CN111255638B - 一种风力发电机组的塔筒载荷监测方法 - Google Patents
一种风力发电机组的塔筒载荷监测方法 Download PDFInfo
- Publication number
- CN111255638B CN111255638B CN202010206832.4A CN202010206832A CN111255638B CN 111255638 B CN111255638 B CN 111255638B CN 202010206832 A CN202010206832 A CN 202010206832A CN 111255638 B CN111255638 B CN 111255638B
- Authority
- CN
- China
- Prior art keywords
- load
- generating set
- value
- wind generating
- electric signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012937 correction Methods 0.000 claims abstract description 12
- 230000005484 gravity Effects 0.000 claims abstract description 12
- 238000004088 simulation Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0264—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
- F03D7/0268—Parking or storm protection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/043—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
- F03D7/046—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/84—Modelling or simulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/329—Azimuth or yaw angle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/331—Mechanical loads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05B2270/808—Strain gauges; Load cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Wind Motors (AREA)
Abstract
本发明公开了一种风力发电机组的塔筒载荷监测方法,基于原理:风力发电机组在小风待机状态下,塔筒受到的载荷主要来自机舱和叶片等的重力,因此,机舱偏航一圈时,塔筒载荷会形成一个相对规则的正弦波信号,不同机舱方位角对应的载荷是恒定的,即风力发电机组在运行一段时间停机后,并且风速与当时偏航时的风速基本一致时,塔筒的载荷值能够根据机舱方位角计算出来;其中在实施该方法前需在塔筒内壁安装应变片。本发明通过第一次的标定,即可自动判断信号是否发生漂移,如有漂移,可不断自动修正后续的信号,无需多次标定,无需人员介入,进而可节省大量的人工成本,并且,自动修正也是在小风待机状态下完成,根本不影响风力发电机组的发电量。
Description
技术领域
本发明涉及风力发电机组塔筒载荷监测的技术领域,尤其是指一种风力发电机组的塔筒载荷监测方法。
背景技术
业内习知,风力发电机组是大型和复杂的机械部件,为确保安全,需实时进行载荷监测,例如,监测塔筒和叶片的载荷,如出现载荷异常时,需及时发出报警信号并停机,工作人员及时赶往现场检查异常情况,确保机组安全运行。
载荷监测一般采用应变片或光纤应变计等传感器,将传感器安装在塔筒内壁和叶片根部,载荷信号接入风力发电机组控制系统,传感器刚安装完成时,需进行信号标定,以确定电信号与载荷值之间的转换关系。塔筒载荷的标定一般是采用偏航的方法,在4m/s以下风速状态下,顺时针偏航2圈,逆时针偏航2圈,找到不同偏航方位角对应的电信号值,再结合机舱重量重心等参数计算出载荷值的对应关系;叶片载荷的标定方法类似,通过变桨操作,将叶片桨距角控制在0度和90度各空转2圈,找到波峰波谷值,再结合叶片的重量重心等参数,计算出载荷值的对应关系。将上述对应关系写入风力发电机组控制系统,风力发电机组控制系统即可根据采集到的电信号值实时转换成载荷值。然后通过仿真或经验,设置塔筒和叶片的载荷上限阈值,当风力发电机组在不同风况下运行时,当对比发现实时监测值超过阈值时,风力发电机组控制系统发出报警信号并停机。
监测过程一般持续3-6个月甚至是风力发电机组的全生命周期20年,期间的环境温度等外部环境条件可能发生很大的变化,导致监测过程中,经常出现传感器信号随温度或某些条件发生整体漂移的情况,导致计算的对应载荷不准确,偏大或偏小,如果信号漂移造成计算载荷偏大,则导致经常误报警停机,损失发电量,如果信号漂移造成计算载荷偏小,则可能导致实际载荷超过了载荷阈值时仍不报警停机,带来很大的运行风险。
因此,需要对载荷信号定期标定,定期修正载荷计算的对应关系,但因为信号发生漂移的时间周期不确定,所以不确定多长时间标定一次合适,下次标定时,信号可能已经漂移了好长时间,并且标定需要人员在风力发电机组现场操作,导致工作量很大,尤其对于海上风力发电机组,出海检查和标定的人工成本非常高。
综上所述,上面描述的现有技术存在的问题是:
1、信号不定期漂移而工作人员无法知晓,造成监测值不准确,影响判断,要么因误报警停机导致损失发电量,要么因该报警而未报警带来运行风险。
2、多次标定的人工成本非常高。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提出了一种高效、可靠、人工成本低的风力发电机组的塔筒载荷监测方法,能够实现对塔筒载荷的实时准确监测。
为实现上述目的,本发明所提供的技术方案为:一种风力发电机组的塔筒载荷监测方法,基于以下原理:
风力发电机组在小风待机状态下,塔筒受到的载荷主要来自机舱和叶片的重力,因此,机舱偏航一圈时,塔筒载荷会形成一个相对规则的正弦波信号,不同机舱方位角对应的载荷是恒定的,即风力发电机组在运行一段时间停机后,并且风速与当时偏航时的风速一致时,塔筒的载荷值能够根据机舱方位角计算出来;
基于上述原理,该方法是首先在塔筒内壁安装有应变片,应变片接入风力发电机组的控制系统,应变片安装完毕后,在小风状态下,机舱偏航一圈,在叶片和机舱的重心作用下,应变片将形成类似正弦波的载荷电信号,此时,记录下波峰值Y2和波谷值Y1,并计算出机舱方位角x与载荷电信号y的对应关系,并写入风力发电机组的控制系统;其中,机舱方位角x与载荷电信号y的对应关系为:y=((Y2-Y1)/2)*sin(x/360*2π)+(Y2-Y1)/2)+Y1;
然后,根据叶片和机舱的重量和重心,计算出载荷电信号与载荷之间的关系;
接着,根据仿真或经验值,在风力发电机组的控制系统中设定塔筒载荷上限阈值,当风力发电机组在运行过程中,如果实时监测到的载荷值超过设定阈值时,及时发出载荷超限报警信号,并停机;
接着,待风力发电机组再次处于小风待机状态时,进入载荷电信号y是否发生漂移的判断程序,根据待机时的机舱方位角x,以及上述机舱方位角x与载荷电信号y的对应公式,计算出此时的理论载荷电信号值,将该值与实时电信号值进行对比,如果两者偏差超过±5%,则认为载荷电信号y发生了漂移,发出漂移报警,并实时修正波峰值Y2和波谷值Y1,修正公式为:
Y1_new=Y1+y_new-y
Y2_new=Y2+y_new-y
式中,y_new为实时电信号值,Y1_new为修正后的波谷值,Y2_new为修正后的波峰值;通过对波峰值Y2和波谷值Y1的修正,间接修正了机舱方位角x与载荷电信号y的对应公式;
最后,待风力发电机组重新运行时,将按最新的对应关系去计算和对比载荷阈值,从而实现对塔筒载荷的实时准确监测。
进一步,为避免频繁进入修正程序,设定2次修正的时间间隔为48小时。
进一步,所述小风是指风速小于4m/s。
本发明与现有技术相比,具有如下优点与有益效果:
本发明方法通过第一次的标定,即可自动判断信号是否发生漂移,如有漂移,可不断自动修正后续的信号,无需多次标定,无需人员介入,进而可节省大量的人工成本,并且,自动修正也是在小风待机状态下完成,根本不影响风力发电机组的发电量,操作简单方便,具有实际应用价值,值得推广。
附图说明
图1为风力发电机组的侧视图。
图2为风力发电机组的俯视图。
图3为叶片正视图。
图4为载荷监测流程图。
图5为载荷监测曲线图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
参见图1至图3所示,风力发电机组(可简称为风机)主要由叶片1、机舱2、塔筒3、控制系统6组成,叶片1在风力作用下旋转,塔筒3的载荷将随着风速变化而变化。
本实施例所提供的风力发电机组的塔筒载荷监测方法,具体是基于以下原理:
风力发电机组在小风待机状态下,塔筒受到的载荷主要来自机舱和叶片等的重力,因此,机舱偏航一圈时,塔筒载荷会形成一个相对规则的正弦波信号,不同机舱方位角对应的载荷是恒定的,即风力发电机组在运行一段时间停机后,并且风速与当时偏航时的风速基本一致时,塔筒的载荷值可根据机舱方位角计算出来。
基于上述原理,该方法实施需要先在在塔筒3内壁安装有应变片5,应变片5接入风力发电机组的控制系统6,控制系统6可控制机组的启停机。
参见图4所示,应变片5安装完毕后,在风速小于4m/s时,将机舱2顺时针偏航一圈,在叶片1和机舱2的重心4的作用下,应变片5将形成类似正弦波的载荷电信号,记录下波峰值Y2和波谷值Y1,并计算出机舱方位角x与载荷电信号y的对应关系为:
y=((Y2-Y1)/2)*sin(x/360*2π)+(Y2-Y1)/2)+Y1
根据叶片1和机舱2的重量和重心等参数,计算出载荷电信号与载荷之间的关系。
根据仿真或经验值,在控制系统6中设定塔筒载荷上限阈值,当风力发电机组在运行过程中,如果实时监测到的载荷值超过设定阈值时,及时发出载荷超限报警信号,并停机。
待风速再次小于4m/s并且风力发电机组处于待机状态时,进入载荷电信号y是否发生漂移的判断程序,根据待机时的机舱方位角x,根据上述机舱方位角x与载荷电信号y的对应公式,计算出此时的理论载荷电信号值,将该值与实时电信号值进行对比,参见图5所示,如果两者偏差超过±5%,则认为载荷电信号y发生了漂移,发出漂移报警,并实时修正波峰值Y2和波谷值Y1,修正公式为:
Y1_new=Y1+y_new-y
Y2_new=Y2+y_new-y
式中,y_new为实时电信号值,Y1_new为修正后的波谷值,Y2_new为修正后的波峰值;通过对波峰值Y2和波谷值Y1的修正,间接修正了机舱方位角x与载荷电信号y的对应公式。
为避免频繁进入修正程序,可设定2次修正的时间间隔为48小时。
最后,待风力发电机组重新运行时,将按最新的对应关系去计算和对比载荷阈值,从而实现对塔筒载荷的实时准确监测。
备注:叶片1载荷的监测原理跟上述塔筒载荷监测原理类似。
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。
Claims (2)
1.一种风力发电机组的塔筒载荷监测方法,其特征在于,基于以下原理:
风力发电机组在小风待机状态下,塔筒受到的载荷主要来自机舱和叶片的重力,因此,机舱偏航一圈时,塔筒载荷会形成一个相对规则的正弦波信号,不同机舱方位角对应的载荷是恒定的,即风力发电机组在运行一段时间停机后,并且风速与当时偏航时的风速一致时,塔筒的载荷值能够根据机舱方位角计算出来,其中,所述小风是指风速小于4m/s;
基于上述原理,该方法是首先在塔筒内壁安装有应变片,应变片接入风力发电机组的控制系统,应变片安装完毕后,在小风状态下,机舱偏航一圈,在叶片和机舱的重心作用下,应变片将形成类似正弦波的载荷电信号,此时,记录下波峰值Y2和波谷值Y1,并计算出机舱方位角x与载荷电信号y的对应关系,并写入风力发电机组的控制系统;其中,机舱方位角x与载荷电信号y的对应关系为:y=((Y2-Y1)/2)*sin(x/360*2π)+(Y2-Y1)/2)+Y1;
然后,根据叶片和机舱的重量和重心,计算出载荷电信号与载荷之间的关系;
接着,根据仿真或经验值,在风力发电机组的控制系统中设定塔筒载荷上限阈值,当风力发电机组在运行过程中,如果实时监测到的载荷值超过设定阈值时,及时发出载荷超限报警信号,并停机;
接着,待风力发电机组再次处于小风待机状态时,进入载荷电信号y是否发生漂移的判断程序,根据待机时的机舱方位角x,以及上述机舱方位角x与载荷电信号y的对应公式,计算出此时的理论载荷电信号值,将该值与实时电信号值进行对比,如果两者偏差超过±5%,则认为载荷电信号y发生了漂移,发出漂移报警,并实时修正波峰值Y2和波谷值Y1,修正公式为:
Y1_new=Y1+y_new-y
Y2_new=Y2+y_new-y
式中,y_new为实时电信号值,Y1_new为修正后的波谷值,Y2_new为修正后的波峰值;通过对波峰值Y2和波谷值Y1的修正,间接修正了机舱方位角x与载荷电信号y的对应公式;
最后,待风力发电机组重新运行时,将按最新的对应关系去计算和对比载荷阈值,从而实现对塔筒载荷的实时准确监测。
2.根据权利要求1所述的一种风力发电机组的塔筒载荷监测方法,其特征在于:为避免频繁进入修正程序,设定2次修正的时间间隔为48小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010206832.4A CN111255638B (zh) | 2020-03-23 | 2020-03-23 | 一种风力发电机组的塔筒载荷监测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010206832.4A CN111255638B (zh) | 2020-03-23 | 2020-03-23 | 一种风力发电机组的塔筒载荷监测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111255638A CN111255638A (zh) | 2020-06-09 |
CN111255638B true CN111255638B (zh) | 2021-01-26 |
Family
ID=70943251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010206832.4A Active CN111255638B (zh) | 2020-03-23 | 2020-03-23 | 一种风力发电机组的塔筒载荷监测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111255638B (zh) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0995904A3 (de) * | 1998-10-20 | 2002-02-06 | Tacke Windenergie GmbH | Windkraftanlage |
US7175389B2 (en) * | 2004-06-30 | 2007-02-13 | General Electric Company | Methods and apparatus for reducing peak wind turbine loads |
DE112007001675A5 (de) * | 2006-05-15 | 2009-04-16 | Igus - Innovative Technische Systeme Gmbh | Verfahren zur Überwachung der Beanspruchung von Rotorblättern von Windkraftanlagen |
DE102006036157B4 (de) * | 2006-08-01 | 2016-09-15 | Senvion Gmbh | Kalibrierverfahren |
US20090246019A1 (en) * | 2007-05-04 | 2009-10-01 | Mark Volanthen | Wind turbine monitoring |
US8360722B2 (en) * | 2010-05-28 | 2013-01-29 | General Electric Company | Method and system for validating wind turbine |
US8222760B2 (en) * | 2010-06-29 | 2012-07-17 | General Electric Company | Method for controlling a proximity sensor of a wind turbine |
ES2416139B1 (es) * | 2011-05-16 | 2014-07-09 | Gamesa Innovation & Technology S.L. | Método de ensayo para palas de aerogeneradores |
EP2615303B1 (en) * | 2012-01-12 | 2014-12-31 | ALSTOM Renewable Technologies | Calibration of blade load sensors |
DK2674618T3 (en) * | 2012-06-14 | 2016-08-15 | Siemens Ag | Nacelle Test Device |
US10280897B2 (en) * | 2015-12-10 | 2019-05-07 | General Electric Company | Methods and systems for controlling a wind turbine |
CN206290378U (zh) * | 2016-12-21 | 2017-06-30 | 北京金风科创风电设备有限公司 | 风力发电机组监测系统及风力发电机组 |
CN108678908B (zh) * | 2018-08-31 | 2020-03-17 | 北京金风科创风电设备有限公司 | 偏航塔筒段、塔筒及风力发电机组 |
-
2020
- 2020-03-23 CN CN202010206832.4A patent/CN111255638B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111255638A (zh) | 2020-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109812390B (zh) | 一种风力发电机组的叶片净空监测方法 | |
US10422319B2 (en) | Control method and system for wind turbines | |
EP2588755B1 (en) | Calibration of wind turbine sensor | |
US9822762B2 (en) | System and method for operating a wind turbine | |
EP3645866B1 (en) | Computer-implemented method for re-calibrating at least one yaw-angle of a wind turbine, respective system, computer-implemented method for wind park optimization, and respective wind park | |
US8319364B2 (en) | Stress analysis device for wind-turbine structure, computer-readable storage medium storing stress analysis program, and wind turbine generator system | |
US20190178231A1 (en) | Methods of operating a wind turbine | |
US11181096B2 (en) | Control method for a wind turbine | |
AU2011253963A1 (en) | Method and arrangement for detecting a blade pitch angle unbalance of a rotor blade system of a wind turbine | |
CN207598432U (zh) | 监测风力发电机叶片弯度的装置 | |
US11242841B2 (en) | System and method for controlling a wind turbine based on a collective pitch-offset | |
US10823141B2 (en) | System and method for reducing loads during an idling or parked state of a wind turbine with a stuck rotor blade | |
CN103161667A (zh) | 一种风电机组载荷的控制系统及其控制方法 | |
CN111287911A (zh) | 一种风电机组疲劳载荷的预警方法和系统 | |
CN112324615B (zh) | 一种风力发电机组结冰控制方法、系统及相关组件 | |
CN113153633A (zh) | 一种风电机组风向仪静态偏差校准方法 | |
CN111255638B (zh) | 一种风力发电机组的塔筒载荷监测方法 | |
EP4194689A1 (en) | System and method for controlling blade pitch of wind turbine rotor blades in an idling state of the rotor hub | |
EP4194688A1 (en) | System and method for controlling blade pitch on wind turbine rotor blades to reduce vibrations and limit loads in a locked condition of the turbine rotor | |
TWI707086B (zh) | 風力發電廠控制系統及風力發電廠的控制方法 | |
CN212563523U (zh) | 适用于海上风电场的含抗台风模式的叶轮控制系统 | |
DK201670502A1 (en) | Wind turbine and a method of operating a wind turbine | |
CN111946558B (zh) | 监测风力涡轮机的支撑结构的结构完整性的方法、系统以及风力涡轮机 | |
US12037984B2 (en) | System and method for controlling blade pitch of wind turbine rotor blades to reduce vibrations and limit loads in a locked condition of the rotor hub | |
CN115614232A (zh) | 风力发电机组叶片净空双层监测和叶片保护装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |