CN111269906A - Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide - Google Patents

Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide Download PDF

Info

Publication number
CN111269906A
CN111269906A CN202010115296.7A CN202010115296A CN111269906A CN 111269906 A CN111269906 A CN 111269906A CN 202010115296 A CN202010115296 A CN 202010115296A CN 111269906 A CN111269906 A CN 111269906A
Authority
CN
China
Prior art keywords
ala
gly
val
glu
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010115296.7A
Other languages
Chinese (zh)
Inventor
张红夺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Therapy Pharma Co ltd
Original Assignee
Anhui Therapy Pharma Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Therapy Pharma Co ltd filed Critical Anhui Therapy Pharma Co ltd
Priority to CN202010115296.7A priority Critical patent/CN111269906A/en
Publication of CN111269906A publication Critical patent/CN111269906A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/14Nitrogen or oxygen as hetero atom and at least one other diverse hetero ring atom in the same ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/02Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amides (3.5.2)
    • C12Y305/02002Dihydropyrimidinase (3.5.2.2), i.e. hydantoinase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a preparation method of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenyl amide, which uses a polypeptide, can hydrolyze 2- [4- (6-chloro-2-benzoxazolyl oxy) -phenoxy ] propionic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide to obtain (R) -2- [4- (6-chloro-2-benzoxazolyl oxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methyl amide with high optical purity and high yield, avoids using a large amount of organic solvent, reduces environmental pollution and can obtain high-activity target products. The polypeptide has the amino acid sequence shown in SEQ ID NO: 1. SEQ ID NO: 3. SEQ ID NO: 5 or SEQ ID NO: 7 has at least 80%, at least 89%, at least 91%, at least 97% or 100% sequence homology or identity.

Description

Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide
The technical field is as follows:
the invention relates to the technical field related to biochemical raw material medicines, in particular to a preparation method of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenyl amide.
Background art:
although various paddy field herbicides have been developed and used, barnyard grass is the greatest problem among paddy field weeds.
The development of herbicides capable of controlling barnyard grass is an urgent need in the agricultural field. After transplanting rice seedlings, the current developed herbicides cannot effectively control barnyard grass growth, thereby causing serious loss to yield. It was reported that when barnyard grass was grown for 1 week per square meter, it would reduce the yield by 2%, by 10 months for 5 weeks, by about 19% for 10 weeks, and by about 35% for 20 weeks.
To control barnyard grass to reduce yield loss in rice crops, various herbicides have been used. However, there is still a need for herbicides with a broader spectrum of activity, which are environmentally friendly and cost effective.
In order to provide herbicides capable of effectively controlling barnyard grass, intensive studies have been conducted by researchers, and particularly, it has been found that phenoxypropionic acid N-alkyl-N-2-fluorophenylamide has selective herbicidal activity. As a result, it was found that certain phenoxypropionic acid N-alkyl-N-2-fluorophenylamides exist in the form of (R) -or (S) -stereoisomers, and that the (R) -stereoisomers are more safe for rice crops and have better herbicidal activity than the (S) -stereoisomers or mixtures thereof, and thus CN01823753.3 discloses a herbicidally active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide compound. The excellent activity of the (R) -stereoisomer distinguishes it from the prior art. Also, CN01823753.3 discloses a method for producing an optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide compound. It is shown in the publication that they are all obtained by a chemical synthesis method to obtain the final optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide compound. And a large amount of chemical intermediates and organic solvents are used in the chemical synthesis process, and the steps are complicated. In addition, the literature reports that chiral compounds are prepared by a chemical reduction method, a metal catalyst is a very critical factor in the reaction, the requirement on the metal catalyst is strict, the reaction needs to be completed under a high-pressure condition, the requirement on operating equipment is high, and simultaneously, a large amount of wastewater containing heavy metal ions is generated, so that the wastewater is difficult to treat and causes great pollution to the environment. In addition, the content of the chiral compound with the configuration required by metal catalytic synthesis is usually 50%, and the requirement that the content of the chiral compound is more than or equal to 99.5% cannot be met, so that the subsequent resolution and refining are required, half of products are wasted, the production efficiency is reduced, a large amount of waste organic solvent is generated, and the pressure of environmental protection treatment is increased.
The invention content is as follows:
in order to solve the defects of the prior art, the invention provides a preparation method of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenyl amide, which uses a polypeptide, can hydrolyze 2- [4- (6-chloro-2-benzoxazolyl oxy) -phenoxy ] propionic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide to obtain (R) -2- [4- (6-chloro-2-benzoxazolyl oxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methyl amide with high optical purity and high yield, avoids using a large amount of organic solvents, reduces environmental pollution, the target product with high activity can be obtained.
In order to achieve the above object, the present invention provides the following technical solutions:
a polypeptide which is any one of the amino acid sequences shown in (II), (III) and (IV):
(II) has the sequence of SEQ ID NO: 3;
(iii) has SEQ ID NO: 5;
(iv) has the sequence of SEQ ID NO: 7.
Preferably, they are each identical to SEQ ID NO: 3. SEQ ID NO: 5 or SEQ ID NO: 7 has at least 80%, at least 89%, at least 91%, at least 97% or 100% sequence homology or identity.
Use of a polypeptide which is any one of the amino acid sequences shown in (i), (v):
(I) has the sequence of SEQ ID NO: 1;
(v) has SEQ ID NO: 1, at least 80%, at least 89%, at least 91%, at least 97% or 100% sequence homology or identity;
a DNA molecule encoding the polypeptide of SEQ ID NO: 1. SEQ ID NO: 3. SEQ ID NO: 5 or SEQ ID NO: 7.
A DNA molecule having the sequence of SEQ ID NO: 2. SEQ ID NO: 4. SEQ ID NO: 6 or SEQ ID NO: 8.
A recombinant vector comprising any one of the DNA molecules described above, or a DNA molecule capable of expressing any one of the polypeptides described above.
A transformant obtained by introducing the recombinant vector into a host cell.
Preferably, the host cell is E.coli.
A process for preparing optically active (R) -2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methylamide by reacting a polypeptide or a mixture of the above-mentioned transformants with an enantiomer of 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide to form (R) -2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methylamide.
Wherein the ratio of the polypeptide or transformant to the enantiomeric mixture of 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propanoic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide is 2-5: 1.
An optically active (R) -2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methylamide, prepared by any one of the above preparation methods.
The preparation method of the (R) -2- [4- (6-chloro-2-benzoxazolyl-oxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methylamide has the advantages and beneficial effects that:
the polypeptide can hydrolyze 3-isobutyl glutarimide to obtain (R) -2- [4- (6-chloro-2-benzoxazolyl-oxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methylamide with high optical purity, high yield and high activity; the method for preparing the target active substance can reduce environmental pollution.
The specific implementation mode is as follows:
the technical solutions in the embodiments of the present invention are clearly and completely described below with reference to specific embodiments. It should be understood that the described embodiments are part of the present invention, and are intended to be illustrative only and not limiting in scope. Further, it should be understood that various changes or modifications of the present invention may be made by those skilled in the art after reading the teaching of the present invention, and such equivalents may fall within the scope of the present invention as defined in the appended claims.
In order to make the technical means, the creation characteristics, the achievement purposes and the effects of the invention easy to understand, the invention is further described with the specific embodiments.
Example 1 Strain construction of recombinant transformants with hydantoinase
The hydantoinase sequences from Jannaschia CCS1 strain, Jannaschia sp.EhC01 strain, Jannaschia aquimarina strain, Litoreibacter ponti strain, Ralstonia pickettii strain and Arthrobacter aurescens strain were searched for on NCBI, and then codon-optimized in an Escherichia coli expression system (optimized using a conventional online website http:// www.jcat.de) in sequence, respectively, and the optimized genes were completely synthesized. A BamHI restriction site is added at the N end of each gene, an XhoI restriction site is added at the C end of each gene, the genes are restricted and connected into BamHI and XhoI restriction sites of a plasmid pET-28a, and the N end of each gene is provided with a His label. The process is as follows:
the enzyme digestion system is as follows:
target gene/plasmid 1ug
BamHI 1ul
XhoI 1ul
10×buffer 3ul
ddH2Supplementing O to 30ul
The reaction was carried out at 37 ℃ overnight, and the desired gene and plasmid were recovered by agarose gel electrophoresis.
The linking system is as follows:
vector Large fragment 100ng
83ng of target gene
10Xbuffer 2ul
T4 ligase 1ul
ddH2O is complemented to 20ul
The ligation was performed overnight at 16 ℃ after the ligation product was transformed into DH5 α competent cells, which were spread on kanamycin LB plates (kanamycin LB plates: yeast extract 0.5%, peptone 1%, sodium chloride 1%, agar 1.5%, pH 7.0).
After 12 hours of incubation at 37 ℃ in an incubator, monoclonal extracted plasmids were picked for validation. Verification PCR was performed using universal primers for the T7 promoter and terminator and subsequent experiments were performed on positive plasmids. The PCR system and procedure were as follows:
template plasmid 0.2ul
Forward primer (10uM) 0.4ul
Reverse primer (10uM) 0.4ul
10xTransTaq-T Buffer 1ul
2.5mM dNTPs 0.8ul
TransTaq-T pcr enzyme 0.2ul
ddH2O 7ul
Total 10ul
The PCR procedure was as follows:
pre-denaturation at 94 ℃ for 5min
Denaturation at 94 ℃ for 30s
60 ℃ annealing for 60s 30 cycles
Extension at 72 deg.C for 1-2min
Fully extending at 72 ℃ for 5min
The reaction was terminated at 4 ℃ for 30min
The positive recombinant vectors which are verified to be correct are respectively named as: RD01, RD02, RD03, RD04, RD05, RD 06.
Coli BL21(DE) was transformed with these positive recombinant vectors3Competent cells (manufactured by Invitrogen) were obtained as e.coli RD01, e.coli RD02, e.coli RD03, e.coli RD04, e.coli RD05, and e.coli rd06, in this order.
TABLE 1 correspondences between strain sources, recombinant vectors and transformants
Origin of origin Recombinant vector name Name of transformant
Jannaschia CCS1 strain RD01 E.coliRD01
Jannaschiasp. EhC01 strain RD02 E.coliRD02
Jannachi aquimarina strain RD03 E.coliRD03
Litoreibactericepnti strain RD04 E.coliRD04
Ralstoniapackettii strain RD05 E.coliRD05
Arthrobacteraurens strain RD06 E.coliRD06
Example 2
Catalytic thallus and protein preparation
The E.coli RD01 transformant was inoculated into 50ml/250ml LB medium (yeast extract 0.5%, peptone 1%, sodium chloride 1%, pH7.0) containing 50. mu.g/ml kanamycin, cultured with shaking at 37 ℃ and 220rpm, and induced by adding 0.5mM IPTG when grown to an OD600 of 0.6-0.8 under 20 ℃ and 200rpm conditions. The cells were collected by centrifugation and suspended in 50mM phosphate buffer (pH 7.0).
The cells were sonicated and centrifuged, and the supernatant was passed through pre-filled and equilibrated Ni-NTA (available from Solambio. RTM. P2010), to collect the proteins in the supernatant. Impurities were eluted with 20mM imidazole and protein was eluted with 250mM imidazole. Then, a protein concentration tube with 30KDa is used for concentration, and the protein is concentrated to 2mg/mL to obtain a protein concentrated solution.
Similarly, the transformants of e.coli RD02, e.coli RD03, e.coli RD04, e.coli RD05 and e.coli RD06 were prepared to obtain the corresponding protein concentrates, respectively, according to the method of example 2.
Sequencing the protein concentrates, the amino acid sequences and corresponding nucleic acid sequences are shown in Table 2 below
TABLE 2
Figure BDA0002391303730000051
Figure BDA0002391303730000061
Example 3
Stereoselective hydrolysis of 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propanoic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide
After culturing the e.coli RD01 transformant, 10mL of the protein concentrate obtained by separation and purification was taken, 5mg of substrate 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide was added, and the ratio of protein to substrate in the protein concentrate was 4: 1, shaking the mixture at 30 ℃ for 48 hours to obtain a hydrolysate. After the reaction is finished, centrifuging and collecting supernatant, taking a proper amount of supernatant for sample injection, analyzing by high performance liquid chromatography, and calculating the conversion rate (%).
Derivatizing the hydrolysate with 2-bromobenzophenone at a molar ratio of product to derivatizing agent of 1: dissolving 1.5, 2-bromobenzophenone in acetonitrile, and carrying out derivatization reaction at 30 ℃ for 30 minutes. After the reaction, a proper amount of the derivatization reaction solution was sampled and analyzed for optical purity (% ee).
Similarly, after culturing the transformants of e.coli RD02, e.coli RD03, e.coli RD04, e.coli RD05 and e.coli RD06, the respective protein concentrates obtained by separation and purification were also treated as described in example 3, and the conversion (%) and the optical purity (% ee) were calculated, respectively. The results are given in table 3 below:
TABLE 3
Figure BDA0002391303730000062
Figure BDA0002391303730000071
Conversion (%) - (initial weight of substrate-weight of substrate remaining in reaction)/initial weight of substrate
Take e.coli RD01 as an example to calculate the conversion rate calculation process:
coli RD01 reaction was completed to yield 1.4mg of hydrolysate, and when 5mg of substrate was initially charged, the conversion rate was 1.4/5 × 100%
Optical purity (% ee) (a-B)/(a + B) × 100(a and B represent the amounts of the respective isomers, a > B)
Take e.coli RD01 as an example to calculate the optical purity ee value:
optical purity (% ee) (99.919-0.081)/(99.919+0.081) × 100
Example 4
Stereoselective hydrolysis of 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propanoic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide
After culturing the e.coli RD01 transformant, 10mL of the protein concentrate obtained by separation and purification was taken, 5mg of substrate 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide was added, and the ratio of protein to substrate in the protein concentrate was 4: 1, shaking the mixture at 30 ℃ for 48 hours to obtain a hydrolysate. After the reaction is finished, centrifuging and collecting supernatant, taking a proper amount of supernatant for sample injection, analyzing by high performance liquid chromatography, and calculating the conversion rate (%).
Derivatizing the hydrolysate with 2-bromobenzophenone at a molar ratio of product to derivatizing agent of 1: dissolving 1.5, 2-bromobenzophenone in acetonitrile, and carrying out derivatization reaction at 30 ℃ for 30 minutes. After the reaction, a proper amount of the derivatization reaction solution was sampled and analyzed for optical purity (% ee).
Similarly, after culturing the transformants of e.coli RD02, e.coli RD03, e.coli RD04, e.coli RD05 and e.coli RD06, the respective protein concentrates obtained by separation and purification were also treated as described in example 4, and the conversion (%) and the optical purity (% ee) were calculated, respectively. The results are given in table 4 below:
table 4:
microorganisms Conversion (%) Optical purity (% ee) Absolute configuration
E.coliRD01 43 99.4 R
E.coliRD02 38 99.1 R
E.coliRD03 57 99.8 R
E.coliRD04 25 92.2 R
E.coliRD05 36 30.0 S
E.coliRD06 15 22.0 S
Conversion (%) - (initial weight of substrate-weight of substrate remaining in reaction)/initial weight of substrate
Optical purity (% ee) (a-B)/(a + B) × 100(a and B represent the amounts of the respective isomers, a > B)
In this example, e.coli RD05 and e.coli RD06 catalyzed hydrolysis, the S configuration predominated in the hydrolysate.
The foregoing shows and describes the general principles and broad features of the present invention and advantages thereof. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are described in the specification and illustrated only to illustrate the principle of the present invention, but that various changes and modifications may be made therein without departing from the spirit and scope of the present invention, which fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and equivalents thereof.
Sequence listing
<110> Anhui Sailapu pharmaceutical Co., Ltd
<120> process for producing optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide
<130>2020.02.25
<160>12
<170>SIPOSequenceListing 1.0
<210>1
<211>487
<212>PRT
<213> Artificial sequence (Artificial sequence)
<400>1
Met Ser Lys Val Ile Lys Gly Gly Thr Ile Val Thr Ala Asp Arg Gln
1 5 10 15
Trp Gln Ala Asp Val Leu Ile Glu Gly Glu Lys Ile Ala Glu Ile Gly
20 25 30
Glu Asn Leu Arg Gly Asp Glu Val Ile Asp Ala Glu Gly Ala Tyr Val
35 40 45
Ile Pro Gly Gly Ile Asp Pro His Thr His Leu Glu Met Pro Phe Met
50 55 60
Gly Thr Thr Ala Ala Glu Thr Phe Glu Thr Gly Thr Phe Ala Ala Ala
65 70 75 80
Ala Gly Gly Thr Thr Met Leu Val Asp Phe Cys Leu Pro Gly Glu Asp
85 90 95
Gly Ser Leu Leu Ser Ala Ile Asp Ala Trp Asp Ala Lys Ser Lys Asp
100 105 110
Gln Ile Cys Val Asp Ile Ser Tyr His Met Ala Ile Thr Gly Trp Ser
115 120 125
Glu Ser Ile Phe Asn Glu Met Ala Asp Val Val Asn Val Arg Gly Ile
130 135 140
Asn Thr Phe Lys His Phe Met Ala Tyr Lys Gly Ala Leu Met Ile Glu
145 150155 160
Asp Asp Glu Met Phe Ser Ser Phe Lys Arg Cys Ala Glu Leu Gly Ala
165 170 175
Leu Pro Leu Val His Ala Glu Asn Gly Asp Ile Val Gln Glu Leu Gln
180 185 190
Gln Lys Tyr Met Ala Met Gly Val Thr Gly Pro Glu Gly His Ala Tyr
195 200 205
Ser Arg Pro Pro Glu Val Glu Gly Glu Ala Ala Asn Arg Ala Ile Met
210 215 220
Ile Ala Asp Ala Ala Gly Thr Pro Leu Tyr Ile Val His Val Ser Cys
225 230 235 240
Glu Gln Ala His Glu Ala Ile Arg Arg Ala Arg Gln Lys Gly Met Arg
245 250 255
Val Phe Gly Glu Pro Leu Ile Gln His Leu Thr Leu Asp Glu Ser Glu
260 265 270
Tyr Phe Asn Lys Asp Trp Gln Tyr Ala Ala Arg Arg Val Met Ser Pro
275 280 285
Pro Phe Arg Asn Lys Glu His Gln Asp Gly Leu Trp Ala Gly Leu Ala
290 295 300
Ala Gly Ser Leu Gln Val Val Ala Thr Asp His Ala Ala Phe Thr Asp
305 310315 320
Glu Gln Lys Arg Met Gly Val Asp Asn Phe Gly Met Ile Pro Asn Gly
325 330 335
Thr Gly Gly Leu Glu Glu Arg Met Ala Met Leu Trp Thr Arg Gly Val
340 345 350
Glu Thr Gly Arg Leu Thr Pro Glu Glu Phe Val Ala Val Thr Ser Ser
355 360 365
Asn Ile Ala Lys Ile Leu Asn Ile Tyr Pro Met Lys Gly Gly Ile Asn
370 375 380
Val Gly Gly Asp Ala Asp Ile Val Val Trp Asp Pro Lys Leu Gly Arg
385 390 395 400
Thr Ile Thr Thr Ala Thr Ala Lys Ser Ile Leu Asp Tyr Asn Val Phe
405 410 415
Glu Gly Met Glu Val Ser Ala Ser Pro Arg Tyr Thr Leu Ser Arg Gly
420 425 430
Asp Val Val Trp Ala Ala Gly Gln Asn Ser Gln Pro Gln Pro Gly Arg
435 440 445
Gly Lys Phe Val Lys Arg Pro Pro Ala Ala Ser Ala Ser Gln Ala Leu
450 455 460
Ser Lys Trp Lys Ala Leu Asn Thr Pro Arg Lys Ile Glu Arg Asp Pro
465 470 475480
Met Asn Ile Pro Ala Gly Val
485
<210>2
<211>1461
<212>DNA
<213> Artificial sequence (Artificial sequence)
<400>2
atgagcaaag ttattaaggg tggcaccatt gttaccgcgg accgtcagtg gcaggcggat 60
gttctgattg agggcgaaaa gattgcggaa attggcgaga acctgcgtgg cgacgaagtg 120
atcgatgcgg agggtgcgta cgttattccg ggtggcattg acccgcacac ccacctggaa 180
atgccgttta tgggcaccac cgcggcggaa acctttgaaa ccggtacctt tgcggcggcg 240
gcgggtggca ccaccatgct ggttgacttc tgcctgccgg gcgaggatgg cagcctgctg 300
agcgcgattg acgcgtggga tgcgaagagc aaagaccaaa tttgcgtgga tatcagctac 360
cacatggcga ttaccggttg gagcgaaagc atctttaacg agatggcgga tgtggttaac 420
gttcgtggca ttaacacctt caagcacttt atggcgtata aaggtgcgct gatgatcgaa 480
gacgatgaga tgttcagcag ctttaagcgt tgcgcggaac tgggtgcgct gccgctggtg 540
cacgcggaaa acggtgacat cgttcaggag ctgcagcaaa aatatatggc gatgggtgtg 600
accggtccgg agggtcatgc gtatagccgt ccgccggaag tggaaggtga agcggcgaac 660
cgtgcgatca tgattgcgga tgcggcgggt accccgctgt acattgtgca cgttagctgc 720
gagcaagcgc atgaggcgat ccgtcgtgcg cgtcaaaagg gtatgcgtgt gttcggcgaa 780
ccgctgattc aacacctgac cctggacgaa agcgagtact ttaacaagga ttggcagtat 840
gcggcgcgtc gtgttatgag cccgccgttc cgtaacaaag aacaccaaga tggcctgtgg 900
gcgggtctgg cggcgggcag cctgcaagtg gttgcgaccg accacgcggc gttcaccgat 960
gagcagaaac gtatgggtgt ggataacttt ggcatgatcc cgaacggtac cggtggcctg 1020
gaggaacgta tggcgatgct gtggacccgt ggtgttgaaa ccggccgtct gaccccggag 1080
gaattcgtgg cggttaccag cagcaacatc gcgaagattc tgaacatcta tccgatgaaa 1140
ggtggcatta acgtgggtgg cgacgcggat atcgtggttt gggacccgaa gctgggccgt 1200
accattacca ccgcgaccgc gaaaagcatc ctggattaca acgtgtttga gggtatggaa 1260
gtgagcgcga gcccgcgtta taccctgagc cgtggcgacg tggtttgggc ggcgggtcaa 1320
aacagccagc cgcaaccggg tcgtggcaag ttcgttaaac gtccgccggc ggcgagcgcg 1380
agccaggcgc tgagcaagtg gaaggcgctg aacaccccgc gtaagattga acgtgatccg 1440
atgaacattc cggcgggcgt g 1461
<210>3
<211>487
<212>PRT
<213> Artificial sequence (Artificial sequence)
<400>3
Met Ser Lys Val Ile Lys Gly Gly Thr Ile Val Thr Ala Asp Arg Gln
1 5 10 15
Trp Gln Ala Asp Val Leu Ile Glu Gly Glu Lys Ile Ala Glu Ile Gly
20 25 30
Glu Asn Leu Arg Gly Asp Glu Val Ile Asp Ala Glu Gly Ala Tyr Val
35 40 45
Ile Pro Gly Gly Ile Asp Pro His Thr His Leu Glu Met Pro Phe Met
50 55 60
Gly Thr Thr Ala Ala Glu Thr Phe Glu Thr Gly Thr Phe Ala Ala Ala
65 70 75 80
Ala Gly Gly Thr Thr Met Leu Val Asp Phe Cys Leu Pro Gly Glu Asp
85 90 95
Gly Ser Leu Leu Asn Ala Ile Asp Ala Trp Asp Lys Lys Ser Lys Asp
100 105 110
Gln Ile Cys Val Asp Ile Ser Tyr His Met Ala Ile Thr Gly Trp Asn
115 120 125
Glu Asp Ile Phe Asn Glu Met Asp Ala Val Val Asn Gln Arg Gly Ile
130 135 140
Asn Thr Phe Lys His Phe Met Ala Tyr Lys Gly Ala Leu Met Ile Glu
145 150 155 160
Asp Asp Glu Met Phe Ala Ser Phe Lys Arg Cys Ala Glu Leu Gly Ala
165 170 175
Leu Pro Leu Val His Ala Glu Asn Gly Asp Ile Val Gln Glu Leu Gln
180 185 190
Gln Lys Tyr Met Ala Met Gly Val Thr Gly Pro Glu Gly His Ala Tyr
195 200 205
Ser Arg Pro Pro Glu Val Glu Gly Glu Ala Ala Asn Arg Ala Ile Met
210 215 220
Ile Ala Asp Ala Ala Gly Thr Pro Leu Tyr Ile Val His Val Ser Cys
225 230 235 240
Glu Gln Ala His Glu Ala Ile Arg Arg Ala Arg Gln Lys Gly Met Arg
245 250 255
Val Phe Gly Glu Pro Leu Ile Gln His Leu Thr Leu Asp Glu Ser Glu
260 265 270
Tyr Phe Asn Lys Asp Trp Gln Tyr Ala Ala Arg Arg Val Met Ser Pro
275 280 285
Pro Phe Arg Ser Lys Asp His Gln Asp Gly Leu Trp Ala Gly Leu Ala
290 295 300
Ala Gly Ser Leu Gln Val Val Ala Thr Asp His Ala Ala Phe Thr Asp
305 310 315 320
Glu Gln Lys Arg Met Gly Val Gly Asn Phe Gly Met Ile Pro Asn Gly
325 330 335
Thr Gly Gly Leu Glu Glu Arg Met Ala Met Leu Trp Thr Asn Gly Val
340 345 350
Glu Thr Gly Arg Leu Thr Pro Glu Glu Phe Val Ala Val Thr Ser Ser
355 360 365
Asn Ile Ala Lys Ile Leu Asn Ile Tyr Pro Met Lys Gly Gly Ile Asn
370 375 380
Val Gly Gly Asp Ala Asp Val Val Val Trp Asp Pro Lys Leu Gly Arg
385 390 395 400
Thr Ile Thr Thr Ala Thr Ala Lys Ser Ile Leu Asp Tyr Asn Val Phe
405 410 415
Glu Gly Met Glu Val Ser Ala Ser Pro Arg Tyr Thr Leu Ser Arg Gly
420 425 430
Asp Val Val Trp Ala Ala Gly Gln Asn Ser Gln Pro Thr Pro Gly Arg
435 440 445
Gly Arg Phe Val Lys Arg Pro Pro Ala Ala Ser Ala Ser Gln Ala Leu
450 455 460
Ser Lys Trp Lys Ala Leu Asn Thr Pro Arg Lys Ile Glu Arg Asp Pro
465 470 475 480
Met Asn Ile Pro Ala Gly Val
485
<210>4
<211>1461
<212>DNA
<213> Artificial sequence (Artificial sequence)
<400>4
atgagcaagg ttattaaagg tggcaccatc gtgaccgcgg accgtcagtg gcaagcggat 60
gttctgattg agggtgaaaa gatcgcggaa attggcgaga acctgcgtgg cgacgaagtt 120
atcgatgcgg agggtgcgta cgtgattccg ggtggcattg acccgcacac ccacctggaa 180
atgccgttta tgggtaccac cgcggcggaa acctttgaga ccggtacctt tgcggcggcg 240
gcgggtggca ccaccatgct ggttgacttc tgcctgccgg gcgaggatgg cagcctgctg 300
aacgcgatcg acgcgtggga taagaaaagc aaagaccaaa tttgcgtgga tatcagctac 360
cacatggcga ttaccggttg gaacgaagac atctttaacg agatggatgc ggtggttaac 420
cagcgtggta ttaacacctt caagcacttt atggcgtata aaggcgcgct gatgatcgaa 480
gacgatgaga tgttcgcgag ctttaaacgt tgcgcggaac tgggtgcgct gccgctggtt 540
cacgcggaaa acggcgacat tgtgcaagag ctgcagcaaa aatacatggc gatgggtgtt 600
accggtccgg agggtcatgc gtacagccgt ccgccggaag tggaaggcga ggcggcgaac 660
cgtgcgatca tgattgcgga tgcggcgggc accccgctgt acattgttca cgtgagctgc 720
gagcaagcgc atgaggcgat ccgtcgtgcg cgtcaaaagg gtatgcgtgt tttcggcgaa 780
ccgctgatcc aacacctgac cctggacgaa agcgagtact ttaacaagga ttggcagtat 840
gcggcgcgtc gtgtgatgag cccgccgttc cgtagcaaag accaccagga tggtctgtgg 900
gcgggtctgg cggcgggtag cctgcaagtg gttgcgaccg accacgcggc gttcaccgat 960
gaacagaaac gtatgggtgt tggcaacttt ggtatgattc cgaacggcac cggtggcctg 1020
gaggaacgta tggcgatgct gtggaccaac ggtgtggaga ccggccgtct gaccccggag 1080
gaattcgttg cggtgaccag cagcaacatc gcgaagattc tgaacatcta tccgatgaaa 1140
ggtggcatca acgtgggtgg cgacgcggat gtggttgtgt gggacccgaa gctgggtcgt 1200
accattacca ccgcgaccgc gaaaagcatc ctggattaca acgtttttga aggcatggaa 1260
gtgagcgcga gcccgcgtta taccctgagc cgtggtgacg ttgtttgggc ggcgggtcaa 1320
aacagccagc cgaccccggg tcgtggccgt ttcgttaaac gtccgccggc ggcgagcgcg 1380
agccaggcgc tgagcaagtg gaaagcgctg aacaccccgc gtaaaattga gcgtgatccg 1440
atgaacatcc cggcgggtgt g 1461
<210>5
<211>487
<212>PRT
<213> Artificial sequence (Artificial sequence)
<400>5
Met Ser Lys Val Ile Lys Asn Gly Thr Ile Val Thr Ala Asp Arg Gln
1 5 10 15
Trp Lys Ala Asp Val Leu Ile Glu Gly Glu His Ile Ala Glu Ile Gly
20 25 30
Glu Asn Leu Lys Gly Asp Glu Thr Ile Asp Ala Ser Asp Ala Tyr Val
35 40 45
Ile Pro Gly Gly Ile Asp Pro His Thr His Leu Glu Met Pro Phe Met
50 55 60
Gly Thr Thr Ala Ala Glu Thr Phe Glu Ser Gly Thr Phe Ala Ala Val
65 70 75 80
Ala Gly Gly Thr Thr Met Leu Val Asp Phe Cys Leu Pro Gly Glu Asp
85 90 95
Gly Ser Leu Leu Asn Ala Ile Asp Glu Trp Asp Arg Lys Ser Arg Asp
100 105 110
Gln Ile Cys Cys Asp Ile Ser Tyr His Met Ala Ile Thr Gly Trp Ser
115 120 125
Glu Ser Ile Phe Asp Glu Met Glu Ala Val Val Lys Glu Arg Gly Ile
130 135 140
Asn Thr Phe Lys His Phe Met Ala Tyr Lys Gly Ala Leu Met Val Glu
145 150 155 160
Asp Asp Glu Met Phe Ala Ser Phe Lys Arg Cys Ala Glu Leu Gly Ala
165 170 175
Leu Pro Leu Val His Ala Glu Asn Gly Asp Ile Val Ala Glu Leu Gln
180 185 190
Gln Lys Tyr Leu Ala Glu Gly Ile Thr Gly Pro Glu Gly His Ala Tyr
195 200 205
Ser Arg Pro Pro Glu Val Glu Gly Glu Ala Ala Asn Arg Ala Ile Met
210 215 220
Ile Ala Asp Ala Ala Gly Thr Pro Leu Tyr Ile Val His Val Ser Cys
225 230 235 240
Glu Gln Ala His Glu Ala Ile Arg Arg Ala Arg Gln Lys Gly Met Arg
245 250 255
Val Tyr Gly Glu Pro Leu Ile Gln His Leu Thr Leu Asp Glu Ser Glu
260 265 270
Tyr Phe Asp Lys Asp Trp Gln Tyr Ala Ala Arg Arg Val Met Ser Pro
275 280 285
Pro Phe Arg Ser Lys Asp His Gln Asp Gly Leu Trp Asn Gly Leu Ala
290 295 300
Ala Gly Ser Leu Gln Val Val Ala Thr Asp His Ala Ala Phe Thr Asp
305 310 315 320
Glu Gln Lys Arg Met Gly Val Asp Asn Phe Ala Met Ile Pro Asn Gly
325 330 335
Thr Gly Gly Leu Glu Glu Arg Met Gly Met Leu Trp Thr Lys Gly Val
340 345 350
Glu Thr Gly Arg Leu Thr Pro Glu Glu Phe Val Ala Val Thr Ser Thr
355 360 365
Asn Ile Ala Lys Ile Leu Asn Ile Tyr Pro Met Lys Gly Gly Ile Ala
370 375 380
Val Gly Gly His Ala Asp Val Val Val Trp Asp Pro Thr Leu Gly Arg
385 390 395 400
Thr Ile Thr Thr Ala Thr Ala Lys Ser Ile Leu Asp Tyr Asn Val Phe
405 410 415
Glu Gly Ile Glu Val Ser Ala Ser Pro Arg Tyr Thr Leu Ser Arg Gly
420 425 430
Asp Val Val Trp Ala Ala Gly Gln Asn Ser Gln Pro Gln Pro Gly Arg
435 440 445
Gly Lys Phe Val Lys Arg Ser Pro Tyr Ala Ser Ala Ser Lys Ala Leu
450 455 460
Ser Lys Trp Lys Ala Leu Asn Thr Pro Arg Lys Ile Glu Arg Asp Pro
465 470 475 480
Met Asn Ile Pro Ala Gly Val
485
<210>6
<211>1461
<212>DNA
<213> Artificial sequence (Artificial sequence)
<400>6
atgagcaagg ttattaaaaa cggtaccatc gtgaccgcgg accgtcaatg gaaggcggat 60
gttctgattg agggcgaaca catcgcggaa attggcgaga acctgaaagg cgacgaaacc 120
atcgacgcga gcgatgcgta cgtgattccg ggtggcatcg atccgcacac ccacctggag 180
atgccgttca tgggtaccac cgcggcggaa acctttgaaa gcggtacctt tgcggcggtt 240
gcgggtggca ccaccatgct ggttgacttt tgcctgccgg gtgaagatgg cagcctgctg 300
aacgcgattg acgagtggga tcgtaagagc cgtgaccaga tttgctgcga tatcagctac 360
cacatggcga ttaccggttg gagcgaaagc atcttcgacg agatggaagc ggtggttaaa 420
gagcgtggta tcaacacctt caagcacttt atggcgtata aaggcgcgct gatggttgaa 480
gacgatgaga tgttcgcgag ctttaaacgt tgcgcggaac tgggtgcgct gccgctggtt 540
cacgcggaaa acggcgacat tgtggcggag ctgcagcaaa aatatctggc ggaaggtatt 600
accggtccgg agggtcatgc gtacagccgt ccgccggaag tggaaggcga ggcggcgaac 660
cgtgcgatca tgattgcgga tgcggcgggc accccgctgt acattgttca cgtgagctgc 720
gagcaagcgc atgaggcgat ccgtcgtgcg cgtcaaaagg gtatgcgtgt ttatggcgag 780
ccgctgatcc aacacctgac cctggacgaa agcgagtact tcgacaagga ttggcagtat 840
gcggcgcgtc gtgtgatgag cccgccgttt cgtagcaaag accaccaaga tggtctgtgg 900
aacggtctgg cggcgggtag cctgcaagtg gttgcgaccg accacgcggc gttcaccgat 960
gaacagaagc gtatgggtgt tgataacttt gcgatgatcc cgaacggtac cggtggcctg 1020
gaggaacgta tgggcatgct gtggaccaaa ggtgtggaga ccggccgtct gaccccggag 1080
gaatttgttg cggtgaccag caccaacatc gcgaagattc tgaacatcta cccgatgaaa 1140
ggtggcattg cggttggtgg ccacgcggac gtggttgtgt gggatccgac cctgggtcgt 1200
accattacca ccgcgaccgc gaaaagcatc ctggactaca acgtttttga aggtattgaa 1260
gtgagcgcga gcccgcgtta taccctgagc cgtggtgatg ttgtttgggc ggcgggtcaa 1320
aacagccagc cgcaaccggg tcgtggcaag tttgttaaac gtagcccgta tgcgagcgcg 1380
agcaaggcgc tgagcaagtg gaaagcgctg aacaccccgc gtaaaattga acgtgacccg 1440
atgaacatcc cggcgggtgt g 1461
<210>7
<211>487
<212>PRT
<213> Artificial sequence (Artificial sequence)
<400>7
Met Ser Lys Val Ile Lys Gly Gly Thr Ile Val Thr Ala Asp Arg Ser
1 5 10 15
Trp Thr Ala Asp Val Leu Ile Glu Gly Glu Lys Ile Ala Glu Ile Gly
20 25 30
Glu Asn Leu Lys Gly Asp Glu Val Ile Asp Ala Glu Gly Ala Tyr Val
35 40 45
Ile Pro Gly Gly Ile Asp Pro His Thr His Leu Glu Met Pro Phe Met
50 55 60
Gly Thr Thr Ala Ala Glu Thr Phe Glu Ser Gly Thr Phe Ala Ala Ala
65 70 75 80
Ala Gly Gly Thr Thr Met Leu Val Asp Phe Cys Leu Pro Gly Glu Asp
85 90 95
Gly Ser Leu Leu Ser Ala Ile Asp Asp Trp Asp Arg Lys Ser Lys Asp
100 105 110
Gln Ile Cys Cys Asp Ile Ser Tyr His Met Ala Ile Thr Gly Trp Asn
115 120 125
Glu Asn Ile Phe Asn Glu Met Glu Asp Val Val Asn Lys Arg Gly Ile
130 135 140
Asn Thr Phe Lys His Phe Met Ala Tyr Lys Gly Ala Leu Met Val Glu
145 150 155 160
Asp Asp Glu Met Phe Ala Ser Phe Lys Arg Cys Ala Glu Leu Gly Ala
165 170 175
Leu Pro Leu Val His Ala Glu Asn Gly Asp Ile Val Gln Glu Leu Gln
180 185 190
Gln Lys Tyr Met Ala Glu Gly Ile Thr Gly Pro Glu Gly His Ala Tyr
195 200 205
Ser Arg Pro Pro Glu Val Glu Gly Glu Ala Ala Asn Arg Ala Ile Met
210 215 220
Ile Ala Asp Ala Ala Gly Thr Pro Leu Tyr Ile Val His Val Ser Cys
225 230 235 240
Glu Gln Ala His Glu Ala Ile Arg Arg Ala Arg Gln Lys Gly Met Arg
245 250 255
Val Tyr Gly Glu Pro Leu Ile Gln His Leu Thr Leu Asp Glu Ser Glu
260 265 270
Tyr Phe Asn Lys Asp Trp Gln Tyr Ala Ala Arg Arg Val Met Ser Pro
275 280 285
Pro Phe Arg Ser Lys Asp His Gln Ala Ser Leu Trp Ala Gly Leu Ala
290 295 300
Ala Gly Ser Leu Gln Val Val Ala Thr Asp His Ala Ala Phe Thr Asp
305 310 315 320
Lys Gln Lys Gln Met Gly Leu Asp Asn Phe Thr Ser Ile Pro Asn Gly
325 330 335
Thr Gly Gly Leu Glu Glu Arg Met Ala Met Leu Trp Thr Thr Gly Val
340 345 350
Glu Thr Gly Arg Leu Thr Pro Glu Glu Phe Val Ala Ala Thr Ser Thr
355 360 365
Asn Ile Ala Lys Ile Leu Asn Ile Tyr Pro Leu Lys Gly Gly Ile Asn
370 375 380
Val Gly Gly Asp Ala Asp Val Val Val Trp Asp Pro Thr Ile Ser Arg
385 390 395 400
Glu Ile Ala Val Ser Thr Gln Lys Ser Ile Ile Asp Tyr Asn Val Phe
405 410 415
Glu Gly Met Thr Val Thr Ala Gln Pro Arg Tyr Thr Leu Ser Arg Gly
420 425 430
Glu Val Ile Trp Ala Tyr Gly Gln Asn Ser Gln Pro Gln Pro Gly Arg
435 440 445
Gly Lys Phe Val Arg Arg Pro Ala Phe Ala Ser Ala Ser Lys Ala Leu
450 455 460
Ser Arg Trp Lys Ser Leu Asn Thr Pro Arg Lys Ile Glu Arg Asp Pro
465 470 475 480
Leu Asn Ile Pro Ser Gly Val
485
<210>8
<211>1461
<212>DNA
<213> Artificial sequence (Artificial sequence)
<400>8
atgagcaagg ttattaaagg tggcaccatc gtgaccgcgg atcgtagctg gaccgcggac 60
gttctgattg agggcgaaaa gatcgcggaa attggcgaga acctgaaagg tgacgaagtt 120
atcgatgcgg agggtgcgta cgtgattccg ggtggcatcg atccgcacac ccacctggag 180
atgccgttca tgggcaccac cgcggcggaa accttcgaga gcggtacctt tgcggcggcg 240
gcgggtggca ccaccatgct ggttgacttt tgcctgccgg gcgaggatgg tagcctgctg 300
agcgcgattg acgattggga ccgtaagagc aaagatcaga tttgctgcga catcagctac 360
cacatggcga ttaccggttg gaacgaaaac atcttcaacg agatggaaga cgtggttaac 420
aagcgtggca tcaacacctt caagcacttt atggcgtata aaggtgcgct gatggttgaa 480
gacgatgaga tgttcgcgag ctttaaacgt tgcgcggagc tgggtgcgct gccgctggtt 540
cacgcggaaa acggtgatat tgtgcaagag ctgcagcaaa aatacatggc ggaaggtatt 600
accggtccgg agggtcatgc gtacagccgt ccgccggaag tggaaggtga agcggcgaac 660
cgtgcgatca tgattgcgga cgcggcgggt accccgctgt acattgttca cgtgagctgc 720
gagcaagcgc atgaggcgat ccgtcgtgcg cgtcaaaaag gcatgcgtgt ttatggtgaa 780
ccgctgatcc agcacctgac cctggatgaa agcgagtact tcaacaagga ctggcaatat 840
gcggcgcgtc gtgtgatgag cccgccgttt cgtagcaaag atcaccaagc gagcctgtgg 900
gcgggtctgg cggcgggtag cctgcaagtg gttgcgaccg atcacgcggc gttcaccgac 960
aagcagaaac aaatgggcct ggacaacttt accagcattc cgaacggtac cggtggcctg 1020
gaggaacgta tggcgatgct gtggaccacc ggcgttgaga ccggtcgtct gaccccggag 1080
gaattcgtgg cggcgaccag caccaacatc gcgaagattc tgaacatcta cccgctgaaa 1140
ggtggcatca acgttggtgg cgacgcggat gtggttgtgt gggatccgac cattagccgt 1200
gaaatcgctg tgagcaccca gaagagcatc attgactata acgtttttga gggtatgacc 1260
gttaccgcgc agccgcgtta caccctgagc cgtggcgaag ttatctgggc gtatggtcaa 1320
aacagccagc cgcaaccggg tcgtggcaag tttgtgcgtc gtccggcgtt tgcgagcgcg 1380
agcaaggcgc tgagccgttg gaaaagcctg aacaccccgc gtaaaattga acgtgacccg 1440
ctgaacatcc cgagcggtgt t 1461
<210>9
<211>457
<212>PRT
<213> Artificial sequence (Artificial sequence)
<400>9
Met Asp Ile Ile Ile Lys Asn Gly Thr Ile Val Thr Ala Asp Gly Ile
1 5 10 15
Ser Arg Ala Asp Leu Gly IleLys Asp Gly Lys Ile Thr Gln Ile Gly
20 25 30
Gly Ala Leu Gly Pro Ala Glu Arg Thr Ile Asp Ala Ala Gly Arg Tyr
35 40 45
Val Phe Pro Gly Gly Ile Asp Val His Thr His Val Glu Thr Val Ser
50 55 60
Phe Asn Thr Gln Ser Ala Asp Thr Phe Ala Thr Ala Thr Val Ala Ala
65 70 75 80
Ala Cys Gly Gly Thr Thr Thr Ile Val Asp Phe Cys Gln Gln Asp Arg
85 90 95
Gly His Ser Leu Ala Glu Ala Val Ala Lys Trp Asp Gly Met Ala Gly
100 105 110
Gly Lys Ser Ala Ile Asp Tyr Gly Tyr His Ile Ile Val Leu Asp Pro
115 120 125
Thr Asp Ser Val Ile Glu Glu Leu Glu Val Leu Pro Asp Leu Gly Ile
130 135 140
Thr Ser Phe Lys Val Phe Met Ala Tyr Arg Gly Met Asn Met Ile Asp
145 150 155 160
Asp Val Thr Leu Leu Lys Thr Leu Asp Lys Ala Val Lys Thr Gly Ser
165 170 175
Leu Val Met Val His Ala Glu Asn Gly Asp Ala Ala Asp Tyr Leu Arg
180 185 190
Asp Lys Phe Val Ala Glu Gly Lys Thr Ala Pro Ile Tyr His Ala Leu
195 200 205
Ser Arg Pro Pro Arg Val Glu Ala Glu Ala Thr Ala Arg Ala Leu Ala
210 215 220
Leu Ala Glu Ile Val Asn Ala Pro Ile Tyr Ile Val His Val Thr Cys
225 230 235 240
Glu Glu Ser Leu Glu Glu Val Met Arg Ala Lys Ser Arg Gly Val Arg
245 250 255
Ala Leu Ala Glu Thr Cys Thr His Tyr Leu Tyr Leu Thr Lys Glu Asp
260 265 270
Leu Glu Arg Pro Asp Phe Glu Gly Ala Lys Tyr Val Phe Thr Pro Pro
275 280 285
Ala Arg Ala Lys Lys Asp His Asp Val Leu Trp Asn Ala Leu Arg Asn
290 295 300
Gly Val Phe Glu Thr Val Ser Ser Asp His Cys Ser Trp Leu Phe Lys
305 310 315 320
Gly His Lys Asp Arg Gly Arg Asn Asp Phe Arg Ala Ile Pro Asn Gly
325 330 335
Ala Pro Gly Val Glu Glu Arg Leu Met Met Val Tyr Gln Gly Val Asn
340 345 350
Glu Gly Arg Ile Ser Leu Thr Gln Phe Val Glu Leu Val Ala Thr Arg
355 360 365
Pro Ala Lys Val Phe Gly Met Phe Pro Gln Lys Gly Thr Ile Ala Val
370 375 380
Gly Ser Asp Ala Asp Ile Val Leu Trp Asp Pro Glu Ala Glu Met Val
385 390 395 400
Ile Glu Gln Thr Ala Met His Asn Ala Met Asp Tyr Ser Ser Tyr Glu
405 410 415
Gly His Lys Val Lys Gly Val Pro Lys Thr Val Leu Leu Arg Gly Lys
420 425 430
Val Ile Val Asp Glu Gly Ser Tyr Val Gly Glu Pro Thr Asp Gly Lys
435 440 445
Phe Leu Lys Arg Arg Lys Tyr Lys Gln
450 455
<210>10
<211>1374
<212>DNA
<213> Artificial sequence (Artificial sequence)
<400>10
atggacatca ttatcaagaa cggtaccatt gtgaccgcgg atggtatcag ccgtgcggac 60
ctgggtatca aggatggcaa aattacccaa atcggtggcg cgctgggtcc ggcggagcgt 120
accattgatg cggcgggccg ttacgtgttc ccgggtggca tcgatgttca cacccacgtg 180
gaaaccgtta gcttcaacac ccaaagcgcg gacacctttg cgaccgcgac cgtggcggcg 240
gcgtgcggtg gcaccaccac cattgttgac ttttgccagc aagatcgtgg tcatagcctg 300
gcggaagcgg tggcgaagtg ggatggtatg gcgggtggca aaagcgcgat cgattacggc 360
tatcacatta tcgttctgga cccgaccgat agcgtgattg aggaactgga agttctgccg 420
gatctgggta tcaccagctt caaggtgttt atggcgtatc gtggcatgaa catgatcgac 480
gatgtgaccc tgctgaaaac cctggacaag gcggttaaaa ccggtagcct ggtgatggtt 540
catgcggaga acggtgatgc ggcggattac ctgcgtgata agttcgttgc ggaaggtaaa 600
accgcgccga tttatcacgc gctgagccgt ccgccgcgtg tggaggcgga agcgaccgcg 660
cgtgcgctgg cgctggcgga gatcgttaac gcgccgattt acatcgtgca cgttacctgc 720
gaggaaagcc tggaggaagt gatgcgtgcg aaaagccgtg gcgttcgtgc gctggcggag 780
acctgcaccc actacctgta tctgaccaaa gaggacctgg aacgtccgga tttcgaaggt 840
gcgaaatatg tgtttacccc gccggcgcgt gcgaagaaag accacgatgt tctgtggaac 900
gcgctgcgta acggcgtgtt cgaaaccgtt agcagcgacc actgcagctg gctgttcaag 960
ggtcacaaag accgtggccg taacgatttt cgtgcgattc cgaacggtgc gccgggcgtt 1020
gaggaacgtc tgatgatggt gtaccagggt gttaacgagg gccgtatcag cctgacccag 1080
tttgtggaac tggttgcgac ccgtccggcg aaggtgttcg gcatgtttcc gcagaaaggt 1140
accattgcgg tgggcagcga cgcggatatc gttctgtggg acccggaggc ggaaatggtt 1200
attgagcaaaccgcgatgca caacgcgatg gattacagca gctatgaagg tcacaaggtg 1260
aaaggcgttc cgaagaccgt gctgctgcgt ggtaaagtga tcgttgacga gggtagctac 1320
gttggcgaac cgaccgatgg caagtttctg aaacgtcgta agtataaaca gtga 1374
<210>11
<211>458
<212>PRT
<213> Artificial sequence (Artificial sequence)
<400>11
Met Phe Asp Val Ile Val Lys Asn Cys Arg Leu Val Ser Ser Asp Gly
1 5 10 15
Ile Thr Glu Ala Asp Ile Leu Val Lys Asp Gly Lys Val Ala Ala Ile
20 25 30
Ser Ala Asp Thr Ser Asp Val Glu Ala Ser Arg Thr Ile Asp Ala Gly
35 40 45
Gly Lys Phe Val Met Pro Gly Val Val Asp Glu His Val His Ile Ile
50 55 60
Asp Met Asp Leu Lys Asn Arg Tyr Gly Arg Phe Glu Leu Asp Ser Glu
65 70 75 80
Ser Ala Ala Val Gly Gly Ile Thr Thr Ile Ile Glu Met Pro Ile Thr
85 90 95
Phe Pro Pro Thr Thr Thr Leu Asp Ala Phe Leu Glu Lys Lys Lys Gln
100 105 110
Ala Gly Gln Arg Leu Lys Val Asp Phe Ala Leu Tyr Gly Gly Gly Val
115 120 125
Pro Gly Asn Leu Pro Glu Ile Arg Lys Met His Asp Ala Gly Ala Val
130 135 140
Gly Phe Lys Ser Met Met Ala Ala Ser Val Pro Gly Met Phe Asp Ala
145 150 155 160
Val Ser Asp Gly Glu Leu Phe Glu Ile Phe Gln Glu Ile Ala Ala Cys
165 170 175
Gly Ser Val Ile Val Val His Ala Glu Asn Glu Thr Ile Ile Gln Ala
180 185 190
Leu Gln Lys Gln Ile Lys Ala Ala Gly Gly Lys Asp Met Ala Ala Tyr
195 200 205
Glu Ala Ser Gln Pro Val Phe Gln Glu Asn Glu Ala Ile Gln Arg Ala
210 215 220
Leu Leu Leu Gln Lys Glu Ala Gly Cys Arg Leu Ile Val Leu His Val
225 230 235 240
Ser Asn Pro Asp Gly Val Glu Leu Ile His Gln Ala Gln Ser Glu Gly
245 250 255
Gln Asp Val His Cys Glu Ser Gly Pro Gln Tyr Leu Asn Ile Thr Thr
260 265 270
Asp Asp Ala Glu Arg Ile Gly Pro Tyr Met Lys Val Ala Pro Pro Val
275 280 285
Arg Ser Ala Glu Met Asn Ile Arg Leu Trp Glu Gln Leu Glu Asn Gly
290 295 300
Leu Ile Asp Thr Leu Gly Ser Asp His Gly Gly His Pro Val Glu Asp
305 310 315 320
Lys Glu Pro Gly Trp Lys Asp Val Trp Lys Ala Gly Asn Gly Ala Leu
325 330 335
Gly Leu Glu Thr Ser Leu Pro Met Met Leu Thr Asn Gly Val Asn Lys
340 345 350
Gly Arg Leu Ser Leu Glu Arg Leu Val Glu Val Met Cys Glu Lys Pro
355 360 365
Ala Lys Leu Phe Gly Ile Tyr Pro Gln Lys Gly Thr Leu Gln Val Gly
370 375 380
Ser Asp Ala Asp Leu Leu Ile Leu Asp Leu Asp Ile Asp Thr Lys Val
385 390 395 400
Asp Ala Ser Gln Phe Arg Ser Leu His Lys Tyr Ser Pro Phe Asp Gly
405 410 415
Met Pro Val Thr Gly Ala Pro Val Leu Thr Met Val Arg Gly Thr Val
420 425 430
Val Ala Glu Lys Gly Glu Val Leu Val Glu Gln Gly Phe Gly Gln Phe
435 440 445
Val Thr Arg Arg Asn Tyr Glu Ala Ser Lys
450 455
<210>12
<211>1377
<212>DNA
<213> Artificial sequence (Artificial sequence)
<400>12
atgttcgatg tgatcgttaa aaactgccgt ctggttagca gcgacggcat caccgaagcg 60
gatattctgg tgaaagacgg caaggttgcg gcgatcagcg cggataccag cgacgttgaa 120
gcgagccgta ccattgatgc gggtggcaaa ttcgtgatgc cgggcgtggt tgacgagcac 180
gttcacatca ttgacatgga tctgaagaac cgttacggtc gttttgagct ggatagcgaa 240
agcgcggcgg ttggtggcat caccaccatc attgaaatgc cgattacctt cccgccgacc 300
accaccctgg atgcgtttct ggagaagaaa aagcaggcgg gccaacgtct gaaggtggac 360
ttcgcgctgt atggtggcgg tgttccgggt aacctgccgg agatccgtaa aatgcacgac 420
gcgggcgcgg tgggtttcaa gagcatgatg gcggcgagcg tgccgggcat gtttgatgcg 480
gttagcgacg gcgagctgtt cgaaatcttt caggaaattg cggcgtgcgg tagcgttatc 540
gtggttcacg cggagaacga aaccatcatt caagcgctgc agaaacaaat taaggcggcg 600
ggcggtaaag atatggcggc gtatgaggcg agccagccgg tgtttcaaga gaacgaagcg 660
attcagcgtg cgctgctgct gcaaaaggaa gcgggctgcc gtctgatcgt gctgcacgtt 720
agcaacccgg atggtgtgga gctgattcac caggcgcaaa gcgaaggcca ggacgttcac 780
tgcgagagcg gtccgcaata cctgaacatc accaccgacg atgcggaacg tattggtccg 840
tatatgaaag tggctccgcc ggttcgtagc gcggagatga acatccgtct gtgggagcag 900
ctggaaaacg gcctgattga taccctgggt agcgaccatg gcggtcaccc ggtggaggat 960
aaggaaccgg gctggaaaga cgtttggaaa gcgggtaacg gtgcgctggg tctggaaacc 1020
agcctgccga tgatgctgac caacggcgtg aacaaaggtc gtctgagcct ggagcgtctg 1080
gtggaagtta tgtgcgagaa accggcgaag ctgtttggta tctacccgca gaagggcacc 1140
ctgcaagtgg gtagcgacgc ggatctgctg atcctggacc tggatattga caccaaagtt 1200
gatgcgagcc agttccgtag cctgcacaag tatagcccgt ttgatggtat gccggtgacc 1260
ggtgcgccgg tgctgaccat ggttcgtggc accgtggttg cggagaaagg tgaagtgctg 1320
gttgaacagg gcttcggtca atttgttacc cgtcgtaact atgaggcgag caagtga 1377

Claims (4)

1. A process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide, characterized in that: has the sequence shown in SEQ ID NO: 1. SEQ ID NO: 3. SEQ ID NO: 5 or SEQ ID NO: 7 with an enantiomeric mixture of 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide to produce (R) -2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methylamide.
2. The process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide according to claim 1, characterized in that the ratio of the above-mentioned polypeptide or transformant to the enantiomeric mixture of 2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N-methyl-N- (2, 6-difluoro-phenyl) amide is 2-5: 1.
3. The process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide according to any one of claims 1 or 2, characterized in that: the transformant is obtained by introducing a recombinant vector into a host cell, wherein the recombinant vector contains a nucleotide sequence shown in SEQ ID NO: 2. SEQ ID NO: 4. SEQ ID NO: 6 or SEQ ID NO: 8 or a DNA molecule comprising a polypeptide according to any one of the preceding claims.
4. An optically active (R) -2- [4- (6-chloro-2-benzoxazolyloxy) -phenoxy ] propionic acid-N- (2-fluorophenyl) -N-methylamide, characterized in that: is prepared by any one of the preparation methods.
CN202010115296.7A 2020-02-25 2020-02-25 Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide Withdrawn CN111269906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010115296.7A CN111269906A (en) 2020-02-25 2020-02-25 Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010115296.7A CN111269906A (en) 2020-02-25 2020-02-25 Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide

Publications (1)

Publication Number Publication Date
CN111269906A true CN111269906A (en) 2020-06-12

Family

ID=70995273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010115296.7A Withdrawn CN111269906A (en) 2020-02-25 2020-02-25 Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide

Country Status (1)

Country Link
CN (1) CN111269906A (en)

Similar Documents

Publication Publication Date Title
US11001823B2 (en) Nitrilase mutants and application thereof
CN113249366B (en) L-threonine aldolase mutant, gene and application
CN108690854B (en) Method for producing L-glufosinate-ammonium by using chemical-enzymatic method
CN110272856B (en) Recombinant bacterium for expressing D-threonine aldolase and construction method and application thereof
CN112626057B (en) Chimeric plant nitrilase mutant, coding gene and application thereof
CN114134134B (en) L-threonine aldolase mutant and application thereof in synthesis of L-syn-p-methylsulfonyl phenylserine
CN107937422B (en) panD mutant gene, genetic engineering and application thereof in catalytic production of beta-alanine
CN109554358B (en) Polypeptide, DNA molecule, recombinant vector, transformant and application thereof
CN111647588A (en) Halogen alcohol dehalogenase mutant and application thereof in synthesis of chiral epichlorohydrin
CN112522228B (en) R-aminotransferase from pseudomonas ammoxidation and synthesis method thereof
CN114525268A (en) Glutamic acid decarboxylase mutant with improved pH tolerance and application thereof in synthesis of gamma-aminobutyric acid
CN113122527B (en) Aspartase mutant with improved enzyme activity and changed optimal pH
CN110592045B (en) Recombinant esterase, gene, engineering bacterium and application of recombinant esterase to resolution of (R, S) -indoline-2-ethyl formate
CN110358751B (en) Recombinant lipase mutant, encoding gene, recombinant engineering bacterium and application
CN111269906A (en) Process for the preparation of optically active (R) -phenoxypropionic acid-N-methyl-N-2-fluorophenylamide
CN107988131B (en) Method for high-yield production of α -ketone-gamma-methylthiobutyric acid
CN106119224B (en) Esterase EstP00714 and coding gene and application thereof
CN113151234B (en) Nitrile hydratase lysine mutant HBA-K2H2R, coding gene and application
CN114958934A (en) Method for preparing L-glufosinate-ammonium
CN110923223B (en) Novel nitrilase and application thereof
CN115747194B (en) L-threonine aldolase mutant, gene and method for preparing L-anti-p-methylsulfonylphenyl serine
CN116426499B (en) Methyltransferase mutant, biological material and application
CN113444712B (en) L-aspartic acid-alpha-decarboxylase mutant and application thereof
CN108103044B (en) Esterase WDEst17, and coding gene and application thereof
CN113980948A (en) High-activity tyrosine phenol lyase mutant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200612

WW01 Invention patent application withdrawn after publication