CN111257348A - 一种基于机器视觉的led导光板缺陷检测方法 - Google Patents

一种基于机器视觉的led导光板缺陷检测方法 Download PDF

Info

Publication number
CN111257348A
CN111257348A CN202010228387.1A CN202010228387A CN111257348A CN 111257348 A CN111257348 A CN 111257348A CN 202010228387 A CN202010228387 A CN 202010228387A CN 111257348 A CN111257348 A CN 111257348A
Authority
CN
China
Prior art keywords
image
guide plate
light guide
defect
enhanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010228387.1A
Other languages
English (en)
Other versions
CN111257348B (zh
Inventor
张学武
邵晓琦
卢鑫
许海燕
徐晓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN202010228387.1A priority Critical patent/CN111257348B/zh
Publication of CN111257348A publication Critical patent/CN111257348A/zh
Application granted granted Critical
Publication of CN111257348B publication Critical patent/CN111257348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Abstract

本发明公开了一种基于机器视觉的LED导光板缺陷检测方法,在有效光照结构中采集导光板多视角的原始图像;对原始图像进行预处理;对边缘增强后的图像的导光板ROI区域进行定位并与背景区域进行分割;对分割后的导光板图像进行光照影响消除和缺陷部位增强处理,得到缺陷部位增强后的图像;对缺陷部位增强后的图像中常规尺寸的缺陷进行检测,确定最终的常规尺寸瑕疵点;对缺陷部位增强后的图像中细微尺寸的缺陷进行检测,确定最终的细微尺寸瑕疵点。优点:将图像采集和打光方案与机器视觉相结合,实现了导光板图像分割,缺陷分类检测的自动化,并通过有效的图像增强和预处理方法在不影响检测效率的同时提高了检测的精度和准确率。

Description

一种基于机器视觉的LED导光板缺陷检测方法
技术领域
本发明涉及一种基于机器视觉的LED导光板缺陷检测方法,属于缺陷检测技术领域。
背景技术
导光板作为LED液晶屏底层构造的重要组成部分,其品质决定着LED屏幕的成像品质,而导光板在注塑机中生产的过程中,由于机器的内部缺陷以及外部的灰尘污染,往往造成导光板出现白点,暗点,划伤,脏污,侧边漏光等缺陷发生,而由于这些缺陷的尺寸较小,通过人工对其进行检出十分困难,同时人工检查也造成的人力成本的浪费和生产成本的增加。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于机器视觉的LED导光板缺陷检测方法,以实现LED导光板缺陷的非接触式检出。
为解决上述技术问题,本发明提供一种基于机器视觉的LED导光板缺陷检测方法,在有效光照结构中采集导光板多视角的原始图像;
对原始图像进行预处理,得到增强导光板ROI区域边缘的图像;
对边缘增强后的图像的导光板ROI区域进行定位并与背景区域进行分割,得到分割后的导光板图像;
对分割后的导光板图像进行光照影响消除和缺陷部位增强处理,得到缺陷部位增强后的图像;
对缺陷部位增强后的图像中常规尺寸的缺陷进行检测,确定最终的常规尺寸瑕疵点;
对缺陷部位增强后的图像中细微尺寸的缺陷进行检测,确定最终的细微尺寸瑕疵点。
进一步的,所述采集采用双摄像头采集,其中一个摄像头位于导光板的陈列位的正上方,另一个摄像头位于导光板的陈列位的右上方,两摄像头到导光板的距离相同。可获得导光板区域的多角度图像,避免的因局部反光角度不同造成的缺陷漏检。
进一步的,所述有效光照结构包括置于导光板(1)前侧的第一LED条形光源(2)、置于导光板(1)左右两侧的第二LED条形光源(4)。多角度的打光方案可以使导光板不懂折叠角度的划痕和漏光被摄像头发现。
导光板的陈列台的底面(3)采用黑色磨砂材料,底面(3)上放置全透明矩形玻璃块(5),导光板(1)水平放置于矩形玻璃块(5)上。黑色磨砂背景可以吸收绝大部分的杂光和照射光,同时全透玻璃矩阵可以在不影响光穿透的前提下使导光板和背景保持一定距离,使其中的缺陷的显著性增强。
进一步的,所述预处理的过程为:
对原始图像进行线性变换,对线性变换后的图像增强目标与背景对比度和图像亮度。
进一步的,所述得到分割后的导光板图像的过程为:
对预处理后的图像使用canny算子进行边缘检测;
使用Hough变换对图像中的直线进行检测,并以导光板四边的长度作为标准剔除误检线;
提取检测的直线所包围的区域为导光板ROI区域。
进一步的,所述得到缺陷部位增强后的图像的过程为:
将分割后的导光板图像变换为灰度图像;
对所述灰度图像进行下式中的一维离散小波变换,得到光照均匀化的图像;
对所述光照均匀化的图像,进行加权掩膜滤波,消除图像中的噪点,将图像划分为不同区域,计算每个区域对应的平均值和方差,将方差最小的区域进行卷积运算,得到滤波图像;
对得到滤波图像进行梯度锐化,得到缺陷部位增强后的图像。
进一步的,所述确定最终的常规尺寸瑕疵点的过程为:
对缺陷部位增强后的图像采取自适应阈值分割算法进行二值化,得到二值化图像;
对所述二值化图像,先进行开运算,填补阈值分割造成的椒盐噪声,再进行闭运算,使缺陷区域的像素得到生长,得到缺陷的轮廓圈;
将所述缺陷的轮廓圈出并进行统计,得到最终的常规尺寸瑕疵点。
进一步的,所述自适应阈值分割算法进行二值化的过程为:
(a)设定初始阈值M;
(b)将缺陷部位增强后的图像按照阈值M分为两部分;
(c)分别计算两部分图像的灰度平均值;
(d)通过平均值计算新的阈值;
(e)重复步骤(b)到步骤(d),当相邻两次迭代的差值小于设定值时,结束迭代,获得最终的阈值分割图像作为二值化图像。
进一步的,所述确定最终的细微尺寸瑕疵点的过程为:
(1)将缺陷部位增强后的图像与原始的原始图像进行逐像素的相减运算,得到差分图像,计算公式如下:
M(u,v)=|I(x,y)-D(x1,y1)|
其中M(u,v)是差分运算的结果,I(x,y)为增强后的导光板图像,D(x1,y1)是原始图像,若相同则结果为0,不同则为1;
(2)对步骤(1)中得到的差分图像建立局部方差测量算子:
Figure BDA0002428495800000031
其中μ为邻域内所有像素点的平均灰度值,
Figure BDA0002428495800000032
P代表邻近点个数,R为邻域的半径,R为依据图像的实际大小依据比例进行设置,gP为邻域给每个像素点的灰度值;
(3)利用加权信息熵对步骤(2)中的局部方差进行修正:
Figure BDA0002428495800000041
其中HG为修正后的方差,Pk为不同灰度在区域中出现的概率,其计算公式为:
Figure BDA0002428495800000042
n为局部区域内像素的总数,k为该区域内缺陷图像含有的r种不同的灰度值,nk为缺陷区域所占像素的总数;
(4)以步骤(3)中修正后的方差作为依据,对步骤(1)得到的差分图像进行阈值分割,得到最终的细微尺寸瑕疵点。
本发明所达到的有益效果:
本发明将图像采集和打光方案与机器视觉相结合,实现了导光板图像分割,缺陷分类检测的自动化,并通过有效的图像增强和预处理方法在不影响检测效率的同时提高了检测的精度和准确率。
附图说明
图1为本发明的流程示意图;
图2-1和2-2为本发明中图像采集及打光装置的结构示意图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1、2-1及2-2所示,一种基于机器视觉的LED导光板的缺陷检测装置以及检测方法,包括如下步骤:
(1)对导光板图像进行采集的多摄像头多角度部署结构
(2)对导光板本体提供良好光照条件的打光装置结构;
该装置是具体结构如下:
如图2所示,导光板图像采集装置采用双摄像头(6)的设置,其中一个摄像头位于导光板(1)陈列位的正上方,另一个摄像头位于陈列位的正右上方45°角位置,两摄像头到导光板的距离均为350mm。
导光板打光装置采用三个LED条形光源(2)(4)分别置于与导光板(1)处于水平位置的两侧及上方,其中位于两侧的光源距导光板(1)250mm,位于上方的光源距导光板200mm。
导光板陈列台的底面采用黑色磨砂材料(3),底面上放置厚度为50mm的全透明矩形玻璃块(5),导光板(1)水平放置于玻璃块上。
如图1所示,一种基于机器视觉的LED导光板的缺陷检测装置以及检测方法,所述方法包括如下步骤:
步骤(1):对原始图像进行预处理,通过线性变换增强目标与背景对比度,增强图像亮度。
具体实施方式如下:
对图像进行线性变换,输入图像f(x,y)和输出图像g(x,y)的关系表达式为:
g(x,y)=a*f(x,y)+b
其中,f(x,y)表示输入图像,g(x,y)表示输出图像,a为对比度增量系数,b为亮度偏置系数,x,y当前像素的坐标,当|a|>0时,图像的对比度增强,当b>0时,图像的亮度增强。
步骤(2):对边缘增强的图像进行的导光板ROI区域进行定位并与背景区域实现分割。
具体实施方式如下:
A.对预处理后的图像使用canny算子进行边缘检测。
B.使用Hough变换对图像中的直线进行检测,并以导光板四边的长度作为标准剔除误检线。
C.提取步骤B中检测的直线所包围的区域为导光板ROI(感兴趣)区域。
步骤(3):对分割后的导光板图像进行增强,消除光照造成的影响,增强缺陷部位的显著性.
具体实施方式如下:
a.将图像变换为灰度图像;
b.对步骤A获得的灰度图像进行一维离散小波变换,消除光照不均造成的影响,使用Haar小波作为基函数进行分解:
Figure BDA0002428495800000061
Figure BDA0002428495800000062
其中,X表示单个像素,gy为原始灰度图像,sy(X)为小波平滑图像,代表灰度图中的近似系数部分,dy(X)为小波细节图像代表灰度图像中的细节系数部分。为可变参数,通常取1。将图像进行分块,分为2n×2n个子块,n可取小于10的整数,对每一个子块中的亮度依据其灰度做出估计,并由此生成亮度估计图,使该图作为第n层的近似系数,同时令各层的细节系数均为0,然后对两系数进行小波反变换,得到光照分布图。最后通过对原图和光照分布图的差分操作,得到亮度均匀的图像。
c.对步骤B获得的光照均匀化的图像,进行加权掩膜滤波,消除图像中的噪点,将图像划分为不同区域,计算每个区域对应的平均值和方差,将方差最小的区域进行卷积运算:
Figure BDA0002428495800000063
Figure BDA0002428495800000064
其中,f(x,y)为局部区域的二维离散矩阵,Mx为局部区域的均值而σx为局部区域的方差,k=1,2,…N,N为各区域的像素中总数,bx是该像素对应的权重。将方差排序后选择最小方差的局部区域的均值作为滤波结果的输出,之后通过滑动窗口的方法完成卷积,分别计算输出。
d.对步骤C得到的滤波图像进行梯度锐化,强化缺陷的边缘。
步骤(4):对常规尺寸(直径大于0.5mm)缺陷进行检测。
具体实施方式如下:
a.对增强后的图像采取自适应阈值分割算法进行二值化,将图像以初始阈值分为两部分,之后进行迭代分割。步骤如下:
(1)设定初始阈值M
(2)将图像按照阈值M分为两部分
(3)分别计算两部分图像的灰度平均值
(4)通过平均值计算新的阈值
(5)重复步骤(b)到步骤(d),当相邻两次迭代的差值小于设定值时。结束迭代,获得最终的阈值分割图像。
b.对步骤A获得的二值化图像,进行形态学处理,先进行开运算,填补阈值分割造成的椒盐噪声,在进行闭运算,使缺陷区域的像素得到生长。
c.将步骤B得到的缺陷的轮廓圈出并进行统计,得到最终的常规尺寸(直径大于0.5mm)瑕疵点的检测。
步骤(5):对细微尺寸(直径小于0.5mm且大于0.1mm)缺陷进行检测。
具体实施方式如下:
a.针对步骤(3)所述的经过算法增强后的图像,使用该图像与原始的待检测图像进行逐像素的相减运算,计算公式如下:
M(u,v)=|I(x,y)-D(x1,y1)|
其中M(u,v)是差分运算的结果,I(x,y)为增强后的导光板图像,D(x1,y1)是待检测原始图像,若相同则结果为0,不同则为1。
b.建立局部方差测量算子:
Figure BDA0002428495800000081
其中
Figure BDA0002428495800000082
P代表邻近点个数,R为邻域的半径,gP为邻域给每个像素点的灰度值
取R=5以获得理想的检测效率。
c.计算加权信息熵对步骤B中的局部方差进行修正:
Figure BDA0002428495800000083
其中:Pk为不同灰度在区域中出现的概率,其计算公式为:
Figure BDA0002428495800000084
n为局部区域内像素的总数,k为该区域内缺陷图像含有的r种不同的灰度值。
d.以步骤C中修正后的方差作为依据,进行图像的阈值分割,得到最终的细微尺寸(直径小于0.5mm且大于0.1mm)缺陷分割。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

1.一种基于机器视觉的LED导光板缺陷检测方法,其特征在于,
在有效光照结构中采集导光板多视角的原始图像;
对原始图像进行预处理,得到增强导光板ROI区域边缘的图像;
对边缘增强后的图像的导光板ROI区域进行定位并与背景区域进行分割,得到分割后的导光板图像;
对分割后的导光板图像进行光照影响消除和缺陷部位增强处理,得到缺陷部位增强后的图像;
对缺陷部位增强后的图像中常规尺寸的缺陷进行检测,确定最终的常规尺寸瑕疵点;
对缺陷部位增强后的图像中细微尺寸的缺陷进行检测,确定最终的细微尺寸瑕疵点。
2.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述采集采用双摄像头采集,其中一个摄像头位于导光板的陈列位的正上方,另一个摄像头位于导光板的陈列位的右上方,两摄像头到导光板的距离相同。
3.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述有效光照结构包括置于导光板(1)前侧的第一LED条形光源(2)、置于导光板(1)左右两侧的第二LED条形光源(4)。
导光板的陈列台的底面(3)采用黑色磨砂材料,底面(3)上放置全透明矩形玻璃块(5),导光板(1)水平放置于矩形玻璃块(5)上。
4.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述预处理的过程为:
对原始图像进行线性变换,对线性变换后的图像增强目标与背景对比度和图像亮度。
5.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述得到分割后的导光板图像的过程为:
对预处理后的图像使用canny算子进行边缘检测;
使用Hough变换对图像中的直线进行检测,并以导光板四边的长度作为标准剔除误检线;
提取检测的直线所包围的区域为导光板ROI区域。
6.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述得到缺陷部位增强后的图像的过程为:
将分割后的导光板图像变换为灰度图像;
对所述灰度图像进行下式中的一维离散小波变换,得到光照均匀化的图像;
对所述光照均匀化的图像,进行加权掩膜滤波,消除图像中的噪点,将图像划分为不同区域,计算每个区域对应的平均值和方差,将方差最小的区域进行卷积运算,得到滤波图像;
对得到滤波图像进行梯度锐化,得到缺陷部位增强后的图像。
7.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述确定最终的常规尺寸瑕疵点的过程为:
对缺陷部位增强后的图像采取自适应阈值分割算法进行二值化,得到二值化图像;
对所述二值化图像,先进行开运算,填补阈值分割造成的椒盐噪声,再进行闭运算,使缺陷区域的像素得到生长,得到缺陷的轮廓圈;
将所述缺陷的轮廓圈出并进行统计,得到最终的常规尺寸瑕疵点。
8.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述自适应阈值分割算法进行二值化的过程为:
(a)设定初始阈值M;
(b)将缺陷部位增强后的图像按照阈值M分为两部分;
(c)分别计算两部分图像的灰度平均值;
(d)通过平均值计算新的阈值;
(e)重复步骤(b)到步骤(d),当相邻两次迭代的差值小于设定值时,结束迭代,获得最终的阈值分割图像作为二值化图像。
9.根据权利要求1所述的基于机器视觉的LED导光板缺陷检测方法,其特征在于,所述确定最终的细微尺寸瑕疵点的过程为:
(1)将缺陷部位增强后的图像与原始的原始图像进行逐像素的相减运算,得到差分图像,计算公式如下:
M(u,v)=|I(x,y)-D(x1,y1)|
其中M(u,v)是差分运算的结果,I(x,y)为增强后的导光板图像,D(x1,y1)是原始图像,若相同则结果为0,不同则为1;
(2)对步骤(1)中得到的差分图像建立局部方差测量算子:
Figure FDA0002428495790000031
其中μ为邻域内所有像素点的平均灰度值,
Figure FDA0002428495790000032
P代表邻近点个数,R为邻域的半径,gP为邻域给每个像素点的灰度值;
(3)利用加权信息熵对步骤(2)中的局部方差进行修正:
Figure FDA0002428495790000033
其中HG为修正后的方差,Pk为不同灰度在区域中出现的概率,其计算公式为:
Figure FDA0002428495790000034
n为局部区域内像素的总数,k为该区域内缺陷图像含有的r种不同的灰度值,nk为缺陷区域所占像素的总数;
(4)以步骤(3)中修正后的方差作为依据,对步骤(1)得到的差分图像进行阈值分割,得到最终的细微尺寸瑕疵点。
CN202010228387.1A 2020-03-27 2020-03-27 一种基于机器视觉的led导光板缺陷检测方法 Active CN111257348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010228387.1A CN111257348B (zh) 2020-03-27 2020-03-27 一种基于机器视觉的led导光板缺陷检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010228387.1A CN111257348B (zh) 2020-03-27 2020-03-27 一种基于机器视觉的led导光板缺陷检测方法

Publications (2)

Publication Number Publication Date
CN111257348A true CN111257348A (zh) 2020-06-09
CN111257348B CN111257348B (zh) 2023-02-17

Family

ID=70953504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010228387.1A Active CN111257348B (zh) 2020-03-27 2020-03-27 一种基于机器视觉的led导光板缺陷检测方法

Country Status (1)

Country Link
CN (1) CN111257348B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724367A (zh) * 2020-06-16 2020-09-29 哈尔滨全感科技有限公司 一种基于图像方法的玻璃面板脱胶识别方法
CN113554080A (zh) * 2021-07-15 2021-10-26 长沙长泰机器人有限公司 一种基于机器视觉的无纺布瑕疵检测分类方法及系统
CN114495098A (zh) * 2022-01-30 2022-05-13 南水北调中线干线工程建设管理局 一种基于显微镜图像的盘星藻类细胞统计方法及系统
CN115272169A (zh) * 2022-05-26 2022-11-01 国网江苏省电力有限公司常州供电分公司 基于智能机器人的绝缘子检测方法和系统
CN116228769A (zh) * 2023-05-09 2023-06-06 和峻(广州)胶管有限公司 一种适用于钢丝编织管瑕疵检测的装置及检测方法
CN116309559A (zh) * 2023-05-17 2023-06-23 山东鲁玻玻璃科技有限公司 一种中硼硅玻璃生产瑕疵智能识别方法
CN117115197A (zh) * 2023-08-09 2023-11-24 幂光新材料科技(上海)有限公司 一种led灯珠电路板设计数据智能处理方法及系统
CN117422714A (zh) * 2023-12-18 2024-01-19 大陆汽车电子(济南)有限公司 装配检测方法、设备和存储介质
CN117115197B (zh) * 2023-08-09 2024-05-17 幂光新材料科技(上海)有限公司 一种led灯珠电路板设计数据智能处理方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016242A2 (en) * 2010-07-30 2012-02-02 Aureon Biosciences, Inc. Systems and methods for segmentation and processing of tissue images and feature extraction from same for treating, diagnosing, or predicting medical conditions
CN108335288A (zh) * 2018-01-18 2018-07-27 南京理工大学 基于视觉清晰度与轮廓提取的熔池图像异常检测方法
CN108830832A (zh) * 2018-05-15 2018-11-16 佛山市南海区广工大数控装备协同创新研究院 一种基于机器视觉的塑料筒表面缺陷检测算法
CN109141232A (zh) * 2018-08-07 2019-01-04 常州好迪机械有限公司 一种基于机器视觉的盘类铸件在线检测方法
CN109815807A (zh) * 2018-12-18 2019-05-28 浙江大学 一种基于边缘线分析和聚合通道特征的靠岸船舶检测方法
CN109948618A (zh) * 2019-03-05 2019-06-28 大连民族大学 一种远距离车牌识别的终端、系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016242A2 (en) * 2010-07-30 2012-02-02 Aureon Biosciences, Inc. Systems and methods for segmentation and processing of tissue images and feature extraction from same for treating, diagnosing, or predicting medical conditions
CN108335288A (zh) * 2018-01-18 2018-07-27 南京理工大学 基于视觉清晰度与轮廓提取的熔池图像异常检测方法
CN108830832A (zh) * 2018-05-15 2018-11-16 佛山市南海区广工大数控装备协同创新研究院 一种基于机器视觉的塑料筒表面缺陷检测算法
CN109141232A (zh) * 2018-08-07 2019-01-04 常州好迪机械有限公司 一种基于机器视觉的盘类铸件在线检测方法
CN109815807A (zh) * 2018-12-18 2019-05-28 浙江大学 一种基于边缘线分析和聚合通道特征的靠岸船舶检测方法
CN109948618A (zh) * 2019-03-05 2019-06-28 大连民族大学 一种远距离车牌识别的终端、系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贺振东: "基于反向P-M 扩散的钢轨表面缺陷视觉检测", 《自动化学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724367A (zh) * 2020-06-16 2020-09-29 哈尔滨全感科技有限公司 一种基于图像方法的玻璃面板脱胶识别方法
CN113554080A (zh) * 2021-07-15 2021-10-26 长沙长泰机器人有限公司 一种基于机器视觉的无纺布瑕疵检测分类方法及系统
CN114495098A (zh) * 2022-01-30 2022-05-13 南水北调中线干线工程建设管理局 一种基于显微镜图像的盘星藻类细胞统计方法及系统
CN114495098B (zh) * 2022-01-30 2023-04-18 中国南水北调集团中线有限公司 一种基于显微镜图像的盘星藻类细胞统计方法及系统
CN115272169B (zh) * 2022-05-26 2023-08-11 国网江苏省电力有限公司常州供电分公司 基于智能机器人的绝缘子检测方法和系统
CN115272169A (zh) * 2022-05-26 2022-11-01 国网江苏省电力有限公司常州供电分公司 基于智能机器人的绝缘子检测方法和系统
CN116228769B (zh) * 2023-05-09 2023-10-17 和峻(广州)胶管有限公司 一种适用于钢丝编织管瑕疵检测的装置及检测方法
CN116228769A (zh) * 2023-05-09 2023-06-06 和峻(广州)胶管有限公司 一种适用于钢丝编织管瑕疵检测的装置及检测方法
CN116309559B (zh) * 2023-05-17 2023-08-04 山东鲁玻玻璃科技有限公司 一种中硼硅玻璃生产瑕疵智能识别方法
CN116309559A (zh) * 2023-05-17 2023-06-23 山东鲁玻玻璃科技有限公司 一种中硼硅玻璃生产瑕疵智能识别方法
CN117115197A (zh) * 2023-08-09 2023-11-24 幂光新材料科技(上海)有限公司 一种led灯珠电路板设计数据智能处理方法及系统
CN117115197B (zh) * 2023-08-09 2024-05-17 幂光新材料科技(上海)有限公司 一种led灯珠电路板设计数据智能处理方法及系统
CN117422714A (zh) * 2023-12-18 2024-01-19 大陆汽车电子(济南)有限公司 装配检测方法、设备和存储介质
CN117422714B (zh) * 2023-12-18 2024-03-29 大陆汽车电子(济南)有限公司 装配检测方法、设备和存储介质

Also Published As

Publication number Publication date
CN111257348B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN111257348B (zh) 一种基于机器视觉的led导光板缺陷检测方法
CN108921176B (zh) 一种基于机器视觉的指针式仪表定位与识别方法
CN108460757B (zh) 一种手机TFT-LCD屏Mura缺陷在线自动检测方法
CN107255641B (zh) 一种针对自聚焦透镜表面缺陷进行机器视觉检测的方法
CN110288584B (zh) 基于机器视觉的陶瓷热浸镀铝表面缺陷检测方法及装置
CN112233116B (zh) 基于邻域决策与灰度共生矩阵描述的凹凸痕视觉检测方法
CN107664644B (zh) 一种基于机器视觉的物件表观自动检测装置及方法
CN107490582B (zh) 一种流水线工件检测系统
CN104792794A (zh) 基于机器视觉的光学薄膜表面缺陷检测方法
CN110648330B (zh) 摄像头玻璃的缺陷检测方法
KR20160054151A (ko) 웨이블릿 변환에서 마스크 필터링을 이용한 얼룩 결함 자동 검출 시스템 및 방법
CN104458764B (zh) 基于大景深条带图像投影的弯曲粗糙表面缺陷鉴别方法
CN115131354B (zh) 一种基于光学手段的实验室用塑料薄膜缺陷检测方法
CN113608378B (zh) 一种基于lcd制程的全自动缺陷检测方法和系统
CN116630813B (zh) 一种公路路面施工质量智能检测系统
CN113034474A (zh) 一种oled显示器晶圆图的测试方法
CN111972700A (zh) 烟支外观检测方法及其装置、设备、系统和介质
CN111652844B (zh) 一种基于数字图像区域增长的x射线缺陷检测方法及系统
Ma et al. An automatic detection method of Mura defects for liquid crystal display
CN115112682A (zh) 一种可视化的手机曲面玻璃检测装置和方法
CN108805854B (zh) 一种复杂环境下药片快速计数与完整性检测方法
CN115661110B (zh) 一种透明工件识别与定位的方法
Zhao et al. Research on statistical detection method of micro bubbles in transparent layer of quartz crucible based on image processing
CN113947598B (zh) 基于图像处理的塑料餐盒缺陷检测方法、装置及系统
Zhang et al. A LCD screen Mura defect detection method based on machine vision

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant