CN111251474B - 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法 - Google Patents

基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法 Download PDF

Info

Publication number
CN111251474B
CN111251474B CN202010105737.5A CN202010105737A CN111251474B CN 111251474 B CN111251474 B CN 111251474B CN 202010105737 A CN202010105737 A CN 202010105737A CN 111251474 B CN111251474 B CN 111251474B
Authority
CN
China
Prior art keywords
laser
processing
axis
acoustic emission
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010105737.5A
Other languages
English (en)
Other versions
CN111251474A (zh
Inventor
赵玉刚
刘广新
宋盼盼
蒲业壮
赵国勇
孟建兵
张海云
张桂香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202010105737.5A priority Critical patent/CN111251474B/zh
Publication of CN111251474A publication Critical patent/CN111251474A/zh
Application granted granted Critical
Publication of CN111251474B publication Critical patent/CN111251474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/16Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mining & Mineral Resources (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法,其特征在于:通过陶瓷激光车削复合加工与声发射信号检测实验、加工后陶瓷工件表面完整性检测实验和比对分析,获得映射加工参数、声发射特征信号、加工工艺状态参数基本关系的数据库;通过对数据库数据的机器学习,建立加工参数、声发射特征信号、加工工件表面完整性、加工工艺状态参数关系的数学模型;利用该数学模型,实现在已知工艺参数情况下的陶瓷加工工艺状态预测和最佳塑性工艺状态的加工参数自动匹配。与传统的陶瓷磨削加工工艺相比,该基于声发射信号特征识别与加工参数自动匹配控制的陶瓷激光车削复合塑性加工方法,具有高速、高表面质量、无表面微观裂纹、加工成本低等特点,被加工的陶瓷零件承受交变载荷的使役性能显著增强。

Description

基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车 削复合塑性加工方法
技术领域
本发明涉及一种基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法,属于硬脆难加工材料车削加工领域。
背景技术
陶瓷材料因其比重低、硬度高、压强度大、化学稳定性好、耐高温、耐磨和生物相容性好等优异的机械性能和物理性能,广泛应用于机械、航空航天、汽车、电气、医疗仪器、工具、化学工程等各个领域。
陶瓷材料零部件通常在高温、高压、高速、交变载荷等极端复杂的环境下使用,必须保证尺寸精度和优异的表面完整性,因此精加工必不可少。但是陶瓷材料固有的高强度、高硬度、高脆性、塑性极差等特点使陶瓷零部件难以进行切削加工。其化学键性质和晶体结构导致陶瓷材料受力时,通常发生脆性断裂而非塑性变形,故不宜成形加工,一定程度上限制了其在工程方面的应用。
陶瓷材料通常采用磨削加工,但加工表面易产生微观裂纹,严重影响断裂强度及其它力学性能,极大降低了零件的使役性能。导致这种情况的根本原因为材料是以脆性断裂的方式去除,而不是塑性去除。况且,磨削加工生产效率低、成本高、能耗大、砂轮损耗快。
激光加热辅助切削加工可以实现陶瓷材料的塑性去除,但目前仍然停留在实验研究阶段、无法应用于生产实际,其主要原因是陶瓷“激光-切削”复合加工工艺受多种因素的影响,包括激光因素(作用位置、激光能量、光斑直径、激光扫描速度等)、工艺因素(切削速度、进给量、背吃刀量等)和材料因素(材料成分、微观结构、热传导率、热吸收率等),只要三个因素不匹配,表面完整性(粗糙度、表面/次表面层微观组织结构、表面/次表面微观裂纹、残余应力、显微硬度、材料相变/损伤)和加工效率就无法得到保证。在激光因素、材料因素确定的情况下,工艺因素中如何实现加工参数的最佳匹配就成为解决问题的关键。
发明内容
针对陶瓷激光车削复合加工存在的加工参数无法实现最佳匹配的问题,发明人发明了基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法,本发明采用了以下技术方案:
1. 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法,其特征在于:在激光因素(功率、激光光斑直径等)、材料因素(材料成分、微观结构、热传导率、热吸收率等)确定的情况下,通过覆盖所有加工参数(主轴转速、进给速度、切削深度)、加工工艺状态(脆性、塑性和热损伤)的陶瓷激光车削复合加工与声发射信号检测实验、加工后陶瓷工件表面完整性(粗糙度、表面/亚表面层微观组织结构、表面/亚表面微观裂纹、残余应力分布、显微硬度分布、材料热损伤/相变)检测实验,获得基础实验数据;将测得的表面完整性参数与工件加工时所对应的加工工艺状态进行比对,获得表面完整性参数与加工工艺状态参数(脆性、塑性和热损伤)的对应关系;将检测得到的表面完整性与声发射信号进行比对,提取不同加工工艺状态的声发射特征信号,并用声发射特征信号对工件加工工艺状态进行表征;以获得的加工参数、声发射特征信号、加工工艺状态参数为样本进行机器学习,建立加工参数与加工工艺状态参数关系的数学模型;利用该数学模型,在输入加工参数时获得未知的加工工艺状态参数,实现在已知工艺参数情况下的陶瓷加工工艺状态预测;利用该数学模型,在输入最佳塑性加工工艺状态参数、已知加工参数时获得未知的加工参数,从而实现最佳塑性工艺状态的加工参数自动匹配。
2. 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法需要采用具有声发射信号特征识别与加工参数自动匹配功能的陶瓷激光车削复合加工车床来实现;该陶瓷激光车削复合加工车床包括数控车床(1)、激光加热装置、声发射特征识别系统,其中数控车床(1)为双坐标数控车床,结构与常用的双坐标数控车床相同;激光加热装置由激光发生器(201)、光纤(202)、光纤输出接口(203)、激光外光路系统(204)、Z轴矩形丝杠滑台(205)、Z轴交流伺服电动机(206)、Y轴交流伺服电动机(207)、Y轴矩形丝杠滑台(208)、倒L型支架(209),n型支架(210)、激光器控制线(211)、Z轴交流伺服电动机控制线(212)、Y轴交流伺服电动机控制线(213)组成,激光发生器(201)通过激光器控制线(211)与数控系统(101)连接,光纤(202)将激光发生器(201)和光纤输出接口(203)连接,光纤输出接口(203)与激光外光路系统(204)连接;激光外光路系统(204)固定于Y轴矩形丝杠滑台(208)的滑台上,与陶瓷工件(103)、车刀刀柄(105)三维垂直,激光外光路系统(204)的中心线与陶瓷工件(103)的中心线处在同一平面内,激光光斑位于陶瓷工件(103)上并与CBN刀片(104)保持一定的距离,激光光斑较CBN刀片(104)更靠近数控车床(1)的卡盘; n型支架(210)平行于数控车床Z轴通过螺栓垂直安装于车床大溜板(104)上,倒L型支架(209)平行于数控车床X轴通过螺栓垂直安装于车床大溜板(104)上,倒L型支架(209),与n型支架(210)垂直焊接;n型支架(210)上端固定有Z轴矩形丝杠滑台(205),Y轴矩形丝杠滑台(208)固定于Z轴矩形丝杠滑台(205)的滑台上并与Z轴矩形丝杠滑台(205)垂直;激光外光路系统(204)固定于Y轴矩形丝杠滑台(208)的滑台上与车床大溜板(104)垂直;Z轴交流伺服电动机(206)固定于Z轴矩形丝杠滑台(205),Y轴交流伺服电动机(207)固定于Y轴矩形丝杠滑台(208)上,Z轴交流伺服电动机(206)通过Z轴交流伺服电动机控制线(212)与数控系统(101)连接,Y轴交流伺服电动机(207)通过Y轴交流伺服电动机控制线(213)数控系统(101)连接;所述的声发射特征识别系统由传感器(301)、信号线(302)、前置放大器(303)、声发射信号识别系统(304)、反馈数据线(305)组成,传感器(301)为两个,一个固定在车刀刀柄(105)尾端,另一个固定在车刀刀柄(105)前端CBN刀片(104)对应的下端,两者均与前置放大器(303)通过信号线(302)连接;前置放大器(303)与声发射信号识别系统(304)通过信号线(302)连接,数控系统(101)通过反馈数据线(305)与声发射信号识别系统(304)连接;所述的陶瓷激光车削复合加工车床特征在于:数控系统(101)通过激光器控制线(211)与激光发生器(201)连接对激光发生器(201)进行控制,车削加工前数控系统(101)控制激光发生器(201)发出激光对陶瓷工件(103)进行预热,加工过程中数控系统(101)根据最佳匹配加工参数进行激光功率和切削三要素的控制,加工结束后数控系统(101)控制激光发生器(201)停止工作;所述的陶瓷激光车削复合加工车床特征在于:n型支架(210)的缺口不影响数控车床(1)的X轴的进给运动,倒L型支架(209)不影响数控车床(1)的Z轴的进给运动并支撑n型支架(210);所述的陶瓷激光车削复合加工车床特征在于:激光光斑与CBN车片(104)刀尖沿车床主轴的距离由Z轴交流伺服电动机(206)控制Z轴矩形丝杠滑台(205)带动激光外光路系统(204)调节;激光光斑的大小由Y轴交流伺服电动机(207)控制Y轴矩形丝杠滑台(208)带动激光外光路系统(204)做上下运动来调节; Z轴矩形丝杠滑台(205)和Y轴矩形丝杠滑台(208)具有自锁功能;所述的陶瓷激光车削复合加工车床特征在于:固定在车刀刀柄(105)尾端的传感器(301)采集陶瓷加工过程中实时发出的横向声发射信号,固定在车刀刀柄(105)前端、CBN刀片(104)对应的下端的传感器(301)采集陶瓷加工过程中实时发出的纵向声发射信号。
附图说明
图1是具有声发射信号特征识别与加工参数自动匹配功能的陶瓷激光车削复合加工车床结构示意图,其中:1-数控车床,101-数控系统,102-车床大溜板。
图2是图1中A的局部放大图,103-陶瓷工件,104-CBN刀片,105-车刀刀柄。
图3是激光加热装置的结构示意图,其中:201-激光发生器,202-光纤,203-光纤输出接口,204-激光外光路系统,205-Z轴矩形丝杠滑台,206-Z轴交流伺服电动机,207- Y轴交流伺服电动机,208-Y轴矩形丝杠滑台,209-倒L型支架,210-n型支架,211-激光器控制线,212-Z轴交流伺服电动机控制线,213-Y轴交流伺服电动机控制线。
图4是图3中B的局部放大图,214-矩形丝杠。
图5是声发射信号采集、特征识别系统的结构示意图,其中:301-传感器,302-信号线,303-前置放大器,304-声发射信号识别系统,305-反馈数据线。
具体实施方式
1. 通过覆盖所有加工参数(激光功率、激光光斑直径、主轴转速、进给速度、切削深度)、加工工艺状态(脆性、塑性和热损伤)的陶瓷激光车削复合加工与声发射信号检测实验、加工后陶瓷工件表面完整性(粗糙度、表面/亚表面层微观组织结构、表面/亚表面微观裂纹、残余应力分布、显微硬度分布、材料热损伤/相变)检测实验,获得基础实验数据。
2. 将测得的表面完整性参数与工件加工时所对应的加工工艺状态进行比对,获得表面完整性参数与加工工艺状态参数(脆性、塑性和热损伤)的对应关系。
3. 将检测得到的表面完整性与声发射信号进行比对,提取不同加工工艺状态的声发射特征信号,并用声发射特征信号对工件加工工艺状态进行表征。
4. 以获得的加工参数、声发射特征信号、加工工艺状态参数为样本进行机器学习,建立加工参数与加工工艺状态参数关系的数学模型。
5. 利用该数学模型,在输入加工参数时获得未知的加工工艺状态参数,实现在已知工艺参数情况下的陶瓷加工工艺状态预测。
6. 利用该数学模型,在输入最佳塑性加工工艺状态参数、已知加工参数时获得未知的加工参数,从而实现最佳塑性工艺状态的加工参数自动匹配和加工。
下面结合附图对本发明的具体实施方式做进一步说明。
基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法需要采用具有声发射信号特征识别与加工参数自动匹配功能的陶瓷激光车削复合加工车床来实现。
如图1所示,采用具有声发射信号特征识别与加工参数自动匹配功能的陶瓷激光车削复合加工车床,其特征在于:包括数控车床(1)、激光加热装置、声发射特征识别系统,其中数控车床(1)为双坐标数控车床。
如图3所示,采用具有声发射信号特征识别与加工参数自动匹配功能的陶瓷激光车削复合加工车床,其特征在于:所述的激光加热装置由激光发生器(201)、光纤(202)、光纤输出接口(203)、激光外光路系统(204)、Z轴矩形丝杠滑台(205)、Z轴交流伺服电动机(206)、Y轴交流伺服电动机(207)、Y轴矩形丝杠滑台(208)、倒L型支架(209),n型支架(210)、激光器控制线(211)、Z轴交流伺服电动机控制线(212)、Y轴交流伺服电动机控制线(213)组成,激光发生器(201)通过激光器控制线(211)与数控系统(101)连接,光纤(202)将激光发生器(201)和光纤输出接口(203)连接,光纤输出接口(203)与激光外光路系统(204)连接;激光外光路系统(204)固定于Y轴矩形丝杠滑台(208)的滑台上,与陶瓷工件(103)、车刀刀柄(105)三维垂直,激光外光路系统(204)的中心线与陶瓷工件(103)的中心线处在同一平面内,激光光斑位于陶瓷工件(103)上并与CBN刀片(104)保持一定的距离,激光光斑较CBN刀片(104)更靠近数控车床(1)的卡盘; n型支架(210)平行于数控车床Z轴通过螺栓垂直安装于车床大溜板(104)上,倒L型支架(209)平行于数控车床X轴通过螺栓垂直安装于车床大溜板(104)上,倒L型支架(209),与n型支架(210)垂直焊接;n型支架(210)上端固定有Z轴矩形丝杠滑台(205),Y轴矩形丝杠滑台(208)固定于Z轴矩形丝杠滑台(205)的滑台上并与Z轴矩形丝杠滑台(205)垂直;激光外光路系统(204)固定于Y轴矩形丝杠滑台(208)的滑台上与车床大溜板(104)垂直;Z轴交流伺服电动机(206)固定于Z轴矩形丝杠滑台(205),Y轴交流伺服电动机(207)固定于Y轴矩形丝杠滑台(208)上,Z轴交流伺服电动机(206)通过Z轴交流伺服电动机控制线(212)与数控系统(101)连接,Y轴交流伺服电动机(207)通过Y轴交流伺服电动机控制线(213)数控系统(101)连接;
如图5所示,所述的声发射特征识别系统由传感器(301)、信号线(302)、前置放大器(303)、声发射信号识别系统(304)、反馈数据线(305)组成,传感器(301)为两个,一个固定在车刀刀柄(105)尾端,另一个固定在车刀刀柄(105)前端CBN刀片(104)对应的下端,两者均与前置放大器(303)通过信号线(302)连接;前置放大器(303)与声发射信号识别系统(304)通过信号线(302)连接,数控系统(101)通过反馈数据线(305)与声发射信号识别系统(304)连接。
对于本领域的普通技术人员而言,根据本发明的教导,在不脱离本发明的原理与精神的情况下,对实施方式所进行的改变、修改、替换和变型仍落入本发明的保护范围之内。

Claims (1)

1.基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法,其特征在于:在激光因素、材料因素确定的情况下,通过覆盖所有加工参数、加工工艺状态参数的陶瓷激光车削复合加工与声发射信号检测实验、加工后陶瓷工件表面完整性检测实验,获得基础实验数据,其中激光因素包括激光功率和激光光斑直径,材料因素包括材料成分、微观结构、热传导率、热吸收率和直径,加工参数包括主轴转速、进给速度和切削深度,加工工艺状态参数包括脆性加工工艺状态参数、塑性加工工艺状态参数和热损伤加工工艺状态参数;将测得的表面完整性参数与工件加工时所对应的加工工艺状态参数进行比对,获得表面完整性参数与加工工艺状态参数的对应关系;将检测得到的表面完整性参数与声发射信号进行比对,提取不同加工工艺状态参数的声发射信号,并用声发射信号对工件加工工艺状态进行表征;以获得的加工参数、声发射信号、加工工艺状态参数为样本进行机器学习,建立加工参数与加工工艺状态参数关系的数学模型;利用该数学模型,在输入加工参数时获得未知的加工工艺状态参数,实现在已知加工参数情况下的陶瓷加工工艺状态参数预测;或者利用该数学模型,在输入最佳塑性加工工艺状态参数和已知的加工参数时,获得未知的加工参数,从而实现最佳塑性加工工艺状态参数的加工参数自动匹配、实现陶瓷材料的最佳塑性加工;该方法采用具有声发射信号特征识别与加工参数自动匹配功能的陶瓷激光车削复合加工车床来实现;该陶瓷激光车削复合加工车床包括数控车床(1)、激光加热装置、声发射特征识别系统,其中数控车床(1)为双坐标数控车床;激光加热装置由激光发生器(201)、光纤(202)、光纤输出接口(203)、激光外光路系统(204)、Z轴矩形丝杠滑台(205)、Z轴交流伺服电动机(206)、Y轴交流伺服电动机(207)、Y轴矩形丝杠滑台(208)、倒L型支架(209)、n型支架(210)、激光器控制线(211)、Z轴交流伺服电动机控制线(212)、Y轴交流伺服电动机控制线(213)组成,激光发生器(201)通过激光器控制线(211)与数控系统(101)连接,光纤(202)将激光发生器(201)和光纤输出接口(203)连接,光纤输出接口(203)与激光外光路系统(204)连接;激光外光路系统(204)固定于Y轴矩形丝杠滑台(208)的滑台上,与陶瓷工件(103)、车刀刀柄(105)三维垂直,激光外光路系统(204)的中心线与陶瓷工件(103)的中心线处在同一平面内,激光光斑位于陶瓷工件(103)上并与CBN刀片(104)保持一定的距离,激光光斑较CBN刀片(104)更靠近数控车床(1)的卡盘;n型支架(210)平行于数控车床Z轴并通过螺栓垂直安装于车床大溜板(102)上,倒L型支架(209)平行于数控车床X轴并通过螺栓垂直安装于车床大溜板(102)上,倒L型支架(209)与n型支架(210)垂直焊接;n型支架(210)上端固定有Z轴矩形丝杠滑台(205),Y轴矩形丝杠滑台(208)固定于Z轴矩形丝杠滑台(205)的滑台上并与Z轴矩形丝杠滑台(205)垂直;激光外光路系统(204)与车床大溜板(102)垂直;Z轴交流伺服电动机(206)固定于Z轴矩形丝杠滑台(205),Y轴交流伺服电动机(207)固定于Y轴矩形丝杠滑台(208)上,Z轴交流伺服电动机(206)通过Z轴交流伺服电动机控制线(212)与数控系统(101)连接,Y轴交流伺服电动机(207)通过Y轴交流伺服电动机控制线(213)数控系统(101)连接;所述的声发射特征识别系统由传感器(301)、信号线(302)、前置放大器(303)、声发射信号识别系统(304)、反馈数据线(305)组成,传感器(301)为两个,一个固定在车刀刀柄(105)尾端,另一个固定在车刀刀柄(105)前端CBN刀片(104)对应的下端,两者均与前置放大器(303)通过信号线(302)连接;前置放大器(303)与声发射信号识别系统(304)通过信号线(302)连接,数控系统(101)通过反馈数据线(305)与声发射信号识别系统(304)连接;数控系统(101)通过激光器控制线(211)与激光发生器(201)连接并对激光发生器(201)进行控制,车削加工前数控系统(101)控制激光发生器(201)发出激光对陶瓷工件(103)进行预热,加工过程中数控系统(101)根据最佳匹配加工参数进行主轴转速、进给速度和切削深度的控制,加工结束后数控系统(101)控制激光发生器(201)停止工作;n型支架(210)的缺口不影响数控车床(1)的X轴的进给运动,倒L型支架(209)不影响数控车床(1)的Z轴的进给运动并支撑n型支架(210);激光光斑与CBN刀片(104)刀尖沿车床主轴的距离由Z轴交流伺服电动机(206)控制Z轴矩形丝杠滑台(205)带动激光外光路系统(204)调节;激光光斑的大小由Y轴交流伺服电动机(207)控制Y轴矩形丝杠滑台(208)带动激光外光路系统(204)做上下运动来调节;Z轴矩形丝杠滑台(205)和Y轴矩形丝杠滑台(208)具有自锁功能;固定在车刀刀柄(105)尾端的传感器(301)采集陶瓷加工过程中实时发出的横向声发射信号,固定在车刀刀柄(105)前端CBN刀片(104)对应的下端的传感器(301)采集陶瓷加工过程中实时发出的纵向声发射信号。
CN202010105737.5A 2020-02-21 2020-02-21 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法 Active CN111251474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010105737.5A CN111251474B (zh) 2020-02-21 2020-02-21 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010105737.5A CN111251474B (zh) 2020-02-21 2020-02-21 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法

Publications (2)

Publication Number Publication Date
CN111251474A CN111251474A (zh) 2020-06-09
CN111251474B true CN111251474B (zh) 2022-04-26

Family

ID=70945698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010105737.5A Active CN111251474B (zh) 2020-02-21 2020-02-21 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法

Country Status (1)

Country Link
CN (1) CN111251474B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799495B (zh) * 2021-12-28 2023-06-13 华中科技大学 一种激光切割的控制方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239639A (ja) * 1996-03-04 1997-09-16 Jiro Otsuka Aeを用いた延性モード加工装置
CN109015125A (zh) * 2018-07-23 2018-12-18 江苏理工学院 一种基于脆性去除比例系数及面粗糙度的硬脆材料延性域磨削判定方法
CN110421353A (zh) * 2019-09-11 2019-11-08 哈尔滨理工大学 基于机器视觉激光加热辅助车铣复合机床及监控方法
CN110421351A (zh) * 2019-08-27 2019-11-08 哈尔滨理工大学 用于车铣复合机床的激光加热自动监测系统及监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767416B2 (ja) * 2018-03-26 2020-10-14 ファナック株式会社 加工条件調整装置及び機械学習装置
CN109543239B (zh) * 2018-10-29 2023-06-09 西安空间无线电技术研究所 基于神经网络技术的ltcc收缩率预判方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239639A (ja) * 1996-03-04 1997-09-16 Jiro Otsuka Aeを用いた延性モード加工装置
CN109015125A (zh) * 2018-07-23 2018-12-18 江苏理工学院 一种基于脆性去除比例系数及面粗糙度的硬脆材料延性域磨削判定方法
CN110421351A (zh) * 2019-08-27 2019-11-08 哈尔滨理工大学 用于车铣复合机床的激光加热自动监测系统及监测方法
CN110421353A (zh) * 2019-09-11 2019-11-08 哈尔滨理工大学 基于机器视觉激光加热辅助车铣复合机床及监控方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
声发射技术辨别陶瓷的的加工机理;陈友良等;《湖南大学学报》;19980630;第25卷(第3期);第36-40页 *
氧化锆陶瓷的激光辅热切削加工工艺研究;刘广新;《万方数据库》;20191224;第37-49页 *
陈友良等.声发射技术辨别陶瓷的的加工机理.《湖南大学学报》.1998,第25卷(第3期), *

Also Published As

Publication number Publication date
CN111251474A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN103722467B (zh) 硬脆材料磨削脆-延转化临界切削深度确定方法和装置
CN110270883B (zh) 基于试件特征分解的三轴数控机床几何误差与热误差逆向辨识方法
Sivaiah et al. Multi-objective optimisation of cryogenic turning process using Taguchi-based grey relational analysis
Zhai et al. The study on surface integrity on laser-assisted turning of SiCp/2024Al
CN107717030B (zh) 一种钛合金ta15薄壁长凸台的加工方法
Banik et al. Recent trends in laser assisted machining of ceramic materials
CN111251474B (zh) 基于声发射信号特征识别与加工参数自动匹配的陶瓷激光车削复合塑性加工方法
CN108857280B (zh) 一种用于直观检测卧式车床热误差的样件加工方法
CN102601683B (zh) 一种加工超硬刀具的在线检测系统及检测方法
Cha et al. A study on machining characteristics of silicon nitride with spline members in laser-assisted turn-mill
CN207087311U (zh) 增减材多功能加工一体机
CN107617860B (zh) 加工超硬材料刀具的方法及其实现
Wang et al. Surface grinding of CFRP composites using rotary ultrasonic machining: design of experiment on cutting force, torque and surface roughness
CN106123721B (zh) 一种汽轮机转子轮槽量规及其加工方法
CN114850653A (zh) 一种集成超声辅助磨削和激光加工的复合机床及加工方法
CN102107376B (zh) 一种实现磨削加工效率和质量最优化的工艺链方法
Nurul Amin et al. An experimental approach to determine the critical depth of cut in brittle-to-ductile phase transition during end milling of soda-lime glass
Aslantas et al. High speed turning of Ti6Al4V alloy in micro cutting conditions
Wang et al. Effects of laser beam lead angle on picosecond laser processing of silicon nitride ceramics
CN115609141A (zh) 一种激光烧蚀表面织构化辅助超声磨削方法
CN115647940A (zh) 一种激光同步辅助超声侧面磨削硬脆材料的方法
Muženič et al. Improvements in Machinability of Zinc Oxide Ceramics by Laser-Assisted Milling
CN111391146A (zh) 基于声发射信号特征识别与反馈控制的陶瓷激光车削复合加工车床
CN114523268A (zh) 一种数控机床铣刀筒夹加工方法
Choi et al. NC code generation for laser assisted turn-mill of various type of clovers and square section members

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant