可以很好应用于可逆荧光pH检测。
对比例
(1)将0.84毫摩尔乙酸铋,0.06毫摩尔乙酰丙酮铕,0.1毫摩尔醋酸钙,5毫升油酸,在室温下加入到50毫升三颈瓶中,升温至110℃,并保温1小时;
(2)待步骤(1)中的溶液冷却至50℃以下,加入10毫摩尔硫粉,20毫升油胺,用机械泵将三颈瓶内抽真空约10分钟,然后升温至120 ℃,并保温30分钟,随后在氩气保护条件下,迅速升温至310℃,并保温1小时;
(3)待步骤(2)中的溶液冷却至室温后,加入乙醇离心得到沉淀,并用乙醇:环己烷为3:1的混合液洗涤产物,然后于40 ℃烘干后得到最终产物。
将纳米晶分散在环己烷溶液中,然后将溶液的pH值逐渐从3增大到10,Eu3+离子的发光强度呈现无规则变化(图8)。这主要是由于纳米晶表面的油酸配体不具有去质子化过程,不能改变纳米晶迁移带上的电子数布局特性。
以上为对本发明实施例的描述,通过对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的。本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施列,而是要符合与本文所公开的原理和新颖点相一致的最宽的范围。

Claims (4)

1.一种用于pH检测的量子点荧光探针,其特征在于,该量子点荧光探针由柠檬酸配体表面修饰10Ca/6Eu:Bi2O2S纳米晶构成,柠檬酸配体与10Ca/6Eu:Bi2O2S纳米晶的摩尔比为2-10:1。
2.根据权利要求1所述的一种用于pH检测的量子点荧光探针的制备方法,其特征在于,该制备方法包括以下的步骤:
1)将(1-x-y)毫摩尔乙酸铋,x毫摩尔乙酰丙酮铕,y毫摩尔醋酸钙,(4-6)毫升油酸,在室温下加入到50毫升三颈瓶中,升温至100~130℃,并保温1-2小时;其中,x为0.02-0.08,y为0.1-0.2;
2)待步骤1)中的溶液冷却至50℃以下,加入(5-10)毫摩尔硫粉,(15-20)毫升油胺,用机械泵将三颈瓶内抽真空约10分钟,然后升温至120 ℃,并保温(30-60)分钟,随后在氩气保护条件下,迅速升温至(300-320 ℃),并保温(1-2)小时;
3)待步骤2)中的溶液冷却至室温后,加入乙醇离心得到沉淀,并用乙醇:环己烷为3:1的混合液洗涤产物,然后于40℃~80 ℃烘干后得到最终产物;
4)将步骤3)所得纳米晶用浓度为(0.1-0.3)摩尔/升的盐酸溶液超声5-10分钟,然后用乙醇:水为3:1的混合液洗涤,将产物分散在去(2-4)毫升离子水中;
5)将步骤4)所得纳米晶水溶液放入双口烧瓶中,然后加入浓度(1-3)摩尔/升的柠檬酸三钠水溶液,通入氮气作为保护气氛,在50℃~70 ℃保温(24-36)小时,并不定期的补充去离子水;
6)将步骤5)所得纳米晶用乙醇:水为3:1的混合液洗涤,然后于40℃~60 ℃烘干后得到最终产物。
3.一种用于pH检测的试剂盒,其特征在于,该试剂盒包括量子点荧光探针,量子点荧光探针由柠檬酸配体表面修饰10Ca/6Eu:Bi2O2S纳米晶构成,柠檬酸配体与10Ca/6Eu:Bi2O2S纳米晶的摩尔比为2-10:1。
4.一种用于pH检测的设备,其特征在于,该设备包括紫外灯、量子点荧光探针和检测单元,所述的量子点荧光探针由柠檬酸配体表面修饰10Ca/6Eu:Bi2O2S纳米晶构成,柠檬酸配体与10Ca/6Eu:Bi2O2S纳米晶的摩尔比为2-10:1。
CN202010096857.3A 2020-02-17 2020-02-17 一种用于pH检测的量子点荧光探针及其制备方法和应用 Withdrawn CN111286327A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010096857.3A CN111286327A (zh) 2020-02-17 2020-02-17 一种用于pH检测的量子点荧光探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010096857.3A CN111286327A (zh) 2020-02-17 2020-02-17 一种用于pH检测的量子点荧光探针及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111286327A true CN111286327A (zh) 2020-06-16

Family

ID=71026860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010096857.3A Withdrawn CN111286327A (zh) 2020-02-17 2020-02-17 一种用于pH检测的量子点荧光探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111286327A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816467A (zh) * 2021-02-08 2021-05-18 杭州可靠护理用品股份有限公司 一种用于尿液检测的显色剂及其在纸尿裤上的应用
CN113174248A (zh) * 2020-09-09 2021-07-27 杭州美迪生物医药技术开发有限公司 一种生物组织细胞原位pH检测用纳米晶材料及其用途和试剂盒
DE102021127227A1 (de) 2021-10-20 2023-04-20 Endress+Hauser Conducta Gmbh+Co. Kg Sensor zur Messung eines pH-Werts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174248A (zh) * 2020-09-09 2021-07-27 杭州美迪生物医药技术开发有限公司 一种生物组织细胞原位pH检测用纳米晶材料及其用途和试剂盒
CN112816467A (zh) * 2021-02-08 2021-05-18 杭州可靠护理用品股份有限公司 一种用于尿液检测的显色剂及其在纸尿裤上的应用
CN112816467B (zh) * 2021-02-08 2023-08-29 杭州可靠护理用品股份有限公司 一种用于尿液检测的显色剂及其在纸尿裤上的应用
DE102021127227A1 (de) 2021-10-20 2023-04-20 Endress+Hauser Conducta Gmbh+Co. Kg Sensor zur Messung eines pH-Werts

Similar Documents

Publication Publication Date Title
Gupta et al. Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators
Ntwaeaborwa et al. Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles
Liu et al. Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF 4 nanocrystals
CN111286327A (zh) 一种用于pH检测的量子点荧光探针及其制备方法和应用
Wang et al. Pechini-type sol–gel synthesis and multicolor-tunable emission properties of GdY (MoO4) 3: RE3+ (RE= Eu, Dy, Sm, Tb) phosphors
CN107033905A (zh) 一种稀土掺杂氟化镱锂纳米材料及其制备方法与应用
Wangkhem et al. Facile synthesis of re-dispersible YVO4: Ln3+ (Ln3+= Dy3+, Eu3+, Sm3+) nanocrystals: luminescence studies and sensing of Cu2+ ions
Kumar et al. Fabrication of dual excitation, dual emission nanophosphor with broad UV and IR excitation through simultaneous doping of triple rare earth ions Er3+, Yb3+, Eu3+ in GdPO4
Singh et al. Influence of calcination temperature on phase, powder morphology and photoluminescence characteristics of Eu-doped ZnO nanophosphors prepared using sodium borohydride
Atabaev et al. The optical properties of Eu3+ and Tm3+ codoped Y2O3 submicron particles
Ansari et al. Influence of shell formation on morphological structure, optical and emission intensity on aqueous dispersible NaYF4: Ce/Tb nanoparticles
Qian et al. Solvothermal synthesis of columnar Gd2O2S: Eu3+ and a comparative study with columnar Gd2O3: Eu3+
Yang et al. Yttrium-based metal-organic frameworks: Controllable synthesis, growth mechanism and the phase transformation to Y2O3: Eu3+ phosphors
Ye et al. Co-precipitation synthesis and self-reduction of CaF2: Eu2+ nanoparticles using different surfactants
Ankoji et al. Tunable white light emission from Dy3+/Eu3+ doped LaAlO3 nanophosphors via hydrothermal method
Bidwai et al. Review on long afterglow nanophosphors, their mechanism and its application in round-the-clock working photocatalysis
Zhao et al. Hydrothermal synthesis and photoluminescence properties of In3+ co-doped YVO4: Eu3+ phosphors
Dwivedi et al. A flexible Eu: Y2O3-polyvinyl alcohol photoluminescent film for sensitive and rapid detection of arsenic ions
del Angel-Olarte et al. Eu3+/Yb3+ co-doped gadolinium oxysulfide upconverting nanorods: Morphological, physicochemical and optical evaluation
Ansari Impact of surface coating on morphological, optical and photoluminescence properties of YF3: Tb3+ nanoparticles
de Oliveira et al. Red emission enhancement in YVO4: Eu3+ nanoparticle by changing the complexing agent in modified sol-gel route
Singh et al. Hydrothermally synthesized rod shaped Y2O3: Eu3+ as red emitter
Yu et al. Hydrothermal synthesis and tunable luminescence of YPO4: Eu2+/Eu3+, Tb3+ nanocrystals
CN114058362A (zh) 一种核壳结构纳米晶材料和其在o2气体检测中的应用
Huang et al. Synthesis and luminescence properties of a novel yellow–white emitting NaLa (MoO4) 2: Dy3+, Li+ phosphor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200616