CN111262686A - 一种rssp-i安全通信的安全校验方法 - Google Patents

一种rssp-i安全通信的安全校验方法 Download PDF

Info

Publication number
CN111262686A
CN111262686A CN202010055758.0A CN202010055758A CN111262686A CN 111262686 A CN111262686 A CN 111262686A CN 202010055758 A CN202010055758 A CN 202010055758A CN 111262686 A CN111262686 A CN 111262686A
Authority
CN
China
Prior art keywords
value
message
ssr
rsd
time stamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010055758.0A
Other languages
English (en)
Inventor
王宏明
张勇
林卫永
金云
王泉荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRSC Wanquan Signaling Equipment Co Ltd
Original Assignee
CRSC Wanquan Signaling Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRSC Wanquan Signaling Equipment Co Ltd filed Critical CRSC Wanquan Signaling Equipment Co Ltd
Priority to CN202010055758.0A priority Critical patent/CN111262686A/zh
Publication of CN111262686A publication Critical patent/CN111262686A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • H04L9/0656Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开了一种RSSP‑I安全通信的安全校验方法,包括以下步骤:获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项式,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项式进行处理,获取伪随机数值,根据所述伪随机序列值对安全通信进行安全校验,获取有效报文。其中移位寄存器值的生成多项式采用了本原多项式来提高伪随机序列值,进而提升了RSSP‑I通信协议的安全性,并且使用伽罗瓦线性反馈移位算法计算量小,实现起来比较简洁有效。

Description

一种RSSP-I安全通信的安全校验方法
技术领域
本发明涉及通信技术领域,尤其涉及一种RSSP-I安全通信的安全校验方法。
背景技术
RSSP-I安全通信协议适用于封闭式传输系统中的安全相关通信,用在封闭 式传输系统环境下进行安全相关信息的交互,能够降低数据帧的重复、丢失、 插入、次序混乱、传输超时等威胁,保障接收到的信息的真实性、完整性、实 时性和有序性。
目前,已有的RSSP-I协议的安全校验方法中采用的时间戳生成多项式0x0FC22F87只能生成4095项伪随机序列,伪随机序列长度不够,安全性不够高。 所以本发明在线性反馈移位寄存器值的生成多项式采用了本原多项式来提高伪 随机数值,进而提高了RSSP-I通信的安全性,并且使用伽罗瓦线性反馈移位算 法在软件上实现比较简洁有效,能达到其他算法同样的效果,同时计算量更小。
发明内容
本发明提供的一种RSSP-I安全通信的安全校验方法,旨在解决现有技术中 存在伪随机序列长度不够导致的安全性问题和解决伪随机序列长度计算复杂的 问题。
为实现上述目的,本发明采用以下技术方案:
本发明的一种RSSP-I安全通信的安全校验方法,包括以下步骤:
获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项 式;
以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项 式进行处理,获取伪随机数值;
根据所述伪随机序列值对安全通信进行安全校验,获取有效报文。
获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项 式,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项 式进行处理,获取伪随机数值,根据所述伪随机序列值对安全通信进行安全校 验,获取有效报文。其中移位寄存器值的生成多项式采用了本原多项式来提高 伪随机性,进而提高了RSSP-I通信协议的安全性,并且使用伽罗瓦线性反馈移 位算法计算量小,实现起来比较简洁有效。
作为优选,获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式 为本原多项式,包括:
将通信源标识作为所述时间戳值的初始值;
将所述初始值按系统周期进行移位。
作为优选,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所 述本原多项式进行处理,获取伪随机数值,包括:
以上次生成的时间戳值作为输入参数记为a,以所述时间戳值的生成多项式 为b;
计算a和b的异或值,所述异或值为c,
Figure BDA0002372739860000021
根据所述异或值作为时间戳的所述伪随机数值。
作为优选,根据所述伪随机序列值对安全通信进行安全校验,获取有效报 文,包括:
对于RSD报文,若计算得到第一次RSD值与第二次RSD值相同,则RSD报 文为有效报文;
对于SSR报文,若计算得到第一次SSR值与第二次SSR值相同,则SSR报 文为有效报文。
一种RSSP-I安全通信的安全校验装置,包括:
获取模块,获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式 为本原多项式;
处理模块,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所 述本原多项式进行处理,获取伪随机数值;
校验模块,根据所述伪随机序列值对安全通信进行安全校验,获取有效报 文。
作为优选,所述获取模块包括:
设置单元,将通信源标识作为所述时间戳值的初始值;
移位单元,将所述初始值按系统周期进行移位。
作为优选,所述处理模块包括:
输入单元,以上次生成的时间戳值作为输入参数记为a,以所述时间戳值的 生成多项式为b;
计算单元,计算a和b的异或值,所述异或值为c,
Figure BDA0002372739860000031
Figure BDA0002372739860000032
输出单元,根据所述异或值作为时间戳的所述伪随机数值。
作为优选,所述校验模块包括:
RSD报文单元,对于RSD报文,若计算得到第一次RSD值与第二次RSD值相 同,则RSD报文为有效报文;
SSR报文单元,对于SSR报文,若计算得到第一次SSR值与第二次SSR值相 同,则SSR报文为有效报文。
一种电子设备,包括存储器和处理器,所述存储器用于存储一条或多条计 算机指令,其中,所述一条或多条计算机指令被所述处理器执行以实现如上述 中任一项所述的一种RSSP-I安全通信的安全校验方法。
一种存储有计算机程序的计算机可读存储介质,所述计算机程序使计算机 执行时实现如上述中任一项所述的一种RSSP-I安全通信的安全校验方法。
本发明具有如下有益效果:
获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项 式,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项 式进行处理,获取伪随机数值,根据所述伪随机序列值对安全通信进行安全校 验,获取有效报文。其中移位寄存器值的生成多项式采用了本原多项式来提高 伪随机序列值,进而提升了RSSP-I通信协议的安全性,并且使用伽罗瓦线性反 馈移位算法计算量小,实现起来比较简洁有效。
附图说明
图1是本发明实施例实现一种RSSP-I安全通信的安全校验方法第一流程 图;
图2是本发明实施例实现一种RSSP-I安全通信的安全校验方法第二流程 图;
图3是本发明实施例实现一种RSSP-I安全通信的安全校验方法第三流程 图;
图4是本发明实施例实现一种RSSP-I安全通信的安全校验方法第四流程 图;
图5是本发明实施例实现一种RSSP-I安全通信的安全校验方法的具体实施 流程图;
图6是本发明实施例实现一种RSSP-I安全通信的安全校验装置示意图;
图7是本发明实施例实现一种RSSP-I安全通信的安全校验装置的获取模块 示意图;
图8是本发明实施例实现一种RSSP-I安全通信的安全校验装置的处理模块 示意图;
图9是本发明实施例实现一种RSSP-I安全通信的安全校验装置的校验模块 示意图;
图10是本发明实施例实现一种RSSP-I安全通信的安全校验装置的具体实 施流程图;
图11是本发明实施例实现一种RSSP-I安全通信的安全校验方法的一种电 子设备示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基 于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的 所有其他实施例,都属于本发明保护的范围。
在介绍本发明技术方案之前,示例性的介绍一种本发明技术方案可能适用 的场景。
示例性的:RSSP-I安全通信的安全校验域的校验中伪随机序列值的生成是 安全校验过程中的一道工序。RSSP-I安全通信产生多种报文,每个报文均包含 有安全校验通道,安全校验通道用于识别报文是否有效,以利于报文的后续输 出。
RSSP-I安全通信的处理模块是必不可少的,示例性的,本原多项式经处理 模块的伽罗瓦线性反馈移位算法进行计算,产生伪随机数值,提高了伪随机数 值的长度,进而提升了通信的安全性。
示例性的,每个本原多项式由移位寄存器产生,移位寄存器可以为线性反 馈移位寄存器,也可以为非线性反馈移位寄存器,移位寄存器值作为时间戳的 值,时间戳值的生成多项式为本原多项式,利用线性反馈移位寄存器值的生成 多项式可以提高伪随机数值,进而提高了RSSP-I通信的安全性,因此本发明的 示例中均采用线性反馈移位寄存器为例。
RSSP-I安全通信的安全校验域的校验方法中将大幅提高伪随机数值,进而 提高了RSSP-I通信的安全性,并且使用伽罗瓦线性反馈移位算法在软件上实现 比较简洁有效,能达到其他算法同样的效果,同时计算量更小。
实施例1
如图1所示,一种RSSP-I安全通信的安全校验方法,包括以下步骤:
S110、获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本 原多项式;
S120、以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本 原多项式进行处理,获取伪随机数值;
S130、根据所述伪随机序列值对安全通信进行安全校验,获取有效报文。
根据实施例1可知,系统在获取有效报文时,会先获取移位寄存器值作为 时间戳值,所述时间戳值的生成多项式为本原多项式。确定好本原多项式后, 以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项式进 行处理,获取伪随机数值,最后根据所述伪随机序列值对安全通信进行安全校 验,获取有效报文。此方法在线性反馈移位寄存器值的生成多项式采用了本原 多项式来提高伪随机数值,进而提高了RSSP-I通信的安全性,并且使用伽罗瓦 线性反馈移位算法在软件上实现比较简洁有效,能达到其他算法同样的效果, 同时计算量更小。
实施例2
如图2所示,一种RSSP-I安全通信的安全校验方法,包括:
S210、获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本 原多项式;
S220、将通信源标识作为所述时间戳值的初始值;
S230、将所述初始值按系统周期进行移位。
根据实施例2可知,通信报文的安全校验域采用的时间戳值,即32位的线 性反馈移位寄存器值,线性反馈移位寄存器值的生成多项式采用32位的本原多 项式,能够生成232-1项伪随机数值。时间戳值的初始值使用SID(通信源标识), 按系统周期移位,并使用固定多项式作附加干扰输入。时间戳与本地周期计数 器对应同步递增。线性反馈移位寄存器值的生成多项式采用了本原多项式来提 高伪随机数值,进而提高了RSSP-I通信的安全性。
实施例3
如图3所示,一种RSSP-I安全通信的安全校验方法,包括:
S310、获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本 原多项式;
S320、将通信源标识作为所述时间戳值的初始值;
S330、将所述初始值按系统周期进行移位;
S340、以上次生成的时间戳值作为输入参数记为a,以所述时间戳值的生成 多项式为b;
S350、计算a和b的异或值,所述异或值为c,
Figure BDA0002372739860000071
Figure BDA0002372739860000072
S360、根据所述异或值作为时间戳的所述伪随机数值。
根据实施例3可知,所提到的利用伽罗瓦线性反馈移位算法计算伪随机数 值,仅仅为示例性的,不是对计算伪随机数值的限定。
采用伽罗瓦线性反馈移位算法生成时间戳的伪随机数值的过程为:将 SID(通信源标识)值作为时间戳值生成的种子,将上次生成的时间戳值作为输入 参数,记为input,左移操作时,将input左移1位,左移操作时,获取上次的 时间戳值的最高bit位,记为msb,如果msb不为0,则input与生成多项式进 行异或,将结果赋予input;右移操作时,将input右移1位,右移操作时,获 取上次的时间戳值的最高bit位,记为lsb,如果lsb不为0,则input与生成 多项式进行异或,将结果赋予input,最后的input值作为时间戳的伪随机数值。
利用伽罗瓦线性反馈移位算法在软件上实现比较简洁有效,能达到其他算 法同样的效果,同时计算量更小。
实施例4
如图4所示,一种RSSP-I安全通信的安全校验方法,包括:
S410、获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本 原多项式;
S420、以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本 原多项式进行处理,获取伪随机数值;
S430、对于RSD报文,若计算得到第一次RSD值与第二次RSD值相同,则 RSD报文为有效报文;
S440、对于SSR报文,若计算得到第一次SSR值与第二次SSR值相同,则 SSR报文为有效报文。
根据实施例4可知,对于RSD报文,第一次RSD值包括SID_1^T_1(N)值, 第二次RSD值包括与本地保存的最近一次SID_1^T_1(N-1)进行一次线性反馈移 位的左移SEQ(时序)-SEQ(最后一次的时序)次的值,对RSD报文进行安全校验域 的验证时,若计算得到第一次RSD值与第二次RSD值相同,则认为安全校验区 域的时序有效,RSD报文为有效报文,验证SVC_2时方法同SVC_1。
对于SSR报文,第一次SSR值为SSR_1_local,第二次SSR值为SSR报文中 的SSR_1值,验证SSR报文时,根据SSR报文中的应答方的序列号Nr,请求方 的序列号Ne,计算需要进行LFSR(线性反馈移位寄存器)移位的次数CNTssr。 将发出SSE时保存的SEQENQ_1值与SID_1进行异或处理得到T_1(Ne),然后进 行CNTssr次LFSR(线性反馈移位寄存器)移位,得到T_1(Nr)的值并计算得到 SSR_1_local与SSR报文中的SSR_1值进行比较,如果两者一致,则认为本报文 有效,否则丢弃报文。
利用伪随机序列值可以获得有效报文,提高RSSP-I通信协议的安全性。
实施例5
如图5所示,一种具体的实施方式可为:
S510、获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本 原多项式;
通信报文的安全校验域采用的时间戳值,即32位的线性反馈移位寄存器值, 线性反馈移位寄存器值的生成多项式采用32位的本原多项式,能够生成232-1项 伪随机数值。
S520、将通信源标识作为所述时间戳值的初始值,并将所述初始值按系统 周期进行移位;
时间戳值的初始值使用SID(通信源标识),按系统周期移位,并使用固定多 项式作附加干扰输入。时间戳与本地周期计数器对应同步递增。线性反馈移位 寄存器值的生成多项式采用了本原多项式来提高伪随机数值,进而提高了 RSSP-I通信的安全性。
S530、以上次生成的时间戳值作为输入参数记为a,以所述时间戳值的生成 多项式为b,计算a和b的异或值,所述异或值为c,
Figure BDA0002372739860000091
Figure BDA0002372739860000092
根据所述异或值作为时间戳的所述伪随机数值;
采用伽罗瓦线性反馈移位算法生成时间戳的伪随机数值的过程为:将 SID(通信源标识)值作为时间戳值生成的种子,将上次生成的时间戳值作为输入 参数,记为input,左移操作时,将input左移1位,左移操作时,获取上次的 时间戳值的最高bit位,记为msb,如果msb不为0,则input与生成多项式进 行异或,将结果赋予input;右移操作时,将input右移1位,右移操作时,获 取上次的时间戳值的最高bit位,记为lsb,如果lsb不为0,则input与生成 多项式进行异或,将结果赋予input,最后的input值作为时间戳的伪随机数值。
利用伽罗瓦线性反馈移位算法在软件上实现比较简洁有效,能达到其他算 法同样的效果,同时计算量更小。
S540、对于RSD报文,若计算得到第一次RSD值与第二次RSD值相同,则 RSD报文为有效报文;
对于RSD报文,第一次RSD值包括SID_1^T_1(N)值,第二次RSD值包括与 本地保存的最近一次SID_1^T_1(N-1)进行一次线性反馈移位的左移SEQ(时 序)-SEQ(最后一次的时序)次的值,对RSD报文进行安全校验域的验证时,若计 算得到第一次RSD值与第二次RSD值相同,则认为安全校验区域的时序有效, RSD报文为有效报文,验证SVC_2时方法同SVC_1。
利用伪随机序列值可以获得有效报文,提高RSSP-I通信协议的安全性。
其中,RSD报文详细内容如表1所示:
表1 RSD(实时安全数据)报文
Figure BDA0002372739860000101
Figure BDA0002372739860000111
S550、对于SSR报文,若计算得到第一次SSR值与第二次SSR值相同,则 SSR报文为有效报文;
对于SSR报文,第一次SSR值为SSR_1_local,第二次SSR值为SSR报文中 的SSR_1值,验证SSR报文时,根据SSR报文中的应答方的序列号Nr,请求方 的序列号Ne,计算需要进行LFSR(线性反馈移位寄存器)移位的次数CNTssr。 将发出SSE时保存的SEQENQ_1值与SID_1进行异或处理得到T_1(Ne),然后进 行CNTssr次LFSR(线性反馈移位寄存器)移位,得到T_1(Nr)的值并计算得到 SSR_1_local与SSR报文中的SSR_1值进行比较,如果两者一致,则认为本报文 有效,否则丢弃报文。
利用伪随机序列值可以获得有效报文,提高RSSP-I通信协议的安全性。
其中SSE报文如表2所示:
表2 SSE(时序校正请求)报文
Figure BDA0002372739860000121
其中,SSR报文如表3所示:
表3 SSR(时序校正答复)报文
Figure BDA0002372739860000131
获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项 式,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项 式进行处理,获取伪随机数值,根据所述伪随机序列值对安全通信进行安全校 验,获取有效报文。其中移位寄存器值的生成多项式采用了本原多项式来提高 伪随机序列值,进而提升了RSSP-I通信协议的安全性,并且使用伽罗瓦线性反 馈移位算法计算量小,实现起来比较简洁有效。
实施例6
如图6所示,一种RSSP-I安全通信的安全校验装置,包括:
获取模块10,获取移位寄存器值作为时间戳值,所述时间戳值的生成多项 式为本原多项式;
处理模块20,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对 所述本原多项式进行处理,获取伪随机数值;
校验模块30,根据所述伪随机序列值对安全通信进行安全校验,获取有效 报文。
上述装置的一种实施方式可为:获取模块10获取移位寄存器值作为时间戳 值,所述时间戳值的生成多项式为本原多项式,处理模块20以所述本原多项式 为基准,利用伽罗瓦线性反馈移位算法对所述本原多项式进行处理,获取伪随 机数值,最后,校验模块30根据所述伪随机序列值对安全通信进行安全校验, 获取有效报文。
实施例7
如图7所示,一种RSSP-I安全通信的安全校验装置的获取模块10包括:
设置单元12,将通信源标识作为所述时间戳值的初始值;
移位单元14,将所述初始值按系统周期进行移位。
上述装置的获取模块10的一种实施方式可为:设置单元12将通信源标识 作为所述时间戳值的初始值,然后移位单元14将所述初始值按系统周期进行移 位。时间戳值的初始值使用SID(通信源标识),按系统周期移位,并使用固定多 项式作附加干扰输入。时间戳与本地周期计数器对应同步递增。线性反馈移位 寄存器值的生成多项式采用了本原多项式来提高伪随机数值,进而提高了 RSSP-I通信的安全性。
实施例8
如图8所示,一种RSSP-I安全通信的安全校验装置的处理模块20包括:
输入单元22,以上次生成的时间戳值作为输入参数记为a,以所述时间戳 值的生成多项式为b;
计算单元24,计算a和b的异或值,所述异或值为c,
Figure BDA0002372739860000151
Figure BDA0002372739860000152
输出单元26,根据所述异或值作为时间戳的所述伪随机数值。
上述装置的处理模块20的一种实施方式可为:输入单元22,以上次生成的 时间戳值作为输入参数记为a,以所述时间戳值的生成多项式为b,计算单元24, 计算a和b的异或值,所述异或值为c,
Figure BDA0002372739860000153
输 出单元26,根据所述异或值作为时间戳的所述伪随机数值。
采用伽罗瓦线性反馈移位算法生成时间戳的伪随机数值的过程为:将 SID(通信源标识)值作为时间戳值生成的种子,将上次生成的时间戳值作为输入 参数,记为input,左移操作时,将input左移1位,左移操作时,获取上次的 时间戳值的最高bit位,记为msb,如果msb不为0,则input与生成多项式进 行异或,将结果赋予input;右移操作时,将input右移1位,右移操作时,获 取上次的时间戳值的最高bit位,记为lsb,如果lsb不为0,则input与生成 多项式进行异或,将结果赋予input,最后的input值作为时间戳的伪随机数值。
利用伽罗瓦线性反馈移位算法在软件上实现比较简洁有效,能达到其他算 法同样的效果,同时计算量更小。
实施例9
如图9所示,一种RSSP-I安全通信的安全校验装置的校验模块30包括:
RSD报文单元32,对于RSD报文,若计算得到第一次RSD值与第二次RSD 值相同,则RSD报文为有效报文;
SSR报文单元34,对于SSR报文,若计算得到第一次SSR值与第二次SSR 值相同,则SSR报文为有效报文。
上述装置的校验模块30的一种实施方式可为:RSD报文单元32,对于RSD 报文,若计算得到第一次RSD值与第二次RSD值相同,则RSD报文为有效报文; SSR报文单元34,对于SSR报文,若计算得到第一次SSR值与第二次SSR值相 同,则SSR报文为有效报文。
对于RSD报文,第一次RSD值包括SID_1^T_1(N)值,第二次RSD值包括与 本地保存的最近一次SID_1^T_1(N-1)进行一次线性反馈移位的左移SEQ(时 序)-SEQ(最后一次的时序)次的值,对RSD报文进行安全校验域的验证时,若计 算得到第一次RSD值与第二次RSD值相同,则认为安全校验区域的时序有效, RSD报文为有效报文,验证SVC_2时方法同SVC_1。
对于SSR报文,第一次SSR值为SSR_1_local,第二次SSR值为SSR报文中 的SSR_1值,验证SSR报文时,根据SSR报文中的应答方的序列号Nr,请求方 的序列号Ne,计算需要进行LFSR(线性反馈移位寄存器)移位的次数CNTssr。 将发出SSE时保存的SEQENQ_1值与SID_1进行异或处理得到T_1(Ne),然后进 行CNTssr次LFSR(线性反馈移位寄存器)移位,得到T_1(Nr)的值并计算得到 SSR_1_local与SSR报文中的SSR_1值进行比较,如果两者一致,则认为本报文 有效,否则丢弃报文。
利用伪随机序列值可以获得有效报文,提高RSSP-I通信协议的安全性。
实施例10
如图10所示,一种具体的实施方式可为:
S1010、获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本 原多项式;
通信报文的安全校验域采用的时间戳值,即32位的线性反馈移位寄存器值, 线性反馈移位寄存器值的生成多项式采用32位的本原多项式,能够生成232-1项 伪随机数值。
S1020、将通信源标识作为所述时间戳值的初始值,并将所述初始值按系统 周期进行移位;
时间戳值的初始值使用SID(通信源标识),按系统周期移位,并使用固定多 项式作附加干扰输入。时间戳与本地周期计数器对应同步递增。线性反馈移位 寄存器值的生成多项式采用了本原多项式来提高伪随机数值,进而提高了 RSSP-I通信的安全性。
S1030、以上次生成的时间戳值作为输入参数记为a,以所述时间戳值的生 成多项式为b,计算a和b的异或值,所述异或值为c,
Figure BDA0002372739860000171
Figure BDA0002372739860000172
根据所述异或值作为时间戳的所述伪随机数值;
采用伽罗瓦线性反馈移位算法生成时间戳的伪随机数值的过程为:将 SID(通信源标识)值作为时间戳值生成的种子,将上次生成的时间戳值作为输入 参数,记为input,左移操作时,将input左移1位,左移操作时,获取上次的 时间戳值的最高bit位,记为msb,如果msb不为0,则input与生成多项式进 行异或,将结果赋予input;右移操作时,将input右移1位,右移操作时,获 取上次的时间戳值的最高bit位,记为lsb,如果lsb不为0,则input与生成 多项式进行异或,将结果赋予input,最后的input值作为时间戳的伪随机数值。
利用伽罗瓦线性反馈移位算法在软件上实现比较简洁有效,能达到其他算 法同样的效果,同时计算量更小。
S1040、对于RSD报文,若计算得到第一次RSD值与第二次RSD值相同,则 RSD报文为有效报文;
对于RSD报文,第一次RSD值包括SID_1^T_1(N)值,第二次RSD值包括与 本地保存的最近一次SID_1^T_1(N-1)进行一次线性反馈移位的左移SEQ(时 序)-SEQ(最后一次的时序)次的值,对RSD报文进行安全校验域的验证时,若计 算得到第一次RSD值与第二次RSD值相同,则认为安全校验区域的时序有效, RSD报文为有效报文,验证SVC_2时方法同SVC_1。
利用伪随机序列值可以获得有效报文,提高RSSP-I通信协议的安全性。
其中,RSD报文详细内容如表1所示:
表1 RSD(实时安全数据)报文
Figure BDA0002372739860000181
Figure BDA0002372739860000191
S1050、对于SSR报文,若计算得到第一次SSR值与第二次SSR值相同,则 SSR报文为有效报文;
对于SSR报文,第一次SSR值为SSR_1_local,第二次SSR值为SSR报文中 的SSR_1值,验证SSR报文时,根据SSR报文中的应答方的序列号Nr,请求方 的序列号Ne,计算需要进行LFSR(线性反馈移位寄存器)移位的次数CNTssr。 将发出SSE时保存的SEQENQ_1值与SID_1进行异或处理得到T_1(Ne),然后进 行CNTssr次LFSR(线性反馈移位寄存器)移位,得到T_1(Nr)的值并计算得到 SSR_1_local与SSR报文中的SSR_1值进行比较,如果两者一致,则认为本报文 有效,否则丢弃报文。
利用伪随机序列值可以获得有效报文,提高RSSP-I通信协议的安全性。
其中SSE报文如表2所示:
表2 SSE(时序校正请求)报文
Figure BDA0002372739860000192
Figure BDA0002372739860000201
其中,SSR报文如表3所示:
表3 SSR(时序校正答复)报文
Figure BDA0002372739860000202
Figure BDA0002372739860000211
获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项 式,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项 式进行处理,获取伪随机数值,根据所述伪随机序列值对安全通信进行安全校 验,获取有效报文。其中移位寄存器值的生成多项式采用了本原多项式来提高 伪随机序列值,进而提升了RSSP-I通信协议的安全性,并且使用伽罗瓦线性反 馈移位算法计算量小,实现起来比较简洁有效。
实施例11
如图11所示,一种电子设备,包括存储器1101和处理器1102,所述存储 器1101用于存储一条或多条计算机指令,其中,所述一条或多条计算机指令被 所述处理器1102执行以实现上述的一种RSSP-I安全通信的安全校验方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述 的电子设备的具体工作过程,可以参考前述方法实施例中的对应过程,在此不 再赘述。
一种存储有计算机程序的计算机可读存储介质,所述计算机程序使计算机 执行时实现如上述的一种RSSP-I安全通信的安全校验方法。
示例性的,计算机程序可以被分割成一个或多个模块/单元,一个或者多个 模块/单元被存储在存储器1101中,并由处理器1102执行,以完成本发明。一 个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指 令段用于描述计算机程序在计算机设备中的执行过程。
计算机设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算 设备。计算机设备可包括,但不仅限于,存储器1101、处理器1102。本领域技 术人员可以理解,本实施例仅仅是计算机设备的示例,并不构成对计算机设备 的限定,可以包括更多或更少的部件,或者组合某些部件,或者不同的部件, 例如计算机设备还可以包括输入输出设备、网络接入设备、总线等。
处理器1102可以是中央处理单元(CentralProcessingUnit,CPU),还可以 是其他通用处理器1102、数字信号处理器1102(DigitalSignalProcessor,DSP)、 专用集成电路(ApplicationSpecificIntegratedCircuit,ASIC)、现成可编程 门阵列(Field-ProgRAM503mableGateArray,FPGA)或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器1102可以是微处理 器1102或者该处理器1102也可以是任何常规的处理器1102等。
存储器1101可以是计算机设备的内部存储单元,例如计算机设备的硬盘或 内存。存储器1101也可以是计算机设备的外部存储设备,例如计算机设备上配 备的插接式硬盘,智能存储卡(SmartMediaCard,SMC),安全数字 (SecureDigital,SD)卡,闪存卡(FlashCard)等。进一步地,存储器1101 还可以既包括计算机设备的内部存储单元也包括外部存储设备。存储器1101用 于存储计算机程序以及计算机设备所需的其他程序和数据。存储器1101还可以 用于暂时地存储已经输出或者将要输出的数据。
以上所述仅为本发明的具体实施例,但本发明的技术特征并不局限于此, 任何本领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明 的专利范围之中。

Claims (10)

1.一种RSSP-I安全通信的安全校验方法,其特征在于,包括以下步骤:
获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项式;
以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项式进行处理,获取伪随机数值;
根据所述伪随机序列值对安全通信进行安全校验,获取有效报文。
2.根据权利要求1所述的一种RSSP-I安全通信的安全校验方法,其特征在于,获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项式,包括:
将通信源标识作为所述时间戳值的初始值;
将所述初始值按系统周期进行移位。
3.根据权利要求2所述的一种RSSP-I安全通信的安全校验方法,其特征在于,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项式进行处理,获取伪随机数值,包括:
以上次生成的时间戳值作为输入参数记为a,以所述时间戳值的生成多项式为b;
计算a和b的异或值,所述异或值为c,
Figure FDA0002372739850000011
根据所述异或值作为时间戳的所述伪随机数值。
4.根据权利要求3所述的一种RSSP-I安全通信的安全校验方法,其特征在于,根据所述伪随机序列值对安全通信进行安全校验,获取有效报文,包括:
对于RSD报文,若计算得到第一次RSD值与第二次RSD值相同,则RSD报文为有效报文;
对于SSR报文,若计算得到第一次SSR值与第二次SSR值相同,则SSR报文为有效报文。
5.一种RSSP-I安全通信的安全校验装置,其特征在于,包括:
获取模块,获取移位寄存器值作为时间戳值,所述时间戳值的生成多项式为本原多项式;
处理模块,以所述本原多项式为基准,利用伽罗瓦线性反馈移位算法对所述本原多项式进行处理,获取伪随机数值;
校验模块,根据所述伪随机序列值对安全通信进行安全校验,获取有效报文。
6.根据权利要求5所述的一种RSSP-I安全通信的安全校验装置,其特征在于,所述获取模块包括:
设置单元,将通信源标识作为所述时间戳值的初始值;
移位单元,将所述初始值按系统周期进行移位。
7.根据权利要求6所述的一种RSSP-I安全通信的安全校验装置,其特征在于,所述处理模块包括:
输入单元,以上次生成的时间戳值作为输入参数记为a,以所述时间戳值的生成多项式为b;
计算单元,计算a和b的异或值,所述异或值为c,
Figure FDA0002372739850000021
Figure FDA0002372739850000022
输出单元,根据所述异或值作为时间戳的所述伪随机数值。
8.根据权利要求7所述的一种RSSP-I安全通信的安全校验装置,其特征在于,所述校验模块包括:
RSD报文单元,对于RSD报文,若计算得到第一次RSD值与第二次RSD值相同,则RSD报文为有效报文;
SSR报文单元,对于SSR报文,若计算得到第一次SSR值与第二次SSR值相同,则SSR报文为有效报文。
9.一种电子设备,其特征在于,包括存储器和处理器,所述存储器用于存储一条或多条计算机指令,其中,所述一条或多条计算机指令被所述处理器执行以实现如权利要求1~4中任一项所述的一种RSSP-I安全通信的安全校验方法。
10.一种存储有计算机程序的计算机可读存储介质,其特征在于,所述计算机程序使计算机执行时实现如权利要求1~4中任一项所述的一种RSSP-I安全通信的安全校验方法。
CN202010055758.0A 2020-01-17 2020-01-17 一种rssp-i安全通信的安全校验方法 Pending CN111262686A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010055758.0A CN111262686A (zh) 2020-01-17 2020-01-17 一种rssp-i安全通信的安全校验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010055758.0A CN111262686A (zh) 2020-01-17 2020-01-17 一种rssp-i安全通信的安全校验方法

Publications (1)

Publication Number Publication Date
CN111262686A true CN111262686A (zh) 2020-06-09

Family

ID=70952245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010055758.0A Pending CN111262686A (zh) 2020-01-17 2020-01-17 一种rssp-i安全通信的安全校验方法

Country Status (1)

Country Link
CN (1) CN111262686A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112947895A (zh) * 2021-01-28 2021-06-11 长春汇通光电技术有限公司 位置读数获得方法、装置、编码器以及存储介质
CN113904789A (zh) * 2021-08-17 2022-01-07 卡斯柯信号有限公司 一种铁路安全通信协议的加密方法、设备以及存储介质
CN115021866A (zh) * 2022-05-24 2022-09-06 卡斯柯信号有限公司 应用于安全编码软件的数据时效性校验方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914590A (zh) * 2004-01-30 2007-02-14 日本胜利株式会社 伪随机数生成装置以及伪随机数生成程序
US20090222667A1 (en) * 2005-03-01 2009-09-03 Nxp B.V. Generator for generating a message authentication code, method of generating a message authentication code, program element and computer-readable medium
US20180069706A1 (en) * 2015-05-04 2018-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Generating Cryptographic Checksums
CN107835066A (zh) * 2017-11-13 2018-03-23 北京全路通信信号研究设计院集团有限公司 一种rssp‑i安全通信方法
CN107924380A (zh) * 2015-09-26 2018-04-17 英特尔公司 使用业务类别分配高速缓存的方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914590A (zh) * 2004-01-30 2007-02-14 日本胜利株式会社 伪随机数生成装置以及伪随机数生成程序
US20090222667A1 (en) * 2005-03-01 2009-09-03 Nxp B.V. Generator for generating a message authentication code, method of generating a message authentication code, program element and computer-readable medium
US20180069706A1 (en) * 2015-05-04 2018-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Generating Cryptographic Checksums
CN107924380A (zh) * 2015-09-26 2018-04-17 英特尔公司 使用业务类别分配高速缓存的方法、装置和系统
CN107835066A (zh) * 2017-11-13 2018-03-23 北京全路通信信号研究设计院集团有限公司 一种rssp‑i安全通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈臣: "铁路信号RSSP-1安全通信协议在既有线站间安全信息传输中的应用研究" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112947895A (zh) * 2021-01-28 2021-06-11 长春汇通光电技术有限公司 位置读数获得方法、装置、编码器以及存储介质
CN113904789A (zh) * 2021-08-17 2022-01-07 卡斯柯信号有限公司 一种铁路安全通信协议的加密方法、设备以及存储介质
CN113904789B (zh) * 2021-08-17 2024-03-29 卡斯柯信号有限公司 一种铁路安全通信协议的加密方法、设备以及存储介质
CN115021866A (zh) * 2022-05-24 2022-09-06 卡斯柯信号有限公司 应用于安全编码软件的数据时效性校验方法和系统
CN115021866B (zh) * 2022-05-24 2024-03-12 卡斯柯信号有限公司 应用于安全编码软件的数据时效性校验方法和系统

Similar Documents

Publication Publication Date Title
CN111262686A (zh) 一种rssp-i安全通信的安全校验方法
CN107147488A (zh) 一种基于sm2加解密算法的签名验签系统和方法
Amiel et al. Fault analysis of DPA-resistant algorithms
GB2532836A (en) Address-dependent key generation with substitution-permutation network
CN107769923B (zh) 一种基于cpu时钟和usb独立时钟的真随机数产生方法
CN110855667A (zh) 一种区块链加密方法、装置及系统
CN107483182B (zh) 一种基于乱序执行的面向aes算法的抗功耗攻击方法
AL-khatib et al. Acoustic lightweight pseudo random number generator based on cryptographically secure LFSR
Van Herrewege et al. Software only, extremely compact, Keccak-based secure PRNG on ARM Cortex-M
CN114172659B (zh) 区块链系统中的消息传输方法、装置、设备及存储介质
CN112600838B (zh) 一种can总线数据的加密方法、装置、存储介质及电子设备
US11341217B1 (en) Enhancing obfuscation of digital content through use of linear error correction codes
CN111865557B (zh) 一种校验码生成方法及装置
CN115632782B (zh) 基于sm4计数器模式的随机数生成方法、系统及设备
US11792025B2 (en) Methods of verifying that a first device and a second device are physically interconnected
CN113784342B (zh) 一种基于物联网终端的加密通讯方法及系统
CN115987500A (zh) 基于工业设备数据采集的数据安全传输方法及系统
CN112580077B (zh) 一种信息处理方法、装置、设备及存储介质
Liu et al. Improving tag generation for memory data authentication in embedded processor systems
Bastos et al. Measuring randomness in IoT products
Yu et al. On designing PUF-based TRNGs with known answer tests
Ergün Algebraic break of a chaos-based random number generator
Bastos et al. On pseudorandom number generators
CN115766043B (zh) 一种片外固件的验签方法、装置、芯片及电子设备
CN112912838B (zh) 一种随机数生成装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200609

RJ01 Rejection of invention patent application after publication