CN111260631A - 一种高效刚性接触线结构光光条提取方法 - Google Patents

一种高效刚性接触线结构光光条提取方法 Download PDF

Info

Publication number
CN111260631A
CN111260631A CN202010048089.4A CN202010048089A CN111260631A CN 111260631 A CN111260631 A CN 111260631A CN 202010048089 A CN202010048089 A CN 202010048089A CN 111260631 A CN111260631 A CN 111260631A
Authority
CN
China
Prior art keywords
image
thresholding
region
foreground
ref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010048089.4A
Other languages
English (en)
Other versions
CN111260631B (zh
Inventor
陈辉
徐安雄
万壮
陈诚
胡传
徐杨溢
苟然
鲁涛
周兴龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Metro Operation Co ltd
Original Assignee
Chengdu Metro Operation Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Metro Operation Co ltd filed Critical Chengdu Metro Operation Co ltd
Priority to CN202010048089.4A priority Critical patent/CN111260631B/zh
Publication of CN111260631A publication Critical patent/CN111260631A/zh
Application granted granted Critical
Publication of CN111260631B publication Critical patent/CN111260631B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本申请涉及轨道交通技术领域,公开了一种高效刚性接触线结构光光条提取方法,包括图像阈值化步骤、连通区域提取步骤、Blob几何分析步骤、形状判别分析步骤和导线轮廓定位输出步骤。采用8邻域的连通区域提取方法,对阈值化后的图像进行区域提取,降低了4邻域在锯齿效应明显的图像上提取连通区域的缺陷,而采用Hausdorff Distanc判别来进行几何形状的识别,则满足了软件的时效性要求。本申请在满足接触网导线定位准确率的同时,整体耗时也极低,能够满足实时在线检测的基本需求。

Description

一种高效刚性接触线结构光光条提取方法
技术领域
本发明涉及轨道交通技术领域,具体涉及一种高效刚性接触线结构光光条提取方法。
背景技术
接触网主要由接触悬挂、支持装置、定位装置、支柱及相关基础设施等构成,是沿铁路线上空架设的一种特殊输电线路。它的功能是通过接触线与受电弓之间的接触,从而为电力机车提供电能。因此,要保证机车行车安全,保证受电弓与接触线良好接触以及稳定受流,除了对接触悬挂的设计施工和运营需要严格要求之外,对接触网各个设施设备进行状态检测也必不可少。
评价接触网受流性能的重要参数包括几何参数,而几何参数则主要包括几项测量指标:接触线高度、接触线拉出值、定位管坡度、线岔、接触线磨耗和支柱位置等。基于激光扫描方法(也称为结构光式)实现的几何参数测量,主要通过在列车车顶安装高速工业数字相机,具备一定倾斜角度的朝上拍摄采集激光光条在接触网导线区域的成像图像,然后通过采用图像视觉处理的方法定位接触网导线在图像中的位置,从而计算导线相对于相机的高度与横向位移,最后根据相机安装车顶的位置关系,实现接触网几何参数的导高与拉出值测量。图像检测定位接触网导线位置主要通过采用基础图像处理方法,对相机采集图像进行分析,实现对接触网导线位置的定位计算,而定位接触网导线位置处理过程中,最重要的就是导线光条成像的提取。由于成像环境干扰多和导线光条图像复杂等因素,传统的图像处理方法对于刚性接触线结构光光条的提取效率与提取精度有待提高。
发明内容
为了克服上述现有技术的缺陷和不足,本发明的目的旨在于提供一种能够快速、精准的提取接触网导线光条,并最终实现接触网几何参数精准测量的高效刚性接触网线结构光光条的提取方法。
本发明的目的是通过以下技术方案实现的:
一种高效刚性接触线结构光光条提取方法,包括以下步骤:
图像阈值化步骤:利用图像灰度直方图的分布特性,设定一个合理的阈值,对图像进行阈值化处理;
连通区域提取步骤:采用基于8邻域的连通区域提取方法,对阈值化结果图像进行区域提取,将具备连通性的各个前景目标进行组合,形成具备形状与位置特征的不同区域目标;
Blob几何分析步骤:对各个连通区域的位置分布和尺寸几何关系进行特性分析,对较小的区域或者较大的区域进行相应的滤除工作以及将分布相对密集的多个单连通区域组合合并形成一个大的连通区域,从而计算生成有效的导线连通区域候选集合;
形状判别分析步骤:采用Hausdorff Distance判别来进行几何形状的识别,并最终得到刚性接触线轮廓;
导线轮廓定位输出步骤:输出刚性接触线导线轮廓,从而实现接触网几何参数的在线实时监测。
优选地,所述图像阈值化步骤具体包括以下步骤:
A1.基于检测图像的成像特性,初始化算法参数:前景最小占比因子fmin、前景最大占比因子fmax、阈值Gthresh和迭代阈值步长Gstep
A2.根据参数Gthresh进行阈值化,并计算前景占比f;
A3.根据阈值化后的前景占比f与fmin和fmax之间的关系,判别阈值化是否合理;若阈值化合理,则阈值化结束;若不合理,则进行下一步处理;
A4.调整阈值参数Gthresh,若前景占比f与fmin的差距较大,则进行较大步长调整Gthresh+=Gstep;否则进行微小步长调整Gthresh+=1;
A5.重新执行上述步骤A2~A4,直到在步骤A3中得到合理的结果,跳出迭代计算,从而完成图像的阈值化处理。
优选地,所述步骤A4中,若f<0.5fmin,表示前景占比f与fmin的差距较大。
优选地,所述Blob几何分析步骤具体包括以下步骤:
B1.根据导线优先分布在图像最底部的成像特性,首先计算最低区域Rref
B2.在Rref的最低点位置,根据导线的标准宽度Wref和高度Href,生成一个标准区域R'ref
B3.判别连通区域与R'ref之间的关系,若连通区域与R'ref在水平方向和垂直方向都存在交集,则进行Rref的融合扩大,否则该区域无效;
B4.经融合处理后,得到一个实际的完整导线区域,对得到的完整导线区域再次进行前景计算。
优选地,所述形状判别分析步骤的具体方法为:
假设有两组集合A={a1,a2,...,ap}和B={b1,b2,...,bp},则这两个点集合之间的Hausdorff距离定义为:
H(A,B)=max(h(A,B),h(B,A) (1)
Figure BDA0002370143610000031
Figure BDA0002370143610000032
点集A为标准刚性接触线图像模板,点集B为Blob几何分析后提取的目标区域图像,h(A,B)和h(B,A)分别称为从A集合到B集合以及从B集合到A集合的单向Hausdorff距离,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中的较大者,它度量了两个点集间的最大不匹配程度;
采用第一最大不匹配度和第二最大不匹配度对提取的目标区域图形进行形状判别,并最终得到刚性接触线轮廓。
优选地,所述第二最大不匹配度不大于所述第一最大不匹配度的2倍。
本技术方案的有益效果如下:
经过大量数据试验统计结果表明,本申请方法能够准确、快速的完成导线光条的定位提取工作,满足接触网几何参数在线实时监测的基本要求。
本申请的快速图像阈值化方法基于迭代判别法,结合城市轨道线路成像环境特性以及基于激光扫描式图像成像基本原理,本申请所要处理的图像中,目标前景所占比例较少,而背景则占图像绝大部分区域(导线光条为目标前景,而较暗的黑色区域则为图像背景)。为了提高处理效率,参考了以上的图像特性,从而提出了快速的图像阈值化方法。该快速图像阈值化方法不是一种简单的全局性阈值化方法,也不是一种基于邻域性质的阈值化方法,而是一种结合灰度直方图基本思想的迭代判别阈值处理方法,显著提高了前景图像提取的处理效率。
本申请引入轻量级的几何形状识别,以便更准确的提取导线,去除噪声干扰。考虑设备软件要求的实时性较高,因此抛弃了复杂度较高的特征点提取、匹配等算法,采用了Hausdorff Distance判别来进行几何形状的识别。
本申请采用采用了8邻域的连通区域提取,降低了4邻域在锯齿效应明显的图像上提取连通区域的缺陷。
附图说明
本发明的前述和下文具体描述在结合以下附图阅读时变得更清楚,附图中:
图1是本发明的高效刚性接触线结构光光条提取方法流程图;
图2是本发明的图像阈值化结果图;
图3是本发明的导线连通区域提取示意图;
图4是本发明的连通区域融合图。
具体实施方式
下面通过几个具体的实施例来进一步说明实现本发明目的技术方案,需要说明的是,本发明要求保护的技术方案包括但不限于以下实施例。
实施例1
如图1所示,本实施例公开了一种高效刚性接触线结构光光条提取方法,包括图像阈值化步骤、连通区域提取步骤、Blob几何分析步骤、形状判别分析步骤和导线轮廓定位输出步骤;
图像阈值化步骤:由于刚性接触网主要安装于城市轨道线路的隧道环境中,同时基于激光扫描式的几何参数检测测量主要应用于夜间检测。因此,相机采集的该类图像基本上表现为单一的背景较暗,且目标导线较亮的情况,同时可能也会有部分接触网悬挂设备组件成像其中而形成干扰项。并且,本申请所要处理的图像中目标前景所占比例较少,而背景则占图像绝大部分区域(导线光条为目标前景,而较暗的黑色区域则为图像背景)。所以,本申请利用图像灰度直方图的分布特性,首先设定一个合理的阈值,采取二值化的方法对采集的图像进行二值分割,根据阈值来判断图像中的每个像素点是属于目标区域还是背景区域,并最终得到相应的二值图像,如图2所示;
连通区域提取步骤:经过对相机采集图像的阈值化处理后,接触网导线前景完成与隧道背景的区分。但是,由于数字相机采集的图像属于点阵式离散矩阵数据,导线前景在图像中表现为各个不同的离散数据点,所以需要进一步对阈值化结果图像进行区域提取。而在数字图像处理分析中,邻域分为4邻域和8邻域两种,为了降低4邻域在锯齿效应明显的图像上提取连通区域的缺陷,本申请采用基于8邻域的连通区域提取方法,对阈值化结果图像进行区域提取,将具备连通性的各个前景目标进行组合,形成具备形状与位置特征的不同区域目标,如图3所示;
Blob几何分析步骤:经过邻域连通区域提取后,导线光条的连通区域仍然可能存在断裂,不具备连通性的情况。主要原因是相机安装位置相对车顶固定,而在相机成像视野范围内,列车前进方向的垂直方向(也就是拉出值方向),接触网导线会有一个来回运动的轨迹过程。当轨迹位移偏大时,导线与相机和激光视角偏大,从而成像光条就会在汇流排与导线夹角位置发生断裂,如果直接根据亮条的连通区域提取结果计算输出,那么将会造成检测误识别。除此之外,由于城轨线路上还存在其他接触网组件等设备,可能也会在相机成像的图像中。因此,本申请在连通区域提取结果的基础上,还将对连通区域结果进行Blob几何分析,对连通区域的有效性进行判定和区域融合。Blob几何分析主要是对各个连通区域的位置分布和尺寸等几何关系进行特性分析:由于城轨线路的接触网高度基本保持一致,因此导线在图像中成像轮廓的尺寸相对固定,所以结合导线轮廓的几何特性,对较小的区域或者较大的区域进行相应的滤除工作以及将分布相对密集的多个单连通区域组合合并形成一个大的连通区域,从而计算生成有效的导线连通区域候选集合;
形状判别分析步骤:基于结构光成像的刚性接触网图像中,导线将会在拉出值方向(也就是垂直于列车前进方向)上进行来回运动,当导线出现在拉出值较大位置时将会造成成像形状轮廓断裂,并且成像图像中会存在其他的噪声干扰。所以,本申请引入轻量级的几何形状识别,以便更准确的提取导线,去除噪声干扰。考虑设备软件要求的实时性较高,抛弃了复杂度较高的特征点提取、匹配等算法来进行形状识别,提高了识别方法的实时性。具体的,采用了Hausdorff Distance(豪斯多夫距离)判别来进行几何形状的识别,并最终得到刚性接触线轮廓;
导线轮廓定位输出步骤:输出刚性接触线导线轮廓,从而实现接触网几何参数的在线实时监测。
优选地,所述采用Hausdorff Distance(豪斯多夫距离)判别来进行几何形状的识别的主要原理如下:
假设有两组集合A={a1,a2,...,ap}和B={b1,b2,...,bp},则这两个点集合之间的Hausdorff距离定义为:
H(A,B)=max(h(A,B),h(B,A) (1)
Figure BDA0002370143610000061
Figure BDA0002370143610000062
|| ||是点集A和B点集间的距离范式(如L2或Euclidean距离)。
这里,式(1)称为双向Hausdorff距离,是Hausdorff距离的最基本形式;式(2)中的h(A,B)和h(B,A)分别称为从A集合到B集合和从B集合到A集合的单向Hausdorff距离。即h(A,B)实际上首先对点集A中的每个点ai到距离此点ai最近的B集合中点bj之间的距离||ai-bj||进行排序,然后取该距离中的最大值作为h(A,B)的值,h(B,A)同理可得。
由式(1)知,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中的较大者,它度量了两个点集间的最大不匹配程度。
在本实施例中,A为标准刚性接触线图像模板,B为Blob几何分析后提取的目标区域图像,通过设定第一最大不匹配度对提取的目标区域图像进行形状判别。由于在城市轨道刚性接触网运行的特殊位置处存在2根导线,采集图像中会出现2个识别目标,因此,采用第一最大不匹配度和第二最大不匹配度对提取的目标区域图形进行形状判别。优选地,其所述第二最大不匹配度不大于所述第一最大不匹配度的2倍。通过Hausdorff Distance判别得到最终的刚性接触线轮廓。
优选地,所述图像阈值化步骤具体包括以下步骤:
A1.基于检测图像的成像特性,初始化算法参数:前景最小占比因子fmin、前景最大占比因子fmax、阈值Gthresh和迭代阈值步长Gstep
A2.根据参数Gthresh进行阈值化,并计算前景占比f;
A3.根据阈值化后的前景占比f与fmin和fmax之间的关系,判别阈值化是否合理。若阈值化合理,则阈值化结束;若不合理,则进行下一步处理;
A4.调整阈值参数Gthresh,若前景占比f与fmin的差距较大,则进行较大步长调整Gthresh+=Gstep;否则进行微小步长调整Gthresh+=1;
A5.重新执行上述步骤A2~A4,直到在步骤A3中得到合理的结果,跳出迭代计算,从而完成图像的阈值化处理。
优选地,所述前景占比f为大于阈值的像素点个数与图像总像素点之比。
优选地,所述步骤A3中,若fmin<f<fmax,则表示阈值化合理,否则为不合理。
优选地,所述步骤A4中,若f<0.5fmin,表示前景占比f与fmin的差距较大。
优选地,所述快速图像阈值化算法伪码如下:
Figure BDA0002370143610000071
优选地,如图4所示,所述Blob几何分析步骤具体包括以下步骤:
B1.根据导线优先分布在图像最底部的成像特性,首先计算最低区域Rref
B2.在Rref的最低点位置(x=Xcenter,y=Ybottom),根据导线的标准宽度Wref和高度Href,生成一个标准区域R'ref
B3.判别连通区域与R'ref之间的关系,若连通区域与R'ref在水平方向和垂直方向都存在交集,则进行Rref的融合扩大,否则该区域无效;
B4.经过融合处理后将会得到一个实际的完整导线区域,但是由于区域融合的主要原因在于前期的目标前景提取出现误差,从而导致了导线光条区域的断裂等现象。因此,在得到了实际的完整导线区域后,再次对该区域进行前景计算,以便于后续处理步骤能够准确计算导线的真实位置。
优选地,所述步骤B4中,再次对该区域进行前景计算是指再次对原始图像的该区域进行前景计算。之前直到Blob几何分析之后就是为了获得实际的导线区域,在根据这个实际的导线区域从原始图像提取准确地目标前景,从而进入后续的形状判别分析步骤。
本实施例分别从西安地铁3号线、广州9号线收集试验数据近6万组,用于本申请方法的测试验证,测试数据图像分辨率2048*1000,数据主要由包含接触网几何参数检测功能的综合检测车在标准车速55km/h的条件下进行采集获得,实验统计结果如表1所示。
表1试验数据实验结果统计
Figure BDA0002370143610000081
从表1中,可以看出,本申请提出的结构光光条提取方法,在满足接触网导线定位准确率的同时,整体耗时也极低,能够满足实时在线检测的基本需求。

Claims (6)

1.一种高效刚性接触线结构光光条提取方法,其特征在于:包括以下步骤:
图像阈值化步骤:利用图像灰度直方图的分布特性,设定一个合理的阈值,对图像进行阈值化处理;
连通区域提取步骤:采用基于8邻域的连通区域提取方法,对阈值化结果图像进行区域提取,将具备连通性的各个前景目标进行组合,形成具备形状与位置特征的不同区域目标;
Blob几何分析步骤:对各个连通区域的位置分布和尺寸几何关系进行特性分析,对较小的区域或者较大的区域进行相应的滤除工作以及将分布相对密集的多个单连通区域组合合并形成一个大的连通区域,从而计算生成有效的导线连通区域候选集合;
形状判别分析步骤:采用Hausdorff Distance判别来进行几何形状的识别,并最终得到刚性接触线轮廓;
导线轮廓定位输出步骤:输出刚性接触线导线轮廓,从而实现接触网几何参数的在线实时监测。
2.根据权利要求1所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述图像阈值化步骤具体包括以下步骤:
A1.基于检测图像的成像特性,初始化算法参数:前景最小占比因子fmin、前景最大占比因子fmax、阈值Gthresh和迭代阈值步长Gstep
A2.根据参数Gthresh进行阈值化,并计算前景占比f;
A3.根据阈值化后的前景占比f与fmin和fmax之间的关系,判别阈值化是否合理;若阈值化合理,则阈值化结束;若不合理,则进行下一步处理;
A4.调整阈值参数Gthresh,若前景占比f与fmin的差距较大,则进行较大步长调整Gthresh+=Gstep;否则进行微小步长调整Gthresh+=1;
A5.重新执行上述步骤A2~A4,直到在步骤A3中得到合理的结果,跳出迭代计算,从而完成图像的阈值化处理。
3.根据权利要求2所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述步骤A4中,若f<0.5fmin,表示前景占比f与fmin的差距较大。
4.根据权利要求1所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述Blob几何分析步骤具体包括以下步骤:
B1.根据导线优先分布在图像最底部的成像特性,首先计算最低区域Rref
B2.在Rref的最低点位置,根据导线的标准宽度Wref和高度Href,生成一个标准区域R'ref
B3.判别连通区域与R'ref之间的关系,若连通区域与R'ref在水平方向和垂直方向都存在交集,则进行Rref的融合扩大,否则该区域无效;
B4.经融合处理后,得到一个实际的完整导线区域,对得到的完整导线区域再次进行前景计算。
5.根据权利要求1所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述形状判别分析步骤的具体方法为:
假设有两组集合A={a1,a2,...,ap}和B={b1,b2,...,bp},则这两个点集合之间的Hausdorff距离定义为:
H(A,B)=max(h(A,B),h(B,A) (1)
Figure FDA0002370143600000021
Figure FDA0002370143600000022
点集A为标准刚性接触线图像模板,点集B为Blob几何分析后提取的目标区域图像,h(A,B)和h(B,A)分别称为从A集合到B集合以及从B集合到A集合的单向Hausdorff距离,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中的较大者,它度量了两个点集间的最大不匹配程度;
采用第一最大不匹配度和第二最大不匹配度对提取的目标区域图形进行形状判别,并最终得到刚性接触线轮廓。
6.根据权利要求5所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述第二最大不匹配度不大于所述第一最大不匹配度的2倍。
CN202010048089.4A 2020-01-16 2020-01-16 一种高效刚性接触线结构光光条提取方法 Active CN111260631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010048089.4A CN111260631B (zh) 2020-01-16 2020-01-16 一种高效刚性接触线结构光光条提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010048089.4A CN111260631B (zh) 2020-01-16 2020-01-16 一种高效刚性接触线结构光光条提取方法

Publications (2)

Publication Number Publication Date
CN111260631A true CN111260631A (zh) 2020-06-09
CN111260631B CN111260631B (zh) 2023-05-05

Family

ID=70943980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010048089.4A Active CN111260631B (zh) 2020-01-16 2020-01-16 一种高效刚性接触线结构光光条提取方法

Country Status (1)

Country Link
CN (1) CN111260631B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112381799A (zh) * 2020-11-16 2021-02-19 广东电网有限责任公司肇庆供电局 一种导线断股确认方法、装置、电子设备和计算机可读存储介质
CN114001671A (zh) * 2021-12-31 2022-02-01 杭州思看科技有限公司 激光数据提取方法、数据处理方法、和三维扫描系统

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014966A1 (en) * 1993-11-29 1995-06-01 Arch Development Corporation Automated method and system for the segmentation of medical images
JPH0997327A (ja) * 1995-10-02 1997-04-08 Hitachi Software Eng Co Ltd スキャナ装置
DE19717814A1 (de) * 1997-04-26 1998-10-29 Klaus Prof Dr Wevelsiep Verfahren zur Segmentierung von Schriftzeichen und Symbolen auf Kfz-Kennzeichenschildern und formatierten Datenträgern sowie zur Segmentierung von Mustern in komplexen Szenen
US20030002062A1 (en) * 2001-07-02 2003-01-02 Canon Kabushiki Kaisha Image processing apparatus, method and program, and storage medium
US20040064269A1 (en) * 2002-09-27 2004-04-01 Hitachi High-Technologies Corporation Method and apparatus for analyzing defect data and a review system
US20060018516A1 (en) * 2004-07-22 2006-01-26 Masoud Osama T Monitoring activity using video information
CN101178812A (zh) * 2007-12-10 2008-05-14 北京航空航天大学 一种结构光光条中心线提取的混合图像处理方法
WO2008082470A1 (en) * 2007-01-05 2008-07-10 Raytheon Company Target recognition system and method
US20090214079A1 (en) * 2008-02-27 2009-08-27 Honeywell International Inc. Systems and methods for recognizing a target from a moving platform
JP2010164318A (ja) * 2009-01-13 2010-07-29 Nippon Steel Corp 欠陥検査方法および欠陥検査装置
CN102175219A (zh) * 2011-01-31 2011-09-07 中国铁道科学研究院基础设施检测研究所 基于视频分析的高速接触网定位器坡度检测方法及设备
CN103217111A (zh) * 2012-11-28 2013-07-24 西南交通大学 一种非接触式接触线几何参数检测方法
KR101449295B1 (ko) * 2013-06-04 2014-10-13 현대자동차주식회사 주차구획 추적 장치 및 방법
US9355334B1 (en) * 2013-09-06 2016-05-31 Toyota Jidosha Kabushiki Kaisha Efficient layer-based object recognition
US20160335508A1 (en) * 2014-01-17 2016-11-17 Kpit Technologies Ltd. Vehicle detection system and method
EP3163503A1 (en) * 2015-10-30 2017-05-03 Xiaomi Inc. Method and apparatus for area indentification
CN108318773A (zh) * 2017-12-20 2018-07-24 全球能源互联网研究院有限公司 一种输电导线断股检测方法及系统
CN108550160A (zh) * 2018-04-03 2018-09-18 大连理工大学 基于光强模板的非均匀光条特征区域提取方法
CN108694349A (zh) * 2017-04-07 2018-10-23 成都唐源电气股份有限公司 一种基于线阵相机的受电弓图像提取方法及装置
CN109269403A (zh) * 2017-07-17 2019-01-25 成都唐源电气股份有限公司 一种基于机器视觉的接触网导线磨耗测量方法及装置
CN109376770A (zh) * 2018-09-26 2019-02-22 凌云光技术集团有限责任公司 一种应用于底片检查机的网格区域识别方法及装置
KR20190078301A (ko) * 2017-12-26 2019-07-04 (주)베라시스 곡선차선 곡률정보를 이용한 객체검출 영역생성 방법
CN110232709A (zh) * 2019-04-19 2019-09-13 武汉大学 一种变阈值分割的线结构光光条中心提取方法
CN110503048A (zh) * 2019-08-26 2019-11-26 中铁电气化局集团有限公司 刚性接触网悬挂装置的识别系统和方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014966A1 (en) * 1993-11-29 1995-06-01 Arch Development Corporation Automated method and system for the segmentation of medical images
JPH0997327A (ja) * 1995-10-02 1997-04-08 Hitachi Software Eng Co Ltd スキャナ装置
DE19717814A1 (de) * 1997-04-26 1998-10-29 Klaus Prof Dr Wevelsiep Verfahren zur Segmentierung von Schriftzeichen und Symbolen auf Kfz-Kennzeichenschildern und formatierten Datenträgern sowie zur Segmentierung von Mustern in komplexen Szenen
US20030002062A1 (en) * 2001-07-02 2003-01-02 Canon Kabushiki Kaisha Image processing apparatus, method and program, and storage medium
US20040064269A1 (en) * 2002-09-27 2004-04-01 Hitachi High-Technologies Corporation Method and apparatus for analyzing defect data and a review system
US20060018516A1 (en) * 2004-07-22 2006-01-26 Masoud Osama T Monitoring activity using video information
WO2008082470A1 (en) * 2007-01-05 2008-07-10 Raytheon Company Target recognition system and method
CN101178812A (zh) * 2007-12-10 2008-05-14 北京航空航天大学 一种结构光光条中心线提取的混合图像处理方法
US20090214079A1 (en) * 2008-02-27 2009-08-27 Honeywell International Inc. Systems and methods for recognizing a target from a moving platform
JP2010164318A (ja) * 2009-01-13 2010-07-29 Nippon Steel Corp 欠陥検査方法および欠陥検査装置
CN102175219A (zh) * 2011-01-31 2011-09-07 中国铁道科学研究院基础设施检测研究所 基于视频分析的高速接触网定位器坡度检测方法及设备
CN103217111A (zh) * 2012-11-28 2013-07-24 西南交通大学 一种非接触式接触线几何参数检测方法
KR101449295B1 (ko) * 2013-06-04 2014-10-13 현대자동차주식회사 주차구획 추적 장치 및 방법
US9355334B1 (en) * 2013-09-06 2016-05-31 Toyota Jidosha Kabushiki Kaisha Efficient layer-based object recognition
US20160335508A1 (en) * 2014-01-17 2016-11-17 Kpit Technologies Ltd. Vehicle detection system and method
EP3163503A1 (en) * 2015-10-30 2017-05-03 Xiaomi Inc. Method and apparatus for area indentification
CN108694349A (zh) * 2017-04-07 2018-10-23 成都唐源电气股份有限公司 一种基于线阵相机的受电弓图像提取方法及装置
CN109269403A (zh) * 2017-07-17 2019-01-25 成都唐源电气股份有限公司 一种基于机器视觉的接触网导线磨耗测量方法及装置
CN108318773A (zh) * 2017-12-20 2018-07-24 全球能源互联网研究院有限公司 一种输电导线断股检测方法及系统
KR20190078301A (ko) * 2017-12-26 2019-07-04 (주)베라시스 곡선차선 곡률정보를 이용한 객체검출 영역생성 방법
CN108550160A (zh) * 2018-04-03 2018-09-18 大连理工大学 基于光强模板的非均匀光条特征区域提取方法
CN109376770A (zh) * 2018-09-26 2019-02-22 凌云光技术集团有限责任公司 一种应用于底片检查机的网格区域识别方法及装置
CN110232709A (zh) * 2019-04-19 2019-09-13 武汉大学 一种变阈值分割的线结构光光条中心提取方法
CN110503048A (zh) * 2019-08-26 2019-11-26 中铁电气化局集团有限公司 刚性接触网悬挂装置的识别系统和方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUERRA C: "Line-based object recognition using Hausdorff distance: from range images to molecular secondary structures" *
JING LIU: "Scale adaptive FLIR target detection method for complex background" *
周富强: "结构光直线光条图像特征的三步法提取" *
孟欢;杨雪荣;吕文阁;成思源;: "一种单轨列车受电弓滑板磨耗检测系统的设计" *
赵慧: "基于Blob的运动目标检测与跟踪算法研究" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112381799A (zh) * 2020-11-16 2021-02-19 广东电网有限责任公司肇庆供电局 一种导线断股确认方法、装置、电子设备和计算机可读存储介质
CN112381799B (zh) * 2020-11-16 2024-01-23 广东电网有限责任公司肇庆供电局 一种导线断股确认方法、装置、电子设备和计算机可读存储介质
CN114001671A (zh) * 2021-12-31 2022-02-01 杭州思看科技有限公司 激光数据提取方法、数据处理方法、和三维扫描系统

Also Published As

Publication number Publication date
CN111260631B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN105652154B (zh) 接触网运行状态安全监测分析系统
CN110910443B (zh) 基于单监控相机的接触网几何参数实时测量方法及装置
CN103196372B (zh) 一种电气化铁路接触网支持装置的光学成像检测方法
CN105571508B (zh) 接触网受电弓的形变检测方法及系统
CN111260631B (zh) 一种高效刚性接触线结构光光条提取方法
CN109376740A (zh) 一种基于视频的水尺读数检测方法
CN109269403B (zh) 一种基于机器视觉的接触网导线磨耗测量方法及装置
CN108734715B (zh) 一种自适应学习的接触网刚性导线识别方法及装置
CN111561967A (zh) 弓网运行状态实时在线检测方法及系统
CN111242052B (zh) 一种接触网刚柔导线自动判别方法及装置
CN109255379A (zh) 一种基于融合特征和svm结合的羊角弓区域定位方法
CN108830822B (zh) 基于改进Canny算子的受电弓碳滑板磨耗识别方法
CN114549407A (zh) 基于x射线图像的耐张线夹压接缺陷程度判断方法
CN112907597A (zh) 基于深度卷积神经网络的铁路轨道线检测方法
CN115690012A (zh) 一种电能表接错线的检测方法
CN110728269B (zh) 一种基于c2检测数据的高铁接触网支柱杆号牌识别方法
CN114030395B (zh) 一种接触悬挂吊弦区域异物检测方法及系统
CN116242316A (zh) 刚性接触网定位点实时检测的方法及装置
CN111640155B (zh) 一种基于3d成像的受电弓弓头倾斜角测量方法及系统
CN112184669A (zh) 一种大坡度线路上的接触网悬挂装置故障检测方法
CN116416589A (zh) 一种基于铁轨数据与几何性质的轨道点云提取方法
Liu et al. A coarse-to-fine detection method of pantograph-catenary contact points using DCNNs
CN115857040A (zh) 一种机车车顶异物动态视觉检测装置及方法
CN115984360A (zh) 一种基于图像处理的计算干滩长度的方法及系统
CN113763326B (zh) 一种基于Mask Scoring R-CNN网络的受电弓检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant