CN111259809B - 基于DANet的无人机海岸线漂浮垃圾巡检系统 - Google Patents

基于DANet的无人机海岸线漂浮垃圾巡检系统 Download PDF

Info

Publication number
CN111259809B
CN111259809B CN202010050817.5A CN202010050817A CN111259809B CN 111259809 B CN111259809 B CN 111259809B CN 202010050817 A CN202010050817 A CN 202010050817A CN 111259809 B CN111259809 B CN 111259809B
Authority
CN
China
Prior art keywords
aerial vehicle
unmanned aerial
coastline
network
features
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010050817.5A
Other languages
English (en)
Other versions
CN111259809A (zh
Inventor
翟懿奎
植一航
柯琪锐
余翠琳
周文略
应自炉
甘俊英
曾军英
梁艳阳
麦超云
秦传波
徐颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN202010050817.5A priority Critical patent/CN111259809B/zh
Priority to PCT/CN2020/078289 priority patent/WO2021142902A1/zh
Publication of CN111259809A publication Critical patent/CN111259809A/zh
Priority to US16/995,239 priority patent/US11195013B2/en
Application granted granted Critical
Publication of CN111259809B publication Critical patent/CN111259809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/3876Recombination of partial images to recreate the original image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Abstract

本发明公开了基于DANet的无人机海岸线漂浮垃圾巡检系统,使用全景分割算法,不仅同时分割出图像中的背景和前景目标物体,还给每个前景目标独立的身份。通过精确的分割结果帮助无人机调整航向,实现自动规划飞行路径,同时检测海岸线中的漂浮垃圾情况,发现污染反馈定位及类别,帮助有关部门解决在长海岸线的场景下的污染巡检问题。

Description

基于DANet的无人机海岸线漂浮垃圾巡检系统
技术领域
本发明涉及巡检系统技术领域,特别涉及基于DANet的无人机海岸线漂浮垃圾巡检系统。
背景技术
随着海洋垃圾越来越严重,污染很可能随海洋生物进入人体,因此减少海洋垃圾变得尤为重要。由于海洋过大,现阶段清理的多为海岸漂浮垃圾。但是海岸线过长,边缘较为曲折,难以绘制精准的海岸线,就没有准确的清理路径。海岸线长且曲折,沿整个海岸线清理则更不现实,因此需要知道垃圾所在位置,选择性地清理。另外,有些海岸线人难以到达,影响了人工检测漂浮垃圾的效率。传统的巡检方法有人工巡逻,现场监控。人工巡逻一般只巡检平地,而像山崖、石岸,人都难以检查。巡检周期长,受视觉范围限制,耗费大量人力、物力;现场监控布置成本较高,无法覆盖整个流域,而且监控设备拍摄范围有限,容易漏检。监控视频需要人工分析,进一步加大人力成本、财力成本,另外人为分析效果因人而异,分析结果不稳定;总的来说现有技术存在的问题在于:人为巡检效率低、监控检测成本高。为解决该问题,近年来出现了一种无人机自动巡检方案,该方案解决的是河道巡检,使用无人机搭载摄像头拍摄河流视频,人为寻找视频中的污染情况。其特点是无人机的自动巡检,利用动态二值化检测海岸,自动调整飞行方向。虽然该方法无人机能自动寻路飞行,但依然需要投入大量人力观察。而且动态二值化的检测方式鲁棒性低,实际海岸线情况多变,很容易影响算法准确率,使得无人机偏移理想航线。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种基于DANet的无人机海岸线漂浮垃圾巡检系统,其具有提高巡检智能度,优化无人机航线的优点,可达到低费用高效率的目标。
根据本发明实施例的基于DANet的无人机海岸线漂浮垃圾巡检系统,包括:
图像采集模块,通过无人机对需要巡检的海岸线进行视频拍摄,从视频中获取图像;
特征提取模块,将图像输入到FPN网络提取浅层特征和深层特征,融合浅层特征和深层特征得到共享特征,共享特征分别通过区域生成网络分支、前景分支和背景分支,最终输出全景识别结果;
网络训练模块,对图像进行标注并加入到数据集进行预训练,使得网络学习到边缘特征和颜色特征,根据海岸线巡检的要求修改分类器,对已标注的图像进行训练,使网络能够识别出海岸线以及漂浮垃圾;
路径修正模块,用于调整无人机飞行方向,无人机以海岸线延伸方向为方向角向前飞行,计算所有海岸线坐标的平均值,作为无人机飞行起点,将海岸线和陆地相接的点进行排序、拟合成一条连续的曲线,计算曲线上的点的切线方向,从而确定飞行方向角。
根据本发明实施例的基于DANet的无人机海岸线漂浮垃圾巡检系统,至少具有如下技术效果:本系统采用全景分割算法,不仅同时分割出图像中的背景和前景目标物体,还给每个前景目标独立的身份。通过精确的分割结果帮助无人机调整航向,实现自动规划飞行路径,同时检测海岸线中的漂浮垃圾情况,发现污染反馈定位及类别,帮助有关部门解决在长海岸线的场景下的污染巡检问题。本系统具有提高巡检智能度,优化无人机航线的优点,可达到低费用高效率的目标。
根据本发明的一些实施例,所述图像采集模块从视频中每秒取五帧图像,图像分辨率为1920*1080。
根据本发明的一些实施例,所述共享特征通过区域生成网络分支时,共享特征经过区域生成网络RPN,计算得到图像中每个可能是目标的推荐区域,推荐区域一一经过全连接层,通过softmax函数计算输出类别,经过区域回归计算出目标在图像中的位置坐标。
根据本发明的一些实施例,所述共享特征通过前景分支分割前景目标时,共享特征通过感兴趣区域对齐算法(ROIAlign),将区域生成网络得到的多个推荐区域先进行双线性插值,再池化成14×14和7×7的特征图,14×14的特征图进过掩膜生成网络,掩膜生成网络由残差网络ResNet50连接两层全连接层组成,输出带掩膜的特征图,得到前景目标掩膜;7×7的特征图经过分类定位网络,分类定位网络由两层连接层连接回归算法和softmax算法组成,输出获得前景目标的类别和图像中的位置坐标。
根据本发明的一些实施例,所述共享特征通过背景分支分割图像的背景时,使用推荐区域注意力模块和掩膜注意力模块,首先共享特征和区域生成网络经过推荐区域注意力模块,特征进行对应元素乘积计算,然后与原特征元素对位相加,掩膜注意力模块融合前景特征图和背景特征图,利用前景的信息优化背景特征。
根据本发明的一些实施例,所述网络训练模块使用强弱标签的方式对海岸图像进行标注,使用coco2014和coco2015数据集进行预训练,预训练使得网络学习到边缘特征和颜色特征,用该网络参数进行进一步训练,在使用数据集进行训练的过程中,先将预训练的分类器丢弃,保留前面隐藏层网络结构及参数,针对类别数量的不同需要根据海岸线巡检的要求修改分类器,使得输出类别数量和实际需要检测出的类别相同,修改分类器输出后将参数随机初始化,再使用已标注的海岸线图像进行训练,使得训练后的网络将能识别出海岸线以及漂浮垃圾。
根据本发明的一些实施例,所述无人机内置图像实例分割算法和航向算法,图像实例分割算法识别海水区域,获得海水在画面中的所有x、y轴坐标保存为二维数组,取y轴坐标相同,x轴坐标最小作为海岸线坐标,计算所有海岸线坐标的平均值,作为无人机飞行起点,根据航向算法确定飞行方向角,无人机旋转调整至适合角度。
根据本发明的一些实施例,所述无人机以海岸线所有坐标[{P1x,P1y}、{P2x,P2y}……{Pnx,Pny}]为输入,按照像素坐标x、y的平方和大小排序,计算两点欧式距离进行排序,获得相邻且连续的海岸线坐标组P,将P的坐标点拟合成曲线,分别求得偏移角度α,公式如下:
α=90°-Arctan(k)
其中,k为曲线中点切线斜率,用于调整无人机飞行方向。
根据本发明的一些实施例,还包括用于遥控无人机的终端控制模块,所述终端控制模块设有信息显示单元、无人机管理单元和信息管理单元。
本发明还提供一种基于DANet的无人机海岸线漂浮垃圾巡检方法,包括:
通过无人机对需要巡检的海岸线进行视频拍摄,从视频中获取图像;
将图像输入到FPN网络提取浅层特征和深层特征,融合浅层特征和深层特征得到共享特征,共享特征分别通过区域生成网络分支、前景分支和背景分支,最终输出全景识别结果;
对图像进行标注并加入到数据集进行预训练,使得网络学习到边缘特征和颜色特征,根据海岸线巡检的要求修改分类器,对已标注的图像进行训练,使网络能够识别出海岸线以及漂浮垃圾;
调整无人机飞行方向,无人机以海岸线延伸方向为方向角向前飞行,计算所有海岸线坐标的平均值,作为无人机飞行起点,将海岸线和陆地相接的点进行排序、拟合成一条连续的曲线,计算曲线上的点的切线方向,从而确定飞行方向角。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明第一实施例提供的基于DANet的无人机海岸线漂浮垃圾巡检系统简图;
图2是本发明第一实施例提供的特征提取模块简图;
图3是本发明第一实施例提供的推荐区域注意力模块简图;
图4是本发明第一实施例提供的掩膜注意力模块简图;
图5是本发明第一实施例提供的系统执行流程框图;
图6是本发明本发明第二实施例提供的基于DANet的无人机海岸线漂浮垃圾巡检方法流程简图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在系统示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于系统中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,本发明的第一实施例提供了一种基于DANet(Double Attention Net)的无人机海岸线漂浮垃圾巡检系统,包括:
图像采集模块110,通过无人机对需要巡检的海岸线进行视频拍摄,从视频中获取图像;
特征提取模块120,将图像输入到FPN网络提取浅层特征和深层特征,融合浅层特征和深层特征得到共享特征,共享特征分别通过区域生成网络分支、前景分支和背景分支,最终输出全景识别结果;
网络训练模块130,对图像进行标注并加入到数据集进行预训练,使得网络学习到边缘特征和颜色特征,根据海岸线巡检的要求修改分类器,对已标注的图像进行训练,使网络能够识别出海岸线以及漂浮垃圾;
路径修正模块140,用于调整无人机飞行方向,无人机以海岸线延伸方向为方向角向前飞行,计算所有海岸线坐标的平均值,作为无人机飞行起点,将海岸线和陆地相接的点进行排序、拟合成一条连续的曲线,计算曲线上的点的切线方向,从而确定飞行方向角。
具体地,无人机通过机载摄像头录制海岸视频,视频分辨率为1920*1080,飞行高度保持在10~15米,使得拍摄视野清晰。视频经过无人机内置全景分割算法处理,检测出海岸线、漂浮垃圾。计算出河岸宽度,无人机根据路径修正模块140调整高度、经纬度将河流图像进行视频拍摄。污染物如污水、漂浮垃圾的识别结果实时显示在应用程序上,保存时间、GPS定位、类别数据到数据库,方便再利用。无人机到达终点,向应用程序发送完成信号,按最短路径返回。
本系统使用了一个端到端全景分割框架,该框架将实例分割和语义分割相结合,对每一个像素点都赋予其类别标签和实例编号。相较于实例分割,全景分割不仅识别出目标物体,还识别出背景,利用背景来优化物体的识别像素区域,进一步提高分割精度。相较于语义分割,全景分割给予每个目标物体不同的身份编号,有利于实际应用中的目标区分、定位。添加注意力模块,对输入的特征进行预处理,处理后的特征图显示其在不同目标区域产生明显的特征增强效果。
图像采集模块110从无人机拍摄的视频每秒取五帧图像,分辨率为1920*1080,作为网络的输入。
如图2所示,特征提取模块120使用多尺度特征提取网络FPN提取不同尺度的特征,解决物体大小不同影响识别结果的问题。FPN将浅层的特征经过卷积计算,与深层特征融合,这样浅层特征和深层特征一起被用于预测,两个特征提取的信息重要程度不同,浅层网络有更多细节特征,深层网络特征更抽象,两个特征可以互补,提高网络识别率。融合后获得最终的共享特征,给予后面的三个分支:区域生成网络分支、前景分支、背景分支。
在区域生成网络分支中,共享特征经过区域生成网络RPN(Region ProposalNetwork),计算得到图像中每个可能是目标的区域,即推荐区域,推荐区域一一经过全连接层,softmax函数的计算输出类别,经过区域回归计算出目标在图像中的位置坐标。RPN是快速且精度较高的检测算法,能够快速提取较准确的特征图作为其他模块的输入。其输出特征将给其他分支共享使用,节省了其他分支单独提取特征的时间。
前景分支负责分割前景目标。首先共享特征通过感兴趣区域对齐算法(ROIAlign),将区域生成网络得到的多个推荐区域先进行双线性插值,在池化成14×14和7×7的特征图形式。这里先使用双线性插值算法,再进行池化,比直接池化保留了更多有用的像素信息,大大减少了特征在池化过程中的损失,这在小目标检测分割时非常有帮助。14×14的特征图进过掩膜生成网络,掩膜生成网络由残差网络ResNet50连接两层全连接层组成,输出带掩膜的特征图,得到前景目标掩膜。ResNet50网络是性能和效果相对较平衡的网络,在识别精度不下降太多的前提下,对性能要求也不高。7×7的特征图经过分类定位网络,分类定位网络由两层连接层连接回归算法、softmax算法组成,输出获得前景目标的类别和图像中的位置坐标。
背景分支负责分割出图像的背景。在背景分割过程中,使用了两个注意力模块,推荐区域注意力模块和掩膜注意力模块,对空间的远程上下文和信道维度进行建模,建立了前景的东西和背景的东西在全景分割与一系列的粗到精细的注意力块之间的关系。与没使用注意力模块相比,提取了更多有用的特征信息。在网络实现中,首先共享特征和区域生成网络经过推荐区域注意力模块,特征进行对应元素乘积计算,然后与原特征元素对位相加。这样的好处是利用推荐区域的信息添加空间注意力,指导背景特征提取,推荐区域注意力添加过程如图3所示。其中的
Figure BDA0002371110970000101
代表对位相加,
Figure BDA0002371110970000102
代表对位相乘。相对于没有添加注意力模块的网络,添加后目标区域的特征会更突出,无关区域的特征会减少,这样提取的无关特征会更少,而目标特征更多,提高了分割的精度,也降低了误检的几率。推荐注意力模块后,还使用了掩膜注意力模块,如图4所示。该模块融合了前景特征图和背景特征图,利用前景的信息优化背景特征。首先前景特征从前景分支的掩膜生成网络获得,使用上采样和特征级联恢复到原来的特征图大小,然后和推荐区域注意力一样,进行元素对位相乘后,与原特征元素对位相加。添加注意力后,使用背景选择使用了组归一化,进行特征校准,提高分割精确度。
每一层卷积层后面都会加上归一激活模块,由归一层和ReLU激活函数组成。归一层将数据的分布映射到[0,1]之间,让数据梯度下降更快更精准,加快收敛速度,减少训练时间。ReLU激活函数公式如下:
Figure BDA0002371110970000103
每个可能有目标的区域通过裁剪提取出来,成为单独的感兴趣区域F1、F2……Fn,分别输入给分类定位模块和掩膜生成模块。分类定位网络由两层连接层连接回归算法、softmax算法组成,输出目标类别和在原图的定位坐标;掩膜生成网络由残差网络ResNet50连接两层全连接层组成,输出带掩膜的特征图。共得到目标最终分类结果、定位坐标和掩膜区域。输出结果的损失函数是三个结果的损失函数之和为:
Lfina=Lcls+Lbox+Lmask
其中,Lfinal为最终损失,Lclass为类别预测损失,Lbox为定位损失,Lmask为掩膜损失。
输入的图像经过网络计算,精确地分割出背景:海洋、陆地;以及前景目标:漂浮垃圾。海洋的像素将输出给航向规划算法,进行飞行姿势、航向的调整。漂浮垃圾的类别、GPS定位将记录到数据库中,供有关清理部门参考。
为了使网络学习到海岸线、漂浮垃圾的特征,通过网络训练模块130对海岸图像进行标注,生成两万张海岸线数据集进行训练。在标注过程中,使用强弱标签的标注方式。总数据集按3:1分成两份:集合一、集合二。集合一中的类别实例都标有掩码注释,即强标签;集合二中的类别实例只有边界框注释,即弱标签。由于集合二中的类别只带有关于目标物体的弱标签,我们将使用组合强标签和弱标签的类别来训练模型。弱标签只需要用矩形框标注物体,过程仅需几秒,制作时间只有强标签的十分之一不到,这样能大大提高标注效率,从而增加训练集的数量。另外由于更多的数据加入,网络训练的效果也会得到提升。
除了偏监督学习方法,迁移学习方法也被用在训练过程中。首先我们使用coco2014、coco2015数据集进行预训练,其中包含330K图像、80个对象类别、每幅图像有5个标签、25万个关键点。预训练使得网络学习到边缘特征、颜色特征,用该网络参数进行进一步训练,由于新任务中也包含类似的边缘特征和颜色特征,所以网络能更快收敛,识别率也会有所提升。在使用自己的数据集进行训练的过程中,我们首先将预训练的分类器丢弃,保留前面隐藏层网络结构及参数。由于类别数量不同,需要根据海岸线巡检的要求修改分类器,使得输出类别数量和实际需要检测出的类别相同。修改分类器输出后将参数随机初始化,再使用两万张已标注的海岸线图像进行训练,使网络能够识别出海岸线上的目标物体。训练后的网络将能识别出海岸线以及漂浮垃圾。
路径修正模块140,用于调整无人机飞行方向,无人机以海岸线延伸方向为方向角向前飞行,计算所有海岸线坐标的平均值,作为无人机飞行起点,通过全景分割算法将检测出图像的背景,海岸线和陆地。由于识别算法检测出的背景是离散的无规律的点,在计算方向角前,需要将海岸线和陆地相接的点进行排序、拟合成一条连续的曲线,才能计算曲线上的点的切线方向,从而确定方向角。
无人机以海岸线所有坐标[{P1x,P1y}、{P2x,P2y}……{Pnx,Pny}]为输入,按照像素坐标x、y的平方和大小排序,计算两点欧式距离进行排序,获得相邻且连续的海岸线坐标组P,将P的坐标点拟合成曲线,分别求得偏移角度α,公式如下:
α=90°-Arctan(k)
其中,k为曲线中点切线斜率,用于调整无人机飞行方向。
为兼顾算法识别效果和飞行安全,无人机拍摄海水区域主体应占画面60~80%。飞行途中海平面变化、流行改变都会影响画面占比。根据实际情况,路径修正模块140设计有三种路径修正方案:初始化方向角方案、宽度变化方案和流向变化方案。
初始化方向角方案:该方案旨在解决巡检开始阶段自动寻方向角的问题,无人机以海岸线延伸方向为方向角向前飞行。规定初始飞行高度为二十米,保证能拍摄到河道两岸。实例分割算法识别海水区域,获得海水在画面中的所有x、y轴坐标保存为二维数组。取y轴坐标相同,x轴坐标最小作为海岸线坐标。计算所有海岸线坐标的平均值,作为无人机飞行起点。根据上面的航向算法确定飞行方向角,无人机旋转调整至适合角度。
宽度变化方案:计算海水掩膜面积,若面积大于画面的80%,说明无人机飞行高度过低,停止向前飞行,并缓慢上升至海水区域掩膜面积占70%后继续飞行。若面积小于画面的60%,说明无人机飞行高度过高,停止向前飞行,并缓慢下降至海水区域掩膜面积占70%后继续飞行。
流向变化方案:飞行过程中河流流向会发生改变,为实现自动寻路功能,无人机内置的实例分割算法和航向算法实时计算航向偏移角度α,当飞行方向角度有α偏移大于30°时无人机旋转,小于30°时忽略不计。同时为保证海水在画面一侧,无人机根据海岸线中点坐标调整位置。中点坐标(xm,ym)即检测出的海岸线所有点的平均值。
为进一步简化无人机使用流程,本系统还包括用于遥控无人机的终端控制模块,终端控制模块设有信息显示单元、无人机管理单元和信息管理单元。操作者在终端控制模块的应用程序选择路径,实现如下功能:录入新河流数据,选择巡检河流,无人机状态实时查看,巡检结果查询。信息显示单元将无人机拍摄视频实时显示,防止意外发生;算法分析的结果也同时显示,方便人查看检测结果。无人机管理单元显示无人机电量情况、存储空间使用情况、定位信息、方向信息。信息管理单元有录入按键,用于录入新河流的起点和终点;河流选择按键,选择巡检河流,无人机自动飞向录入的河流起点经纬度,然后调用路径自修正算法开始自动巡检;查询按键,查看数据库的过往巡检结果,用于寻找污染位置和类别,方便制定下一步治理方案。
最后,上述整个系统执行流程如图5所示。
如图6所示,本发明的第二实施例提供了一种基于DANet的无人机海岸线漂浮垃圾巡检方法,包括如下步骤:
S100:通过无人机对需要巡检的海岸线进行视频拍摄,从视频中获取图像;
S200:将图像输入到FPN网络提取浅层特征和深层特征,融合浅层特征和深层特征得到共享特征,共享特征分别通过区域生成网络分支、前景分支和背景分支,最终输出全景识别结果;
S300:对图像进行标注并加入到数据集进行预训练,使得网络学习到边缘特征和颜色特征,根据海岸线巡检的要求修改分类器,对已标注的图像进行训练,使网络能够识别出海岸线以及漂浮垃圾;
S400:调整无人机飞行方向,无人机以海岸线延伸方向为方向角向前飞行,计算所有海岸线坐标的平均值,作为无人机飞行起点,将海岸线和陆地相接的点进行排序、拟合成一条连续的曲线,计算曲线上的点的切线方向,从而确定飞行方向角。
基于DANet的无人机海岸线漂浮垃圾巡检方法,至少具有如下技术效果:采用全景分割算法,不仅同时分割出图像中的背景和前景目标物体,还给每个前景目标独立的身份。通过精确的分割结果帮助无人机调整航向,实现自动规划飞行路径,同时检测海岸线中的漂浮垃圾情况,发现污染反馈定位及类别,帮助有关部门解决在长海岸线的场景下的污染巡检问题。本方法具有提高巡检智能度,优化无人机航线的优点,可达到低费用高效率的目标。
本巡检系统及其巡检方法的核心全景分割算法是DANet算法,该算法利用RPN网络快速提取感兴趣区域;经过前景分支的进行目标分类、位置回归;背景分支引入推荐区域注意力模块和掩膜注意力模块,利用RPN和前景分支提取的特征图,提高背景分割的精度。算法能同时识别目标和和背景,相对应地同时解决了漂浮垃圾识别问题、和海岸线识别的问题。网络提取一次特征,使用在三个分支中,比分别提取更省时间。
数据增强方面,该专利使用了偏监督学习和迁移学习。偏监督学习大大减少标注时间,相同时间标注了更多数据量。使用迁移学习,利用coco数据集训练网络权重,并将权重迁移到自己的任务中。在较小数据集的情况下,也能训练出效果很好的模型。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于,包括:
图像采集模块,通过无人机对需要巡检的海岸线进行视频拍摄,从视频中获取图像;
特征提取模块,将图像输入到FPN网络提取浅层特征和深层特征,融合浅层特征和深层特征得到共享特征,共享特征分别通过区域生成网络分支、前景分支和背景分支,最终输出全景识别结果;
网络训练模块,对图像进行标注并加入到数据集进行预训练,使得网络学习到边缘特征和颜色特征,根据海岸线巡检的要求修改分类器,对已标注的图像进行训练,使网络能够识别出海岸线以及漂浮垃圾;
路径修正模块,用于调整无人机飞行方向,无人机以海岸线延伸方向为方向角向前飞行,计算所有海岸线坐标的平均值,作为无人机飞行起点,将海岸线和陆地相接的点进行排序、拟合成一条连续的曲线,计算曲线上的点的切线方向,从而确定飞行方向角。
2.根据权利要求1所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:所述图像采集模块从视频中每秒取五帧图像,图像分辨率为1920*1080。
3.根据权利要求1所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:所述共享特征通过区域生成网络分支时,共享特征经过区域生成网络RPN,计算得到图像中每个可能是目标的推荐区域,推荐区域一一经过全连接层,通过softmax函数计算输出类别,经过区域回归计算出目标在图像中的位置坐标。
4.根据权利要求1所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:所述共享特征通过前景分支分割前景目标时,共享特征通过感兴趣区域对齐算法(ROIAlign),将区域生成网络得到的多个推荐区域先进行双线性插值,再池化成14×14和7×7的特征图,14×14的特征图进过掩膜生成网络,掩膜生成网络由残差网络ResNet50连接两层全连接层组成,输出带掩膜的特征图,得到前景目标掩膜;7×7的特征图经过分类定位网络,分类定位网络由两层连接层连接回归算法和softmax算法组成,输出获得前景目标的类别和图像中的位置坐标。
5.根据权利要求1所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:所述共享特征通过背景分支分割图像的背景时,使用推荐区域注意力模块和掩膜注意力模块,首先共享特征和区域生成网络经过推荐区域注意力模块,特征进行对应元素乘积计算,然后与原特征元素对位相加,掩膜注意力模块融合前景特征图和背景特征图,利用前景的信息优化背景特征。
6.根据权利要求1所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:所述网络训练模块使用强弱标签的方式对海岸图像进行标注,使用coco2014和coco2015数据集进行预训练,预训练使得网络学习到边缘特征和颜色特征,用该网络参数进行进一步训练,在使用数据集进行训练的过程中,先将预训练的分类器丢弃,保留前面隐藏层网络结构及参数,针对类别数量的不同需要根据海岸线巡检的要求修改分类器,使得输出类别数量和实际需要检测出的类别相同,修改分类器输出后将参数随机初始化,再使用已标注的海岸线图像进行训练,使得训练后的网络将能识别出海岸线以及漂浮垃圾。
7.根据权利要求1所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:所述无人机内置图像实例分割算法和航向算法,图像实例分割算法识别海水区域,获得海水在画面中的所有x、y轴坐标保存为二维数组,取y轴坐标相同,x轴坐标最小作为海岸线坐标,计算所有海岸线坐标的平均值,作为无人机飞行起点,根据航向算法确定飞行方向角,无人机旋转调整至适合角度。
8.根据权利要求7所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:所述无人机以海岸线所有坐标[{P1x,P1y}、{P2x,P2y}……{Pnx,Pny}]为输入,按照像素坐标x、y的平方和大小排序,计算两点欧式距离进行排序,获得相邻且连续的海岸线坐标组P,将P的坐标点拟合成曲线,分别求得偏移角度α,公式如下:
α=90°-Arctan(k)
其中,k为曲线中点切线斜率,用于调整无人机飞行方向。
9.根据权利要求1所述的基于DANet的无人机海岸线漂浮垃圾巡检系统,其特征在于:还包括用于遥控无人机的终端控制模块,所述终端控制模块设有信息显示单元、无人机管理单元和信息管理单元。
10.基于DANet的无人机海岸线漂浮垃圾巡检方法,其特征在于,包括:
通过无人机对需要巡检的海岸线进行视频拍摄,从视频中获取图像;
将图像输入到FPN网络提取浅层特征和深层特征,融合浅层特征和深层特征得到共享特征,共享特征分别通过区域生成网络分支、前景分支和背景分支,最终输出全景识别结果;
对图像进行标注并加入到数据集进行预训练,使得网络学习到边缘特征和颜色特征,根据海岸线巡检的要求修改分类器,对已标注的图像进行训练,使网络能够识别出海岸线以及漂浮垃圾;
调整无人机飞行方向,无人机以海岸线延伸方向为方向角向前飞行,计算所有海岸线坐标的平均值,作为无人机飞行起点,将海岸线和陆地相接的点进行排序、拟合成一条连续的曲线,计算曲线上的点的切线方向,从而确定飞行方向角。
CN202010050817.5A 2020-01-17 2020-01-17 基于DANet的无人机海岸线漂浮垃圾巡检系统 Active CN111259809B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010050817.5A CN111259809B (zh) 2020-01-17 2020-01-17 基于DANet的无人机海岸线漂浮垃圾巡检系统
PCT/CN2020/078289 WO2021142902A1 (zh) 2020-01-17 2020-03-06 基于DANet的无人机海岸线漂浮垃圾巡检系统
US16/995,239 US11195013B2 (en) 2020-01-17 2020-08-17 DANet-based drone patrol and inspection system for coastline floating garbage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010050817.5A CN111259809B (zh) 2020-01-17 2020-01-17 基于DANet的无人机海岸线漂浮垃圾巡检系统

Publications (2)

Publication Number Publication Date
CN111259809A CN111259809A (zh) 2020-06-09
CN111259809B true CN111259809B (zh) 2021-08-17

Family

ID=70947592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010050817.5A Active CN111259809B (zh) 2020-01-17 2020-01-17 基于DANet的无人机海岸线漂浮垃圾巡检系统

Country Status (3)

Country Link
US (1) US11195013B2 (zh)
CN (1) CN111259809B (zh)
WO (1) WO2021142902A1 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748742A (zh) * 2020-06-10 2021-05-04 宋师光 自动化山体目标躲避平台及方法
CN111629151B (zh) * 2020-06-12 2023-01-24 北京字节跳动网络技术有限公司 视频合拍方法、装置、电子设备及计算机可读介质
CN112102369B (zh) * 2020-09-11 2024-04-09 陕西欧卡电子智能科技有限公司 水面漂浮目标自主巡检方法、装置、设备及存储介质
CN112360699A (zh) * 2020-10-22 2021-02-12 华能大理风力发电有限公司 一种全自动风力发电机组叶片智能巡视及诊断分析方法
CN112257623B (zh) * 2020-10-28 2022-08-23 长沙立中汽车设计开发股份有限公司 一种路面清洁度判定和自动清扫方法及自动清扫环卫装置
CN112802039B (zh) * 2021-01-26 2022-03-01 桂林电子科技大学 一种基于全局边缘注意力的全景分割方法
CN113096136A (zh) * 2021-03-30 2021-07-09 电子科技大学 一种基于深度学习的全景分割方法
CN113158965B (zh) * 2021-05-08 2024-03-19 福建万福信息技术有限公司 一种实现海漂垃圾识别的仿视觉识别方法、设备和介质
CN113743208B (zh) * 2021-07-30 2022-07-12 南方海洋科学与工程广东省实验室(广州) 一种基于无人机阵列的中华白海豚数量统计方法及系统
CN113592822B (zh) * 2021-08-02 2024-02-09 郑州大学 一种电力巡检图像的绝缘子缺陷定位方法
CN113743470B (zh) * 2021-08-04 2022-08-23 浙江联运环境工程股份有限公司 自动破袋分类箱基于ai算法垃圾识别精度提升方法
CN113780078B (zh) * 2021-08-05 2024-03-19 广州西威科智能科技有限公司 无人驾驶视觉导航中故障物快速精准识别方法
CN113807347A (zh) * 2021-08-20 2021-12-17 北京工业大学 一种基于目标检测技术的厨余垃圾杂质识别方法
CN113762132A (zh) * 2021-09-01 2021-12-07 国网浙江省电力有限公司金华供电公司 一种无人机巡检图像自动归类与自动命名系统
CN113657691B (zh) * 2021-10-19 2022-03-01 北京每日优鲜电子商务有限公司 信息显示方法、装置、电子设备和计算机可读介质
CN113867404B (zh) * 2021-11-05 2024-02-09 交通运输部天津水运工程科学研究所 一种基于无人机的海滩垃圾巡检方法和系统
CN114220044B (zh) * 2021-11-23 2022-07-29 慧之安信息技术股份有限公司 一种基于ai算法的河道漂浮物检测方法
CN113919762B (zh) * 2021-12-10 2022-03-15 重庆华悦生态环境工程研究院有限公司深圳分公司 一种基于漂浮物事件的调度方法及装置
CN114283237A (zh) * 2021-12-20 2022-04-05 中国人民解放军军事科学院国防科技创新研究院 一种无人机仿真视频生成方法
CN114422822B (zh) * 2021-12-27 2023-06-06 北京长焜科技有限公司 一种支持自适应hdmi编码的无人机数图传输控制方法
CN114565635B (zh) * 2022-03-08 2022-11-11 安徽新宇环保科技股份有限公司 一种智能识别河道垃圾并进行分类收集的无人船系统
CN114550016B (zh) * 2022-04-22 2022-07-08 北京中超伟业信息安全技术股份有限公司 一种基于上下文信息感知的无人机定位方法及系统
CN114782871B (zh) * 2022-04-29 2022-11-25 广东技术师范大学 一种基于物联网的海洋异常信息监测方法和装置
CN114584403B (zh) * 2022-05-07 2022-07-19 中国长江三峡集团有限公司 一种发电厂巡检设备认证管理系统和方法
CN114596536A (zh) * 2022-05-07 2022-06-07 陕西欧卡电子智能科技有限公司 无人船沿岸巡检方法、装置、计算机设备及存储介质
CN115061490B (zh) * 2022-05-30 2024-04-05 广州中科云图智能科技有限公司 基于无人机的水库巡检方法、装置、设备以及存储介质
CN115060343B (zh) * 2022-06-08 2023-03-14 山东智洋上水信息技术有限公司 一种基于点云的河流水位检测系统、检测方法
CN114792319B (zh) * 2022-06-23 2022-09-20 国网浙江省电力有限公司电力科学研究院 一种基于变电图像的变电站巡检方法及系统
CN115100553A (zh) * 2022-07-06 2022-09-23 浙江科技学院 基于卷积神经网络的河面污染信息检测处理方法及系统
CN114937199B (zh) * 2022-07-22 2022-10-25 山东省凯麟环保设备股份有限公司 一种基于判别性特征增强的垃圾分类方法与系统
CN115272890B (zh) * 2022-07-27 2023-08-22 杭州亚太工程管理咨询有限公司 一种水利工程数据采集系统及方法
CN115147703B (zh) * 2022-07-28 2023-11-03 广东小白龙环保科技有限公司 一种基于GinTrans网络的垃圾分割方法及系统
CN115019216B (zh) * 2022-08-09 2022-10-21 江西师范大学 实时地物检测和定位计数方法、系统及计算机
CN115439765B (zh) * 2022-09-17 2024-02-02 艾迪恩(山东)科技有限公司 基于机器学习无人机视角下海洋塑料垃圾旋转检测方法
CN115562348A (zh) * 2022-11-03 2023-01-03 国网福建省电力有限公司漳州供电公司 基于变电站的无人机图像技术方法
CN115713174A (zh) * 2022-11-11 2023-02-24 中国地质大学(武汉) 一种无人机城市巡检系统及方法
CN115564838B (zh) * 2022-12-06 2023-03-24 深圳联和智慧科技有限公司 基于无人机的河堤检测侵占定位方法及系统
CN115588145B (zh) * 2022-12-12 2023-03-21 深圳联和智慧科技有限公司 基于无人机的河道垃圾漂浮识别方法及系统
CN115601670B (zh) * 2022-12-12 2023-03-24 合肥恒宝天择智能科技有限公司 基于人工智能和高分辨率遥感影像的松材线虫病监测方法
CN115861359B (zh) * 2022-12-16 2023-07-21 兰州交通大学 一种水面漂浮垃圾图像自适应分割提取方法
CN115797619B (zh) * 2023-02-10 2023-05-16 南京天创电子技术有限公司 一种适用于巡检机器人仪表图像定位的纠偏方法
CN116052027B (zh) * 2023-03-31 2023-06-09 深圳联和智慧科技有限公司 基于无人机的漂浮垃圾种类识别方法、系统及云平台
CN116152115B (zh) * 2023-04-04 2023-07-07 湖南融城环保科技有限公司 基于计算机视觉的垃圾图像去噪处理方法
CN116630828B (zh) * 2023-05-30 2023-11-24 中国公路工程咨询集团有限公司 基于地形环境适配的无人机遥感信息采集系统及方法
CN116363537B (zh) * 2023-05-31 2023-10-24 广东电网有限责任公司佛山供电局 一种变电站站外飘挂物隐患识别方法和系统
US20230348120A1 (en) * 2023-07-10 2023-11-02 Brian Panahi Johnson System and method for identifying trash within a predetermined geographic boundary using unmanned aerial vehicles
CN116614084B (zh) * 2023-07-17 2023-11-07 北京数维思创科技有限公司 一种基于无人机场的光伏电站远程巡检系统
CN116682000B (zh) * 2023-07-28 2023-10-13 吉林大学 一种基于事件相机的水下蛙人目标检测方法
CN117148871B (zh) * 2023-11-01 2024-02-27 中国民航管理干部学院 一种多无人机协同电力巡检方法及系统
CN117274723B (zh) * 2023-11-22 2024-03-26 国网智能科技股份有限公司 一种用于输电巡检的目标识别方法、系统、介质及设备
CN117274845A (zh) * 2023-11-22 2023-12-22 山东中宇航空科技发展有限公司 一种飞行无人机影像抓取方法、系统、设备及储存介质
CN117392465B (zh) * 2023-12-08 2024-03-22 聚真宝(山东)技术有限公司 一种基于视觉的垃圾分类数字化管理方法
CN117474190B (zh) * 2023-12-28 2024-02-27 磐石浩海(北京)智能科技有限公司 一种机柜自动巡检方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897015A (zh) * 2006-05-18 2007-01-17 王海燕 基于机器视觉的车辆检测和跟踪方法及系统
EP2187339A1 (en) * 2008-11-12 2010-05-19 Fundación Robotiker Method for integrating spectral and spatial features for classifying materials
CN108510750A (zh) * 2018-04-25 2018-09-07 济南浪潮高新科技投资发展有限公司 一种基于神经网络模型的无人机巡检违章停车的方法
CN108824397A (zh) * 2018-09-29 2018-11-16 五邑大学 一种河流漂浮垃圾收集装置
CN110309762A (zh) * 2019-06-26 2019-10-08 扆亮海 一种基于航空遥感的林业健康评价系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112263A2 (en) * 2013-12-04 2015-07-30 Urthecast Corp. Systems and methods for processing distributing earth observation images
US20150254800A1 (en) * 2014-03-06 2015-09-10 F12 Solutions, Llc Nitrogen status determination in growing crops
GB201501882D0 (en) * 2015-02-05 2015-03-25 Technology Res Ct The Ltd Apparatus and method for analysis of growing items
CA2929254C (en) * 2016-05-06 2018-12-11 SKyX Limited Unmanned aerial vehicle (uav) having vertical takeoff and landing (vtol) capability
CN106886745B (zh) * 2016-12-26 2019-09-24 西北工业大学 一种基于实时在线地图生成的无人机侦察方法
CN206313928U (zh) * 2017-01-12 2017-07-07 王昱淇 一种用于水域漂浮物监测的无人机监控系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897015A (zh) * 2006-05-18 2007-01-17 王海燕 基于机器视觉的车辆检测和跟踪方法及系统
EP2187339A1 (en) * 2008-11-12 2010-05-19 Fundación Robotiker Method for integrating spectral and spatial features for classifying materials
CN108510750A (zh) * 2018-04-25 2018-09-07 济南浪潮高新科技投资发展有限公司 一种基于神经网络模型的无人机巡检违章停车的方法
CN108824397A (zh) * 2018-09-29 2018-11-16 五邑大学 一种河流漂浮垃圾收集装置
CN110309762A (zh) * 2019-06-26 2019-10-08 扆亮海 一种基于航空遥感的林业健康评价系统

Also Published As

Publication number Publication date
US11195013B2 (en) 2021-12-07
WO2021142902A1 (zh) 2021-07-22
US20210224512A1 (en) 2021-07-22
CN111259809A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111259809B (zh) 基于DANet的无人机海岸线漂浮垃圾巡检系统
CN110163187B (zh) 基于f-rcnn的远距离交通标志检测识别方法
CN108596101B (zh) 一种基于卷积神经网络的遥感图像多目标检测方法
CN106127204B (zh) 一种全卷积神经网络的多方向水表读数区域检测算法
CN109255317B (zh) 一种基于双网络的航拍图像差异检测方法
CN112084869B (zh) 一种基于紧致四边形表示的建筑物目标检测方法
US11694354B2 (en) Geospatial object geometry extraction from imagery
CN101145200A (zh) 多视觉传感器信息融合的内河船舶自动识别系统
CN105930819A (zh) 基于单目视觉和gps组合导航系统的实时城区交通灯识别系统
CN110796009A (zh) 基于多尺度卷积神经网络模型的海上船只检测方法及系统
CN103679674A (zh) 一种无人飞行器实时图像拼接方法及系统
CN109214308A (zh) 一种基于焦点损失函数的交通异常图片识别方法
CN111723657B (zh) 一种基于YOLOv3与自优化的河道异物检测方法及装置
CN108509919A (zh) 一种基于深度学习对视频或图片中水线的检测和识别方法
US11776104B2 (en) Roof condition assessment using machine learning
CN111582069B (zh) 一种空基监视平台的轨道障碍物零样本分类方法及装置
Zheng et al. A morphological neural network approach for vehicle detection from high resolution satellite imagery
CN107330432A (zh) 一种基于加权霍夫投票的多视角车辆检测方法
CN111723643A (zh) 一种基于固定区域周期性图像采集的目标检测方法
CN113469097B (zh) 一种基于ssd网络的水面漂浮物多相机实时检测方法
CN112233079B (zh) 多传感器图像融合的方法及系统
CN115187959A (zh) 一种基于双目视觉的飞行汽车山地着陆方法及系统
CN114463628A (zh) 一种基于阈值约束的深度学习遥感影像船舰目标识别方法
CN113128559A (zh) 基于跨尺度特征融合金字塔网络的遥感图像目标检测方法
Bouhsine et al. Atmospheric visibility image-based system for instrument meteorological conditions estimation: A deep learning approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant