CN111260624A - 一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法 - Google Patents

一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法 Download PDF

Info

Publication number
CN111260624A
CN111260624A CN202010040446.2A CN202010040446A CN111260624A CN 111260624 A CN111260624 A CN 111260624A CN 202010040446 A CN202010040446 A CN 202010040446A CN 111260624 A CN111260624 A CN 111260624A
Authority
CN
China
Prior art keywords
scale
target
map
saliency map
feature matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010040446.2A
Other languages
English (en)
Other versions
CN111260624B (zh
Inventor
辛云宏
闫祖婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202010040446.2A priority Critical patent/CN111260624B/zh
Publication of CN111260624A publication Critical patent/CN111260624A/zh
Application granted granted Critical
Publication of CN111260624B publication Critical patent/CN111260624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/211Selection of the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Abstract

本发明涉及一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法,包括如下步骤:步骤一、采用IALM方法对原始红外图像进行分解,从原始红外图像中提取目标的前景部分;步骤二、对目标前景图像进行傅里叶变换,得到目标的幅度谱;步骤三、利用高斯核函数对幅度谱进行卷积,得到各尺度的显著图;步骤四、根据每个尺度图中最大像素值邻接的区域的平均值,筛选出目标凸显的显著图;步骤五、根据所选的显著图中的局部最大信息熵,获得最优显著图;该基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法,不仅在视觉和定量评价方面都取得了令人满意的效果,而且在云层较厚、建筑物亮度较高的红外图像上也取得了较好的效果。

Description

一种基于特征匹配和尺度选择策略的多尺度红外小目标的探 测方法
技术领域
本发明属于红外小目标探测的技术领域,具体涉及一种基于特征匹配 和尺度选择策略的多尺度红外小目标的探测方法。
背景技术
随着红外制导系统的快速发展,红外小目标检测一直是一个重要而富有 挑战性的研究课题。小目标通常淹没在低信噪比、低对比度的、非恒定复 杂背景中,此外,由于红外小目标在大气中的成像距离较长,其特征不明 显,亮度不确定,强度较弱,研究人员已经付出了很大的努力,但红外小 目标检测仍然是一项具有挑战性的任务。
一般来说,红外小目标检测方法可分为单帧检测和序列检测两大类检 测方法。序列检测方法如帧间差分法、光流法、三维方向滤波和贝叶斯理 论,在目标对相邻帧中的形状和位置具有先验知识时表现良好。然而,考 虑到在实际军事应用中,获取先验知识是极其困难的,研究者通常采用单 帧检测方法。
典型的单帧图像检测方法,如最大均值和最大中值滤波器,二维最小 均方滤波,背景回归估计法,形态学方法,双边滤波器,能有效地检测简 单背景中的目标。然而,当小目标被淹没在具有高度异质背景的红外图像 中时,这些方法无法获得满意的检测结果。
发明内容
针对上述问题,本发明的目的是提供一种基于特征匹配和尺度选择策 略的多尺度红外小目标的探测方法,其包括如下步骤:
步骤一、采用IALM方法对原始红外图像进行分解,从原始红外图像 中提取目标的前景部分;
步骤二、对目标前景图像进行傅里叶变换,得到目标的幅度谱;
步骤三、利用高斯核函数对步骤二得到的幅度谱进行卷积,得到各尺 度的显著图;
步骤四、根据每个尺度图中最大像素值邻接的区域的平均值,筛选出 目标凸显的显著图;
步骤五、根据所选的显著图中的局部最大信息熵,获得最优显著图。
所述步骤一、采用IALM方法对原始红外图像进行分解,从原始红外 图像中提取目标的前景部分。
所述步骤二、对目标前景图像进行傅里叶变换,得到目标的幅度谱, 方法如下:
IA(u,v)=logfft(I(x,y)), (2)
IP(u,v)=angle(fft(I(x,y))) (3)
其中,IA(u,v)表示目标的振幅谱,IP(u,v)表示目标的相位谱, (u,v)表示像素点。
所述步骤三、利用高斯核函数对步骤二得到的幅度谱进行卷积,得到 各尺度的显著图Sk(x,y),方法如下:
Φ(u,v;k)=g(u,v;σ)*IA(u,v), (4)
其中,Φ(u,v;k)是尺度空间,g(u,v;σ)是高斯核,其标准差σ与比例因子 k有关:
Figure BDA0002367561930000021
Sk(x,y)=ifft{exp(Φ(u,v;k)+i·IP(u,v))} (6)。
所述步骤四、根据每个尺度图中最大像素值邻接的区域的平均值,筛 选出目标凸显的显著图,方法如下:
Lk=max(Sk(x,y)) k=1ΛK, (8)
Figure BDA0002367561930000031
其中,Lk显著性映射图中的最大像素点,Nk为8个邻域点,mk为8个 邻域像素值的平均值,K在实验中设置为16。
所述步骤五、根据所选的显著图中的局部最大信息熵,获得最优显著 图,方法如下:
Figure BDA0002367561930000032
其中,H(x,y)是信息熵,∧(x,y)表示与像素点(x,y)相邻的 局部区域,局部区域的像素值投影到K个区间,pb(x,y)表示像素值处 于b个区间的概率。
本发明的有益效果:本发明提供的这种基于特征匹配和尺度选择策略 的多尺度红外小目标的探测方法,不仅在视觉和定量评价方面都取得了令 人满意的效果,而且在云层较厚、建筑物亮度较高的红外图像上也取得了 较好的效果。实际的实验数据也表明,IALM和ISSS是该方法的关键步骤, 不能改变两方法的执行顺序以确保获得较高的检测性能,通过这些有效的 改进,该探测方法对红外小目标检测中的遮挡和复杂噪声具有很强的鲁棒 性和有效性。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法 的流程示意图。
图2是采用IALM提取稀疏目标前景图像示意图。
图3是两种尺度下目标和干扰像素值的对比示意图。
图4 a1,b1是原始图像;a2,b2全局熵得到的显著图;a3,b3局部熵 得到的显著图。
图5原始图像和实验结果示意图。
图6不同对比方法的ROC曲线示意图。
具体实施方式
为进一步阐述本发明达成预定目的所采取的技术手段及功效,以下结 合附图及实施例对本发明的具体实施方式、结构特征及其功效,详细说明 如下。
实施例1
本实施例提供了一种如图1所示的基于特征匹配和尺度选择策略的多 尺度红外小目标的探测方法,其包括如下步骤:
步骤一、采用IALM方法对原始红外图像进行分解,从原始红外图像 中提取目标的前景部分;
步骤二、对目标前景图像进行傅里叶变换,得到目标的幅度谱;
步骤三、利用高斯核函数对步骤二得到的幅度谱进行卷积,得到各尺 度的显著图;
步骤四、根据每个尺度图中最大像素值邻接的区域的平均值,筛选出 目标凸显的显著图;
步骤五、根据所选的显著图中的局部最大信息熵,获得最优显著图。
进一步的,所述步骤一、采用IALM方法对原始红外图像进行分解, 从原始红外图像中提取目标的前景部分,过程是:输入观测矩阵D,其中, λ是稀疏误差项的权重;然后,使用奇异值阈值收缩方法更新低秩矩阵L 和稀疏矩阵E;更新拉格朗日乘数矩阵Y,最终输出低秩矩阵L和稀疏矩阵 E;稀疏矩阵E即为目标前景图像;具体过程如下:
Figure BDA0002367561930000051
其中,初始参数:ρ=1.6,
Figure BDA0002367561930000052
μ0=1.25/max(svd(D))×107,Y0=D/(max(mm,im)) mm=max(svd(D)),
图2给出了三幅典型红外小目标图像在IALM方法处理后的实验结果, 结果表明,该方法能有效地滤除部分均匀背景,增强目标对比度,在图2 中,目标区域用圆圈标记。
进一步的,所述步骤二、对目标前景图像进行傅里叶变换,得到目标 的幅度谱,方法如下:
IA(u,v)=log|fft(I(x,y))|, (2)
IP(u,v)=angle(fft(I(x,y))) (3)
其中,I(x,y)表示目标前景图像,也就是步骤一得到的稀疏矩阵E, IA(u,v)表示目标前景图像的对数振幅谱,IP(u,v)表示目标前景图像 的相位谱;图像对数振幅谱与适当尺度的低通高斯核的卷积等价于图像的 显著性检测器,因此,我们使用不同尺度的高斯核函数来获得不同尺度的 显著图。
所述步骤三、利用高斯核函数对步骤二得到的幅度谱进行卷积,得到 各尺度显著图Sk(x,y),方法如下:
Φ(u,v;k)=g(u,v;σ)*IA(u,v), (4)
其中,Φ(u,v;k)是尺度空间,g(u,v;σ)是高斯核,其标准差σ与尺度参数 k有关:
Figure BDA0002367561930000061
将得到的平滑对数振幅谱和原始相位谱IP(u,v)相结合,计算傅里 叶逆变换,得到显著性映射Sk(x,y):
Sk(x,y)=ifft{exp(Φ(u,v;k)+i·IP(u,v))} (6)。
对不同尺寸的显著目标检测需要不同尺度的高斯核,过小或过大的核 尺度选择可能会导致背景区域被抑制得不足,或者会导致区域边缘被突出 显示。均匀分布的大背景区域需要小尺度的高斯核来平滑幅度谱以进行抑 制,大尺度的高斯核时用来探测远距离或纹理丰富的目标。小目标通常属 于远距离且纹理丰富的目标,因此需要较大尺度的高斯核。将高斯核函数 尺度参数k设为公式(5),当k值较小时,高斯核函数的标准差σ变化缓慢,当k值较大时,σ迅速变化;这种精细的尺度分割策略有助于为小目 标选择合适且精确的高斯核。
进一步的,所述步骤四、根据每个尺度图中最大像素值邻接的区域的 平均值,筛选出目标凸显的显著图,方法如下:
Lk=max(Sk(x,y)) k=1ΛK, (8)
Figure BDA0002367561930000071
其中,Lk显著图中的最大像素点,Nk为8个邻域点,mk为8个邻域像 素值的平均值,K在实验中设置为16。
进一步的,所述步骤五、根据所选的显著图中的局部最大信息熵,获 得最优显著图,方法如下:
Figure BDA0002367561930000072
其中,H(x,y)是信息熵,∧(x,y)表示与像素点(x,y)相邻的 局部区域,局部区域的像素值投影到K个区间上,pb(x,y)表示像素值 处于b区间中的概率。红外小目标会显著影响局部显著区域的信息熵值, 信息熵通常被用作系统信息含量的定量指标。红外弱小目标对整个图像信 息熵的贡献是微不足道的。对于大目标的显著性检测,最小图像信息熵可以很好地选择最优的显著性图,但它不适用于尺寸极小的红外目标。
像素点的相似性由其相邻区域决定,由于背景像素值具有连续性,强 干扰背景附近的邻域像素值彼此相似或趋于接近最大像素值,而在小目标 区域中只有少数邻域像素值趋于接近中心像素值。大量实验表明,目标区 域附近8个邻域的像素值的平均值通常小于突出显示的背景杂波中的平均 值。我们设定判别标准τ,当平均值小于τ时,暂时存储与该区域相对应 的尺度,而当平均值大于τ时,将对应的图视为“不显著”。遍历所有尺 度图后,我们在存储的尺度图中的显著区域计算局部信息熵,并将与最大 局部信息熵对应的尺度图视为最佳尺度kOUT
Figure BDA0002367561930000081
如图4所示,图4的a2、b2和图4的a3、b3分别显示了根据原始SSS 方法通过最小图像信息熵和提出的最大局部信息熵筛选的最优尺度显著图。 如图4a1所示,通过最小信息熵获得的显著性图关注于近距离的汽车,而 所提出的选择机制关注于驾驶员,也就是原始图像中的小目标。类似地, 从图4b1中,通过最小信息熵方法获得的显著图聚焦于近距离处的高亮度 建筑物,而局部信息熵方法可以有效地检测远距离处的红外小目标。
为了进一步客观地验证该方法的检测性能,我们采用了三种评估指标: 信杂比增益(SCRg)、背景抑制因子(BSF)和接收机工作特性曲线(ROC 曲线)
Figure RE-GDA0002470014050000082
Figure BDA0002367561930000083
Figure BDA0002367561930000084
其中,μt是目标区域强度的平均值,μ和σ是整个图像强度的平均值 和标准差,SCRg和BSF都表明了红外小目标检测的准确度,SCRg和BSF 值越大,相关方法在背景抑制和目标提取方面的性能越好。
该基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法是一 种精确、稳健的红外小目标检测方法。大量实验表明,该方法不仅在视觉 质量上优于其他对比度方法,而且在定量评价标准(如SCRg、BSF评分和 ROC曲线)上也优于其他对比度方法,特别是在云层较厚、建筑物亮度较 高的情况下,如表1、表2、表3及图6所示,为分别对三幅图像Image a、Image b、Image c采用不同方法提取红外小目标的对比,由此可知,该基于 特征匹配和尺度选择策略的多尺度红外小目标的探测方法对于红外小目标 的提取的结果优于其它的图像处理方法。
表1三个序列的细节信息
Figure BDA0002367561930000091
表2不同对比方法的SCRg和BSF值
Figure BDA0002367561930000092
表3不同对比方法的运行时间
Figure BDA0002367561930000093
IALM方法和ISSS方法是该方法不可替代的步骤,它们的执行顺序 是不可交换的,如图5所示,其中,a1-c1是原始图像。a2-c2是先进行ISSS, 然后进行IALM的实验结果;当两个方法的执行顺序改变时,检测结果虚 警率高。作为预处理步骤,ISSS方法不仅提高了目标的强度,而且对背景 边缘进行了锐化处理;因此,为了提高检测性能,IALM方法在图像预处理 阶段的作用是不可替代的;同时,ISSS方法可以在后处理阶段进一步消除 残差背景。
综上所述,该基于特征匹配和尺度选择策略的多尺度红外小目标的探 测方法,不仅在视觉和定量评价方面都取得了令人满意的效果,而且在云 层较厚、建筑物亮度较高的红外图像上也取得了较好的效果,实际的实验 数据也表明,IALM和ISSS是该方法的关键步骤,不能改变两方法的执行顺 序以确保获得较高的检测性能,通过这些有效的改进,该探测方法对红外 小目标检测中的遮挡和复杂噪声具有很强的鲁棒性和有效性。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域 的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简 单推演或替换,都应当视为属于本发明的保护范围。

Claims (5)

1.一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法,其特征在于,包括如下步骤:
步骤一、采用IALM方法对原始红外图像进行分解,从原始红外图像中提取目标的前景部分;
步骤二、对目标前景图像进行傅里叶变换,得到目标的幅度谱;
步骤三、利用高斯核函数对步骤二得到的幅度谱进行卷积,得到各尺度的显著图;
步骤四、根据每个尺度图中最大像素值邻接的区域的平均值,筛选出目标凸显的显著图;
步骤五、根据所选的显著图中的局部最大信息熵,获得最优显著图。
2.如权利要求1所述的一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法,其特征在于:所述步骤二、对目标前景图像进行傅里叶变换,得到目标的幅度谱,方法如下:
IA(u,v)=log|fft(I(x,y))|, (2)
IP(u,v)=angle(fft(I(x,y))) (3)
其中,IA(u,v)表示目标的振幅谱,IP(u,v)表示目标的相位谱,(u,v)表示像素点。
3.如权利要求1所述的一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法,其特征在于:所述步骤三、利用高斯核函数对步骤二得到的幅度谱进行卷积,得到各尺度的显著图Sk(x,y),方法如下:
Φ(u,v;k)=g(u,v;σ)*IA(u,v), (4)
其中,Φ(u,v;k)是尺度空间,g(u,v;σ)是高斯核,其标准差σ与比例因子k有关:
Figure FDA0002367561920000021
Sk(x,y)=ifft{exp(Φ(u,v;k)+i·IP(u,v))} (6)
4.如权利要求1所述的一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法,其特征在于:所述步骤四、根据每个尺度图中最大像素值邻接的区域的平均值,筛选出目标凸显的显著图,方法如下:
Lk=max(Sk(x,y))k=1ΛK, (8)
Figure FDA0002367561920000022
其中,Lk是显著图中的最大像素点,Nk为8个邻域点,mk为8个邻域像素值的平均值,K在实验中设置为16。
5.如权利要求1所述的一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法,其特征在于:所述步骤五、根据所选的显著图中的局部最大信息熵,获得最优显著图,方法如下:
Figure FDA0002367561920000023
其中,H(x,y)是信息熵,∧(x,y)表示与像素点(x,y)相邻的局部区域,局部区域的像素值投影到K个区间,pb(x,y)表示像素值处于b个区间的概率。
CN202010040446.2A 2020-01-15 2020-01-15 一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法 Active CN111260624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010040446.2A CN111260624B (zh) 2020-01-15 2020-01-15 一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010040446.2A CN111260624B (zh) 2020-01-15 2020-01-15 一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法

Publications (2)

Publication Number Publication Date
CN111260624A true CN111260624A (zh) 2020-06-09
CN111260624B CN111260624B (zh) 2023-05-26

Family

ID=70954036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010040446.2A Active CN111260624B (zh) 2020-01-15 2020-01-15 一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法

Country Status (1)

Country Link
CN (1) CN111260624B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112529896A (zh) * 2020-12-24 2021-03-19 山东师范大学 基于暗通道先验的红外小目标检测方法及系统
CN115908807A (zh) * 2022-11-24 2023-04-04 中国科学院国家空间科学中心 一种弱小目标快速检测方法、系统、计算机设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135043A1 (en) * 2011-03-25 2012-10-04 Fairfield Industries Incorporated Detecting structural and stratigraphic information from seismic data
CN109145914A (zh) * 2018-07-23 2019-01-04 辽宁工程技术大学 一种基于超复数傅里叶变换和均值偏移的显著性目标检测方法
CN109272489A (zh) * 2018-08-21 2019-01-25 西安电子科技大学 基于背景抑制与多尺度局部熵的红外弱小目标检测方法
US20190197344A1 (en) * 2016-08-03 2019-06-27 Jiangsu University Saliency-based method for extracting road target from night vision infrared image
CN110660065A (zh) * 2019-09-29 2020-01-07 云南电网有限责任公司电力科学研究院 一种红外故障检测识别算法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135043A1 (en) * 2011-03-25 2012-10-04 Fairfield Industries Incorporated Detecting structural and stratigraphic information from seismic data
US20190197344A1 (en) * 2016-08-03 2019-06-27 Jiangsu University Saliency-based method for extracting road target from night vision infrared image
CN109145914A (zh) * 2018-07-23 2019-01-04 辽宁工程技术大学 一种基于超复数傅里叶变换和均值偏移的显著性目标检测方法
CN109272489A (zh) * 2018-08-21 2019-01-25 西安电子科技大学 基于背景抑制与多尺度局部熵的红外弱小目标检测方法
CN110660065A (zh) * 2019-09-29 2020-01-07 云南电网有限责任公司电力科学研究院 一种红外故障检测识别算法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
黄侃等: "基于超复数傅里叶变换的自适应显著性检测", 《计算机应用》 *
龚俊亮等: "采用尺度空间理论的红外弱小目标检测方法", 《红外与激光工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112529896A (zh) * 2020-12-24 2021-03-19 山东师范大学 基于暗通道先验的红外小目标检测方法及系统
CN115908807A (zh) * 2022-11-24 2023-04-04 中国科学院国家空间科学中心 一种弱小目标快速检测方法、系统、计算机设备及介质

Also Published As

Publication number Publication date
CN111260624B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN111582089B (zh) 基于卫星红外与可见光图像的海上目标信息融合方法
Nasiri et al. Infrared small target enhancement based on variance difference
CN107808383B (zh) 一种强海杂波下sar图像目标快速检测方法
CN109447073B (zh) 一种基于张量鲁棒主成分分析的红外弱小目标检测方法
CN109427055B (zh) 基于视觉注意机制和信息熵的遥感图像海面舰船检测方法
CN103761731A (zh) 一种基于非下采样轮廓波变换的红外空中小目标检测方法
US9031285B2 (en) Detection of floating objects in maritime video using a mobile camera
CN108229342B (zh) 一种海面舰船目标自动检测方法
CN110110675B (zh) 一种融合边缘信息的小波域分形红外卷云检测方法
Wang et al. A robust infrared dim target detection method based on template filtering and saliency extraction
CN111260624B (zh) 一种基于特征匹配和尺度选择策略的多尺度红外小目标的探测方法
Wang et al. Superpixel-based LCM detector for faint ships hidden in strong noise background SAR imagery
CN107273803B (zh) 云层图像检测方法
Liu et al. The target detection for GPR images based on curve fitting
CN114821358A (zh) 光学遥感图像海上舰船目标提取与识别方法
CN106960443B (zh) 基于全极化时序sar图像的非监督变化检测的方法及装置
Albrecht et al. Visual maritime attention using multiple low-level features and naive bayes classification
CN107729903A (zh) 基于区域概率统计和显著性分析的sar图像目标检测方法
Li et al. An improved CFAR scheme for man-made target detection in high resolution SAR images
CN108805186B (zh) 一种基于多维显著特征聚类的sar图像圆形油库检测方法
CN111027512A (zh) 一种遥感图像近岸船检测与定位方法及装置
Huang et al. Infrared small target detection with directional difference of Gaussian filter
CN112734788B (zh) 高分辨sar飞机目标轮廓提取方法、系统、存储介质及设备
CN115205216A (zh) 一种基于显著性和加权引导滤波的红外小目标检测方法
CN114429593A (zh) 基于快速导向滤波的红外小目标检测方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant