CN111255584B - 发动机系统、实际新鲜空气量的计算方法和车辆 - Google Patents

发动机系统、实际新鲜空气量的计算方法和车辆 Download PDF

Info

Publication number
CN111255584B
CN111255584B CN201811452939.6A CN201811452939A CN111255584B CN 111255584 B CN111255584 B CN 111255584B CN 201811452939 A CN201811452939 A CN 201811452939A CN 111255584 B CN111255584 B CN 111255584B
Authority
CN
China
Prior art keywords
air
egr
engine
calculating
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811452939.6A
Other languages
English (en)
Other versions
CN111255584A (zh
Inventor
崔亚彬
李树会
宋栋来
刘义佳
张士伟
关松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Great Wall Motor Co Ltd
Original Assignee
Great Wall Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Great Wall Motor Co Ltd filed Critical Great Wall Motor Co Ltd
Priority to CN201811452939.6A priority Critical patent/CN111255584B/zh
Publication of CN111255584A publication Critical patent/CN111255584A/zh
Application granted granted Critical
Publication of CN111255584B publication Critical patent/CN111255584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters

Abstract

一种发动机系统、实际新鲜空气量的计算方法和车辆,发动机系统包括:第一空气流量计、第二空气流量计、进气压力传感器、氧传感器、EGR阀,EGR阀的两端连接有压差传感器;第一空气流量计、第二空气流量计、进气压力传感器、EGR阀、压差传感器均与ECU通讯连接;其中ECU包括存储有第一计算机程序的可读存储介质,第一计算机程序用于根据第一空气流量计检测的流量m1、第二空气流量计检测的流量m2、进气压力传感器检测的压力p、EGR阀的开度、压差传感器检测的压差ΔP、氧传感器检测的氧含量计算发动机气缸的实际新鲜空气量。本发明的发动机系统,可以精确计算出具有低压EGR系统发动机的新鲜空气量,保证了发动机当量比燃烧,有益于排放和油耗。

Description

发动机系统、实际新鲜空气量的计算方法和车辆
技术领域
本发明涉及发动机技术领域,具体而言,涉及一种发动机系统、具有该发动机系统的车辆、发动机系统的实际新鲜空气量的计算方法和具有该计算方法的车辆。
背景技术
环境问题,能源危机,苛刻的排放及油耗法规的出台,为内燃机行业提出了严峻的挑战。降油耗、降排放是目前最核心的两个问题。
在上述背景下,各车企及研究机构提出低压EGR系统应用于汽油机,将废气由催化器后引出,引入到进气中冷以前,用冷却后的废气引入缸内,降低缸内工质的温度及比热比,降低中小负荷的泵气损失,在大负荷引入EGR后,可以降低压缩终点温度,从而可以向前提点火角,从而提高高负荷的热效率。
所述发动机EGR系统为外部EGR,其是将催化器后的废气引到进气增压器前,需要经过增压器,进气中冷器以及节气门进入到发动机缸内。EGR从引出到引入管路较长,因此存在延迟,以及不能精确测出EGR率,以及真实新鲜空气量的问题。
首先不同负荷对于EGR率的需求不同,图5,EGR对A区域的小负荷对燃烧起到负面作用,在增加EGR的小负荷区域以,会造成燃烧不稳定,并且有一定的失火的风险。但小负荷增加EGR可以降低泵气损失。在B区域中等负荷,需要量比较大的EGR率抑制爆震,降低油耗,在C区域高负荷及功率点,需要一定的EGR率,这样可以进一步降低外特性的爆震,极大的提升动力性,在功率点降低排气温度,提升功率。为了保证发动机不同负荷能够达到相应的动力性及油耗的目标,需要控制不同负荷下实际进入缸内的EGR率等于目标EGR率。
其次,发动机后处理采用的是三元催化器,为了保证催化器效率,必须保证发动机空气与燃油的比例为14.7,也就是Lambda为1。因此,精确控制实际进入缸内的EGR率很有必要。
精确控制实际进入缸内的EGR率需要能够计算出真实的新鲜空气量,但是相关技术中,新鲜空气量的计算结构与实际值差距较大。
发明内容
有鉴于此,本发明旨在提出一种
为达到上述目的,本发明的技术方案是这样实现的:
一种发动机系统,包括:压气机,所述压气机的进口端设有总进气管,所述总进气管设有第一空气流量计;进气中冷器,所述进气中冷器的进口端与所述压气机的出口端相连,所述进气中冷器的出口端与进气歧管的入口端之间顺次设有第二空气流量计、节气门、进气压力传感器;涡轮机和催化器,气缸的排气管、所述涡轮机、所述催化器顺次布置,且所述气缸的排气管与所述涡轮机之间设有氧传感器;EGR管路,所述EGR管路连接在所述催化器的出气端与所述压气机的进口端之间,所述EGR管路上设有EGR冷却器和EGR阀,所述EGR阀的两端连接有压差传感器;ECU,所述第一空气流量计、所述第二空气流量计、所述进气压力传感器、所述EGR阀、所述压差传感器均与所述ECU通讯连接;其中所述ECU包括存储有第一计算机程序的可读存储介质,所述第一计算机程序用于根据所述第一空气流量计检测的流量m1、所述第二空气流量计检测的流量m2、所述进气压力传感器检测的压力p、所述EGR阀的开度、所述压差传感器检测的压差ΔP、所述氧传感器检测的氧含量计发动机气缸的实际新鲜空气量。
进一步地,所述第一计算机程序包括:根据公式e1=(m2-m1)/m2,计算基础EGR率e1;根据公式m4=pVM/(RT),计算发动机的总进气量m4,其中V为发动机排量,R为常数,T为进气的绝对温度,M为平均摩尔质量;根据公式mx1=m4*(1-e1),计算第一新鲜空气量mx1;根据公式mx2=mx1*a1*a2,计算发动机气缸的实际新鲜空气量mx2,其中a1为第一气量修正系数,a2为第二气量修正系数。
进一步地,所述第一计算机程序包括:根据公式m3=m4*e1,计算EGR流量m3;根据公式d=(m5-m3)/m3,计算EGR率的偏差率d,其中m5为EGR阀处的流量;根据EGR率的偏差率d获得第一气量修正系数a1。
进一步地,所述第一计算机程序包括:根据氧传感器检测的氧含量测出发动机气缸的实际Lambda,根据Lambda获得第二气量修正系数a2。
进一步地,所述ECU设置为根据所述实际新鲜空气量控制喷油器以进行当量比喷油。
相对于现有技术,本发明所述的发动机系统具有以下优势:
1)可以精确计算出具有低压EGR系统发动机的新鲜空气量,保证了发动机当量比燃烧,有益于排放和油耗,且能够更加精确控制EGR率。
本发明的另一目的在于提出一种车辆,具有如上述任一种所述的发动机系统。
所述车辆与上述的发动机系统相对于现有技术所具有的优势相同,在此不再赘述。
本发明的再一目的在于提出一种发动机系统的实际新鲜空气量的计算方法,包括:根据公式e1=(m2-m1)/m2,计算基础EGR率e1,其中,m1为总进气管处的空气流量,m2为进气中冷器的出口端的流量;根据公式m4=pVM/(RT),计算发动机的总进气量m4,其中,p为进气歧管前端的进气压力,V为发动机排量,R为常数,T为进气的绝对温度,M为平均摩尔质量;根据公式m3=m4*e1,计算EGR流量m3;根据公式mx1=m4*(1-e1),计算第一新鲜空气量mx1;根据公式mx2=mx1*a1*a2,计算发动机气缸的实际新鲜空气量mx2,其中a1为第一气量修正系数,a2为第二气量修正系数;根据公式d=(m5-m3)/m3,计算EGR率的偏差率d,其中m5为EGR阀处的流量,根据EGR率的偏差率d获得第一气量修正系数a1;根据氧传感器检测的氧含量测出发动机气缸的实际Lambda,根据Lambda获得第二气量修正系数a2。
相对于现有技术,本发明所述的计算方法具有以下优势:
1)可以精确计算出具有低压EGR系统发动机的新鲜空气量,保证了发动机当量比燃烧,有益于排放和油耗,且能够更加精确控制EGR率。
本发明的又一目的在于提出一种车辆,包括存储有第一计算机程序的可读存储介质,所述第一计算机程序包括上述计算方法。
所述车辆与上述的计算方法相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的发动机系统的结构原理图;
图2为本发明实施例所述的计算方法的逻辑图;
图3为第一气量修正系数的计算逻辑图;
图4为第二气量修正系数的计算逻辑图;
图5为EGR率分布区域图。
附图标记说明:
第一空气流量计1,压气机2,进气中冷器3,第二空气流量计4,节气门5,进气压力传感器6,喷油器7,氧传感器8,涡轮机9,催化器10,EGR冷却器11,EGR阀12,压差传感器13,单向阀14。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
如图1所示,本发明实施例的发动机系统为包括低压EGR系统,发动机系统包括:压气机2、进气中冷器3、气缸、涡轮机9、催化器10、EGR管路、ECU。
压气机2的进口端设有总进气管,总进气管设有第一空气流量计1,压气机2的出口端与进气中冷器3的进口端相连,进气中冷器3的出口端与进气歧管的入口端之间顺次设有第二空气流量计4、节气门5、进气压力传感器6,气缸的排气管、涡轮机9、催化器10顺次布置,催化器10可以为三效催化器,气缸的排气管与涡轮机9之间设有氧传感器8,EGR管路连接在催化器10的出气端与压气机2的进口端之间,EGR管路的取气端设置在催化器10之后,EGR引入到压气机2的前端,与新鲜空气混合后进入压气机2,EGR管路上设有EGR冷却器11和EGR阀12,EGR阀12的两端连接有压差传感器13,压差传感器13的出口端与EGR阀12的出口端之间设有单向阀14,且单向阀14从压差传感器13的出口端到EGR管路单向导通。
第一空气流量计1、第二空气流量计4、进气压力传感器6、EGR阀12、压差传感器13均与ECU通讯连接,ECU包括存储有第一计算机程序的可读存储介质,第一计算机程序用于根据第一空气流量计1检测的流量m1、第二空气流量计4检测的流量m2、进气压力传感器6检测的压力p、EGR阀12的开度、压差传感器13检测的压差ΔP、氧传感器8检测的氧含量计发动机气缸的实际新鲜空气量。ECU设置为根据实际新鲜空气量控制喷油器7以进行当量比喷油。
上述各个传感器的检测值输入到ECU后,可以计算出发动机气缸的实际新鲜空气量mx2,根据实际新鲜空气量mx2可以控制喷油器7以进行当量比喷油。
如图2所示,第一计算机程序包括:根据公式e1=(m2-m1)/m2,计算基础EGR率e1。由第一空气流量计1测出新鲜空气流量m1,由第二空气流量计4测得EGR加新鲜空气量的总空气量m2;m2-m1得到EGR的流量,再比上m2得到基础EGR率e1。
第一计算机程序包括:根据公式m4=pVM/(RT),计算发动机的总进气量m4,其中V为发动机排量,R为常数,T为进气的绝对温度,M为平均摩尔质量。根据进气歧管压力传感器6测得一个进气压力,根据进气温度及压力由进气计算模块计算出发动机总进气量m4,m4是根据理想气体状态方程计算而来(理想气体状态方程为P*V=nRT,其中P为进气压力,V为发动机排量,R为常数8.314,T为绝对温度,n摩尔数,M为气体摩尔质量),是一个发动机进气量的计算值,由于靠近进气歧管,所以默认为真实气量。
第一计算机程序包括:根据公式m3=m4*e1,计算EGR流量m3,根据公式mx1=m4*(1-e1),计算第一新鲜空气量mx1,根据公式mx2=mx1*a1*a2,计算发动机气缸的实际新鲜空气量mx2,其中a1为第一气量修正系数,a2为第二气量修正系数。
总进气量m4乘以基础EGR率e1,得到EGR流量计算值m3,m4乘以(1-e1)得到第一新鲜空气量mx1;第一新鲜空气量mx1乘以第一气量修正系数a1,乘以第二气量修正系数a2得到实际新鲜空气量mx2;实际新鲜空气量mx2默认为真实缸内新鲜气量,根据此气量mx2进行当量比喷油(空气与燃油质量比为14.7)。
如图3所示,第一计算机程序包括:根据公式d=(m5-m3)/m3,计算EGR率的偏差率d,其中m5为EGR阀12处的流量,将压差ΔP和EGR阀12的开度输入阀口流量模型map得到m5,将偏差率d输入修正系数map1,得到第一气量修正系数a1。
可以理解的是,第一气量修正系数a1为,根据EGR阀12处得到的EGR率与计算得到的EGR率之差进行修正的修正系数。EGR阀12并行设置有压差传感器13,可测得EGR阀12的前后压力差,根据压力差及EGR阀12的开度,输入阀口流量模型map计算得到此处的EGR真实流量m5,阀口流量模型map根据公式计算能得出,并根据试验作修正标定,此流量减去EGR流量的计算值m3,再比上m3,得到EGR率的偏差率d,此偏差率d输入修正系数map1得到第一气量修正系数a1。
由于EGR管路的延迟作用,EGR阀12到进气歧管部分EGR率会有一定延迟,可能变大或者变小,造成基础EGR率e1与实际EGR率有一定差异,造成实际新鲜气量计算不准确,需要进行修正;气量修正系数map1由EGR率差值的比率和发动机进气量决定,可根据试验进行标定,横坐标为EGR率差值的比率,纵坐标为发动机进气量,内容为对于气量的修正系数map1;其目的为根据当前发动机EGR率的差异率以及发动机进气量,对实际气量进行修正。
如图4所示,第一计算机程序包括:根据氧传感器8检测的氧含量测出发动机气缸的实际Lambda,将(Lambda-1)输入到修正系数map2,得到第二气量修正系数a2。
可以理解的是,第二气量修正系数a2为根据氧传感器8所测得的燃烧当量比Lambda的值,对新鲜气量进行修正,由于新鲜气量计算与真实进入缸内的新鲜气量的值的差异,造成,当量比喷油后,缸内实际当量比并不是1,所以可以通过氧传感器8测出缸内实际Lambda,用缸内实际lambda减去1,之后输入修正系数map2,进行查表得到修正系数2,修正系数map2也为试验标定得出,此修正系数map2横坐标为当量比之差,有正有负,纵坐标为发动机进气量,内容为气量修正系数量,当实际测得当量比小于1时,修正系数2小于1,当实际测得当量比大于1时,修正系数2大于1。
根据本发明实施例的发动机系统,可以精确计算出具有低压EGR系统发动机的新鲜空气量,保证了发动机当量比燃烧,有益于排放和油耗,且能够更加精确控制EGR率。
本发明还公开了一种具有上述发动机系统的车辆,该车辆可以精确计算出具有低压EGR系统发动机的新鲜空气量,保证了发动机当量比燃烧,有益于排放和油耗,且能够更加精确控制EGR率。
本发明还公开了一种发动机系统的实际新鲜空气量的计算方法。
如图2-图4所示,本发明实施例的发动机系统的实际新鲜空气量的计算方法包括:根据公式e1=(m2-m1)/m2,计算基础EGR率e1,其中,m1为总进气管处的空气流量,m2为进气中冷器3的出口端的流量;根据公式m4=pVM/(RT),计算发动机的总进气量m4,其中,p为进气歧管前端的进气压力,V为发动机排量,R为常数,T为进气的绝对温度,M为平均摩尔质量;根据公式m3=m4*e1,计算EGR流量m3;根据公式mx1=m4*(1-e1),计算第一新鲜空气量mx1;根据公式mx2=mx1*a1*a2,计算发动机气缸的实际新鲜空气量mx2,其中a1为第一气量修正系数,a2为第二气量修正系数;将压差ΔP和EGR阀12的开度输入阀口流量模型map得到m5,根据公式d=(m5-m3)/m3,计算EGR率的偏差率d,其中m5为EGR阀12处的流量,将偏差率d输入修正系数map1,得到第一气量修正系数a1;根据氧传感器8检测的氧含量测出发动机气缸的实际Lambda,将(Lambda-1)输入到修正系数map2,得到第二气量修正系数a2。
上述计算方法可以依靠上述发动机系统的实施例来实现。
由第一空气流量计1测出新鲜空气流量m1,由第二空气流量计4测得EGR加新鲜空气量的总空气量m2;m2-m1得到EGR的流量,再比上m2得到基础EGR率e1。
根据进气歧管压力传感器6测得一个进气压力,根据进气温度及压力由进气计算模块计算出发动机总进气量m4,m4是根据理想气体状态方程计算而来(理想气体状态方程为P*V=nRT,其中P为进气压力,V为发动机排量,R为常数8.314,T为绝对温度,n摩尔数,M为气体摩尔质量),是一个发动机进气量的计算值,由于靠近进气歧管,所以默认为真实气量。
总进气量m4乘以基础EGR率e1,得到EGR流量计算值m3,m4乘以(1-e1)得到第一新鲜空气量mx1;第一新鲜空气量mx1乘以第一气量修正系数a1,乘以第二气量修正系数a2得到实际新鲜空气量mx2;实际新鲜空气量mx2默认为真实缸内新鲜气量,根据此气量mx2进行当量比喷油(空气与燃油质量比为14.7)。
如图3所示,第一气量修正系数a1为,根据EGR阀12处得到的EGR率与计算得到的EGR率之差进行修正的修正系数。EGR阀12并行设置有压差传感器13,可测得EGR阀12的前后压力差,根据压力差及EGR阀12的开度,输入阀口流量模型map计算得到此处的EGR真实流量m5,此流量减去EGR流量的计算值m3,再比上m3,得到EGR率的偏差率d,此偏差率d输入修正系数map1得到第一气量修正系数a1。
由于EGR管路的延迟作用,EGR阀12到进气歧管部分EGR率会有一定延迟,可能变大或者变小,造成基础EGR率e1与实际EGR率有一定差异,造成实际新鲜气量计算不准确,需要进行修正;气量修正系数map1,横坐标为EGR率差值的比率,纵坐标为发动机进气量,内容为对于气量的修正系数1;其目的为根据当前发动机EGR率的差异率以及发动机进气量,对实际气量进行修正。
如图4所示,第二气量修正系数a2为根据氧传感器8所测得的燃烧当量比Lambda的值,对新鲜气量进行修正,由于新鲜气量计算与真实进入缸内的新鲜气量的值的差异,造成,当量比喷油后,缸内实际当量比并不是1,所以可以通过氧传感器8测出缸内实际Lambda,用缸内实际lambda减去1,之后输入修正系数map2,进行查表得到修正系数2,此修正系数map2横坐标为当量比之差,有正有负,纵坐标为发动机进气量,内容为气量修正系数量,当实际测得当量比小于1时,修正系数2小于1,当实际测得当量比大于1时,修正系数2大于1。如图4所示,第二气量修正系数a2与实际新鲜空气量mx2为循环计算的关系。
根据本发明实施例的发动机系统的实际新鲜空气量的计算方法,可以精确计算出具有低压EGR系统发动机的新鲜空气量,保证了发动机当量比燃烧,有益于排放和油耗,且能够更加精确控制EGR率。
本发明还公开了一种车辆,该车辆包括存储有第一计算机程序的可读存储介质,第一计算机程序包括上述计算方法。
根据本发明实施例的车辆,可以精确计算出具有低压EGR系统发动机的新鲜空气量,保证了发动机当量比燃烧,有益于排放和油耗,且能够更加精确控制EGR率。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种发动机系统,其特征在于,包括:
压气机(2),所述压气机(2)的进口端设有总进气管,所述总进气管设有第一空气流量计(1);
进气中冷器(3),所述进气中冷器(3)的进口端与所述压气机(2)的出口端相连,所述进气中冷器(3)的出口端与进气歧管的入口端之间顺次设有第二空气流量计(4)、节气门(5)、进气压力传感器(6);
涡轮机(9)和催化器(10),气缸的排气管、所述涡轮机(9)、所述催化器(10)顺次布置,且所述气缸的排气管与所述涡轮机(9)之间设有氧传感器(8);
EGR管路,所述EGR管路连接在所述催化器(10)的出气端与所述压气机(2)的进口端之间,所述EGR管路上设有EGR冷却器(11)和EGR阀(12),所述EGR阀(12)的两端连接有压差传感器(13);
ECU,所述第一空气流量计(1)、所述第二空气流量计(4)、所述进气压力传感器(6)、所述EGR阀(12)、所述压差传感器(13)均与所述ECU通讯连接;其中
所述ECU包括存储有第一计算机程序的可读存储介质,所述第一计算机程序用于根据所述第一空气流量计(1)检测的流量m1、所述第二空气流量计(4)检测的流量m2、所述进气压力传感器(6)检测的压力p、所述EGR阀(12)的开度、所述压差传感器(13)检测的压差ΔP、所述氧传感器(8)检测的氧含量计发动机气缸的实际新鲜空气量。
2.根据权利要求1所述的发动机系统,其特征在于,所述第一计算机程序包括:
根据公式e1=(m2-m1)/m2,计算基础EGR率e1;
根据公式m4=pVM/(RT),计算发动机的总进气量m4,其中V为发动机排量,R为常数,T为进气的绝对温度,M为平均摩尔质量;
根据公式mx1= m4*(1-e1),计算第一新鲜空气量mx1;
根据公式mx2=mx1 * a1 * a2,计算发动机气缸的实际新鲜空气量mx2,其中a1为第一气量修正系数,a2为第二气量修正系数。
3.根据权利要求2所述的发动机系统,其特征在于,所述第一计算机程序包括:
根据公式m3=m4 * e1,计算EGR流量m3;
根据公式d=(m5-m3)/m3,计算EGR率的偏差率d,其中m5为EGR阀(12)处的流量;将所述压差ΔP和所述EGR阀(12)的开度输入阀口流量模型得到m5;
根据EGR率的偏差率d获得第一气量修正系数a1。
4.根据权利要求2所述的发动机系统,其特征在于,所述第一计算机程序包括:
根据氧传感器(8)检测的氧含量测出发动机气缸的实际Lambda,根据Lambda获得第二气量修正系数a2。
5.根据权利要求1所述的发动机系统,其特征在于,所述ECU设置为根据所述实际新鲜空气量控制喷油器(7)以进行当量比喷油。
6.一种车辆,其特征在于,具有如权利要求1-5中任一项所述的发动机系统。
7.一种发动机系统的实际新鲜空气量的计算方法,其特征在于,包括:
根据公式e1=(m2-m1)/m2,计算基础EGR率e1,其中,m1为总进气管处的空气流量,m2为进气中冷器(3)的出口端的流量;
根据公式m4=pVM/(RT),计算发动机的总进气量m4,其中,p为进气歧管前端的进气压力,V为发动机排量,R为常数,T为进气的绝对温度,M为平均摩尔质量;
根据公式m3=m4 * e1,计算EGR流量m3;
根据公式mx1= m4*(1-e1),计算第一新鲜空气量mx1;
根据公式mx2=mx1 * a1 * a2,计算发动机气缸的实际新鲜空气量mx2,其中a1为第一气量修正系数,a2为第二气量修正系数;
根据公式d=(m5-m3)/m3,计算EGR率的偏差率d,其中m5为EGR阀(12)处的流量,根据EGR率的偏差率d获得第一气量修正系数a1;将压差ΔP和所述EGR阀(12)的开度输入阀口流量模型得到m5;所述压差ΔP为所述EGR阀(12)两端的压差;
根据氧传感器(8)检测的氧含量测出发动机气缸的实际Lambda,根据Lambda获得第二气量修正系数a2。
8.一种车辆,其特征在于,包括存储有第一计算机程序的可读存储介质,所述第一计算机程序包括如权利要求7所述的计算方法。
CN201811452939.6A 2018-11-30 2018-11-30 发动机系统、实际新鲜空气量的计算方法和车辆 Active CN111255584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811452939.6A CN111255584B (zh) 2018-11-30 2018-11-30 发动机系统、实际新鲜空气量的计算方法和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811452939.6A CN111255584B (zh) 2018-11-30 2018-11-30 发动机系统、实际新鲜空气量的计算方法和车辆

Publications (2)

Publication Number Publication Date
CN111255584A CN111255584A (zh) 2020-06-09
CN111255584B true CN111255584B (zh) 2022-04-22

Family

ID=70951896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811452939.6A Active CN111255584B (zh) 2018-11-30 2018-11-30 发动机系统、实际新鲜空气量的计算方法和车辆

Country Status (1)

Country Link
CN (1) CN111255584B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112360638B (zh) * 2020-11-10 2022-02-18 东风汽车集团有限公司 进入气缸的新鲜空气流量预估方法及系统
CN112594071A (zh) * 2020-12-08 2021-04-02 安徽江淮汽车集团股份有限公司 一种egr阀控制方法、控制装置及计算机可读存储介质
CN114810375B (zh) * 2021-07-02 2023-05-30 长城汽车股份有限公司 获取egr率的方法、装置、介质、设备及车辆
CN113339136B (zh) * 2021-07-26 2022-08-23 潍柴动力股份有限公司 一种计算节气门后压力的方法、装置及车辆
CN114563535B (zh) * 2022-03-03 2023-12-15 潍柴动力股份有限公司 一种v型燃气发动机氧传感器大气自标定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009347A (ja) * 2003-06-17 2005-01-13 Toyota Motor Corp 内燃機関の吸入空気量推定装置
CN101418744A (zh) * 2007-10-24 2009-04-29 株式会社电装 进气量校正设备
EP3075991A1 (en) * 2015-03-31 2016-10-05 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN106337750A (zh) * 2015-07-10 2017-01-18 本田技研工业株式会社 内燃机的控制装置
CN107269407A (zh) * 2016-04-06 2017-10-20 罗伯特·博世有限公司 用于确定燃烧马达中的新鲜空气质量流量的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009347A (ja) * 2003-06-17 2005-01-13 Toyota Motor Corp 内燃機関の吸入空気量推定装置
CN101418744A (zh) * 2007-10-24 2009-04-29 株式会社电装 进气量校正设备
EP3075991A1 (en) * 2015-03-31 2016-10-05 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN106337750A (zh) * 2015-07-10 2017-01-18 本田技研工业株式会社 内燃机的控制装置
CN107269407A (zh) * 2016-04-06 2017-10-20 罗伯特·博世有限公司 用于确定燃烧马达中的新鲜空气质量流量的方法和装置

Also Published As

Publication number Publication date
CN111255584A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111255584B (zh) 发动机系统、实际新鲜空气量的计算方法和车辆
US9010180B2 (en) Method and observer for determining the exhaust manifold temperature in a turbocharged engine
US8453434B2 (en) Method for adapting an SCR catalytic converter in an exhaust system of a motor vehicle
CN103216348B (zh) 空气/燃料失衡监测器
CN109268158A (zh) 一种发动机进气量修正的方法及系统
US20130073189A1 (en) Control apparatus for internal combustion engine
US10590873B2 (en) Control device for internal combustion engine
US8739760B2 (en) Control system of an internal combustion engine
US6814060B1 (en) Engine emission control system and method
US8463524B2 (en) Air quantity control device of internal combustion engine
US9127586B2 (en) Apparatus for estimating exhaust gas temperature of internal combustion engine
US10539081B2 (en) Internal-combustion engine control apparatus for controlling waste gate valve opening degree
CN108317015B (zh) 一种天然气发动机瞬态补偿控制系统及控制方法
US11073100B2 (en) Cylinder based low pressure cooled exhaust gas recirculation transient measurement methodology
EP3128159B1 (en) Method to control a low-pressure exhaust gas recirculation egr circuit in an internal combustion engine
JP2011085081A (ja) エンジンの失火判定方法
CN111006867A (zh) 一种发动机进气修正map表的标定方法及进气修正方法
CN116447028A (zh) 发动机系统egr率的控制方法、装置、电子设备和存储介质
CN108506138B (zh) 车辆的点火控制方法、系统及车辆
JP4019265B2 (ja) 内燃機関のegr流量算出装置および内燃機関の制御装置
WO2016190092A1 (ja) エンジン制御装置
US10221804B2 (en) Fuel injection control device
JP2010133353A (ja) エンジン制御装置
CN114000954A (zh) 一种发动机气缸内的新鲜充量的确定方法及装置
JP6056460B2 (ja) 筒内圧センサの異常検出装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant