CN111250868A - 一种高精度铝合金激光自熔焊接工艺 - Google Patents

一种高精度铝合金激光自熔焊接工艺 Download PDF

Info

Publication number
CN111250868A
CN111250868A CN201911371591.2A CN201911371591A CN111250868A CN 111250868 A CN111250868 A CN 111250868A CN 201911371591 A CN201911371591 A CN 201911371591A CN 111250868 A CN111250868 A CN 111250868A
Authority
CN
China
Prior art keywords
data
welding
laser
aluminum alloy
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911371591.2A
Other languages
English (en)
Other versions
CN111250868B (zh
Inventor
陈路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wanshunxing Science & Technology Co ltd
Original Assignee
Suzhou Qiaofeng Precision Machinery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Qiaofeng Precision Machinery Co ltd filed Critical Suzhou Qiaofeng Precision Machinery Co ltd
Priority to CN201911371591.2A priority Critical patent/CN111250868B/zh
Publication of CN111250868A publication Critical patent/CN111250868A/zh
Application granted granted Critical
Publication of CN111250868B publication Critical patent/CN111250868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种高精度铝合金激光自熔焊接工艺,首先通过限位组件对待焊接的铝合金加工件进行限位;对铝合金加工件的待焊接部位进行表面处理;然后通过焊接机构上的激光传感器对待焊工件的焊缝进行焊缝扫描;当激光传感器扫描后,控制器通过优化算法修正焊缝点数据;然后控制器根据修正后的焊缝点数据通过激光焊接头对铝合金工件的待处理焊缝进行激光焊接;最后对焊接后的工件进行清理和检验即可。本发明其通过对激光传感器对铝合金工件的焊接位置进行检测,并通过控制器对焊缝上点的位置进行优化,再通过激光焊接枪对铝合金工件进行焊接,整个过程简单,方便在提高了其焊接精度的同时还提高了其工作效率,也省去了焊丝等材料的使用,节约了焊接成本。

Description

一种高精度铝合金激光自熔焊接工艺
技术领域
本发明属于金属合金材料技术领域,特别涉及一种高精度铝合金 激光自熔焊接工艺。
背景技术
焊接技术广泛应用于工业生产、能源、交通、电气工程等各个领 域,在国民经济发展中具有重要地位。智能化和自动化代替了原来的 手工焊,确保了焊接质量和焊接效率。铝合金焊接时金属焊接的一部 分,铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可 加工成各种型材,具有优良的导电性、导热性和抗蚀性,伴随着轻 量化汽车的发展,铝合金材质轻,所以铝合金在各行各业的使用比例 也越来越大。
当前的铝合金焊接大多都采用手工MIG焊、TIG焊等,该焊接过 程是焊接人员通过操作焊枪,填丝、外加保护气进行焊接,这些焊接 方法在进行焊接时有以下问题点:1、异种系列连接难度大;2、厚板 焊接过程中深宽比较小,热影响区较宽,对结构的力学性能降低严 重;3、薄铝合金板与厚铝合金板焊接过程中,薄铝合金板易咬边、 烧穿,而厚铝合金板不能熔合;4、焊接过程需要加保护气、填焊丝 增加了焊接成本。整个焊接的效率较低,焊接的精准度低,容易出现 漏焊、错焊的问题,从而严重影响产品的焊接质量。
发明内容
发明目的:为了克服以上不足,本发明的目的是提供一种高精度 铝合金激光自熔焊接工艺,其结构简单,设计合理,易于生产,自动 化程度高,减少人工劳动量,提高了工作效率,在提高了焊接精准度 的同时,还节省了原材料的使用。
技术方案:为了实现上述目的,本发明提供了一种高精度铝合金 激光自熔焊接工艺,具体的焊接工艺如下:
1):首先通过限位组件对待焊接的铝合金加工件进行限位;
2):然后对铝合金加工件的待焊接部位进行表面处理,并对处理 部分进行清洗;
3):然后通过焊接机构上的激光传感器对待焊工件的焊缝进行焊 缝扫描,拾取焊缝点数据;
4):当激光传感器扫描后将扫描的信息通过模拟量模块送至控制 器,控制器通过优化算法修正焊缝点数据,形成与铝合金工件匹 配度高的焊缝曲线,即对激光传感器获取的焊缝轮廓曲线优化;
5):然后控制器根据修正后的焊缝点数据通过激光焊接头对铝合 金工件的待处理焊缝进行激光焊接;
6):最后对焊接后的工件进行清理和检验即可。
本发明中在工作方法的步骤2中激光传感器获取的焊缝轮廓曲 线优化的具体方法如下:
1):首先对激光传感器拾取的点进行差分计算,即:通过差分计 算,遴选出有问题的数据点;
2):剔除分离群点,即对分离群点进行剔除,从而获得最优焊缝 轮廓曲线。
本发明中步骤2中具体的剔除分离群点方法如下:
1):通过差分计算,遴选出有问题的数据点;
2):然后分析这些数据是否在每次激光传感器扫描数据的开始;
3):若是则表明目前扫描到的数据为分离群点,误差较大,则采 用上一次扫描后相应位置已经优化的数据点替代此次相应位置的数 据进行这次的数据优化计算;
4):如果分析得出步骤1中数据不在每次激光传感器扫描数据的 开始位置,那么其将直接继续下一步骤,即除起始端外其他中间段数 据若有误差则直接采用上述最小二乘法拟合最优曲线;
5):经过步骤3或者步骤4分析后,对位于分离群点两侧正确 数据进行最小二乘法拟合;
6):再根据最小二乘法重置分离群点数据即可。
本发明中步骤1中通过差分计算,遴选出有问题的数据点的具体 工作方法如下:
先通过差分排查选出有问题的扫描点,再进行拟合;
差分排除有问题扫描点的方法如下:
经过多次试测,确定差分阈值δ;
假设一个扫描点的坐标位置是(xi,yi),下一个扫描点的坐标位 置是(xi+1,yi+1),若
Figure BDA0002339449290000031
Figure BDA0002339449290000032
则认为(xi+1,yi+1) 为有问题的点,需经优化后替换原有点。
本发明中在权5中机械臂工作时,激光焊接头和激光传感器由同 一运动平台控制,间距为34-70cm,随着激光焊接头的移动,激光传 感器也随之移动,可不断扫描下一位置,每次将扫描的点送至控制器 中进行处理,生成新的焊缝点,控制激光焊接头进行焊接,实现边扫 描边焊接;在此过程中扫描点的分段叠加方法如下:
假设一次扫描的数据有N个,扫描单元工件产生的点数为C个,确 定有效点数为A,下一次扫描从A+1位置开始;
每次扫描的开始与上次扫描数据结束处有个数据是重合的,即每 次扫描的结尾和下次扫描的开始有个数据重合,在叠加情况下确定待 优化的数据,避免了错误数据参与优化计算;
若某次扫描进入优化计算的数据的开始处连续B个数据有问题, 就采用上一段已经过优化后的kA+1开始的B个数据作为正确数据, 并作为此段开始待处理的B个数据与此段剩下的N-B个数据一起作 为待处理的数据进行优化;
上一段结尾处可能会遇到分离群点,为避免优化数据出错,顾叠 加时未采用上段kA+1开始至A+N处所有数据进行优化,只采用了 上段从kA+1开始优化的B个数据;
最后对叠加形成的新数据进行优化。
本发明中最小二乘法拟合的具体方法如下:
y=a0+a1x+a2x2+a3x3
y为扫描点的纵坐标,x为扫描点的横坐标,a0、a1、a2、a3为局部最小二 乘法因子 从错误数据段往前、往后延伸几个数据来拟合局部最小二乘法相关因 子。
为使目标函数
Figure BDA0002339449290000051
为最小,可使:
Figure BDA0002339449290000052
Figure BDA0002339449290000053
j=0,1,2,3
E为实际值与计算值之前的差值平方,目标值越小越好;
K为次方,这里选择0-3.
m为参与局部最小二乘法的扫描点的个数,此处选4;
Figure BDA0002339449290000054
j=0,1,2,3
Figure BDA0002339449290000055
从错误数据区域段往前、往后延伸各几个数据,确保数据是正确 的,考虑到控制器的运算性能与工件的特性,此处选择临近问题数据 两侧4个正确轮廓点的坐标数据带入上式,由此可得a0、a1、a2、a3的 数值;
若从(xi+1,yi+1)开始连续有若干个分离群点,则由xi+1通过局部 最小二乘拟合的公式1计算获得yi+1,其他有问题的点依次类推,即 拟合了正确的曲线。
本发明中还包括激光焊接机,所述激光焊接机上设有机架、焊接 机械臂、用于拾取焊点位置的激光位移传感器和激光焊接头,所述机 架上设有工作台,所述工作台上设有一组限位组件,所焊接机械臂设 于机架上,所述激光卫衣传感器安装于焊接机械臂上,所述激光激光 焊接头安装于机械臂的端部。
本发明中所述机械臂通过转盘与机架做可旋转式连接。
本发明中所述限位组件与工作台做可拆式连接,所述限位组件能 够根据实际焊接的铝合金工件进行更换。
本发明中所述工作台上设有轨道,所述限位组件通过滑块与工作 台上的轨道做滑动式连接,且所述限位组件的后方设有用于驱动限位 组件移动的驱动气缸。
上述技术方案可以看出,本发明具有如下有益效果:
1、本发明中所述的一种高精度铝合金激光自熔焊接工艺,其通 过对激光传感器对铝合金工件的焊接位置进行检测,并通过控制器对 焊缝上点的位置进行优化,再通过激光焊接枪对铝合金工件进行焊 接,整个过程简单,方便在提高了其焊接精度的同时还提高了其工作 效率,同时也省去了焊丝等材料的使用,节约了焊接的成本,从而让 更好的满足生产的要求。
2、本发明中的控制器采用了差分计算,剔除了分离群点,通过 分段叠加,确保数据的有效性,采用局部最小二乘法重新拟合了铝合 金工件焊接轮廓数据,避免陷入采用分离群点数据优化产生的错误影 响。
3、本发明中所述限位组件的设置,能够对铝合金工件进行很好 的限位,避免铝合金工件在焊接过程中出现移动现象,从而进一步提 高了其焊接的精准度。
附图说明
图1为本发明所述的高精度铝合金激光自熔焊接工艺的结构示 意图;
图2为本发明中焊缝轮廓曲线优化的流程图;
图3为本发明中机械臂的结构示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
实施例
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始 至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下 面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为 对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、 “宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、 “顶”、“底”“内”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图 所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗 示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能 理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相 对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二” 的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除 非另有说明,“多个”的含义是两个或两个以上,除非另有明确的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、 “固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接, 或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通 过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员 而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或 之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直 接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、 “上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一 特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面” 包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第 二特征。
本实施例中一种高精度铝合金激光自熔焊接工艺,具体的焊接工 艺如下:
1):首先通过限位组件12对待焊接的铝合金加工件进行限位;
2):然后对铝合金加工件的待焊接部位进行表面处理,并对处理 部分进行清洗;
3):然后通过焊接机构上的激光传感器3对待焊工件的焊缝进行 焊缝扫描,拾取焊缝点数据;
4):当激光传感器3扫描后将扫描的信息通过模拟量模块送至控 制器,控制器通过优化算法修正焊缝点数据,形成与铝合金工件 匹配度高的焊缝曲线,即对激光传感器3获取的焊缝轮廓曲线优 化;
5):然后控制器根据修正后的焊缝点数据通过激光焊接头4对铝 合金工件的待处理焊缝进行激光焊接;
6):最后对焊接后的工件进行清理和检验即可。
本实施例中在工作方法的步骤2中激光传感器3获取的焊缝轮廓 曲线优化的具体方法如下:
1):首先对激光传感器3拾取的点进行差分计算,即:通过差分 计算,遴选出有问题的数据点;
2):剔除分离群点,即对分离群点进行剔除,从而获得最优焊缝 轮廓曲线。
激光传感器3获取的焊缝轮廓曲线优化方法的步骤2中具体的剔 除分离群点方法如下:
1):通过差分计算,遴选出有问题的数据点;
2):然后分析这些数据是否在每次激光传感器3扫描数据的开 始;
3):若是则表明目前扫描到的数据为分离群点,误差较大,则采 用上一次扫描后相应位置已经优化的数据点替代此次相应位置的数 据进行这次的数据优化计算;
4):如果分析得出步骤1中数据不在每次激光传感器3扫描数 据的开始位置,那么其将直接继续下一步骤,即除起始端外其他中间 段数据若有误差则直接采用上述最小二乘法拟合最优曲线;
5):经过步骤3或者步骤4分析后,对位于分离群点两侧正确 数据进行最小二乘法拟合;
6):再根据最小二乘法重置分离群点数据即可。
本实施例中步骤1中通过差分计算,遴选出有问题的数据点的具 体工作方法如下:
先通过差分排查选出有问题的扫描点,再进行拟合;
差分排除有问题扫描点的方法如下:
经过多次试测,确定差分阈值δ;
假设一个扫描点的坐标位置是xi,yi,下一个扫描点的坐标位置是xi+1,yi+1,若
Figure BDA0002339449290000101
Figure BDA0002339449290000102
则认为xi+1,yi+1为有问题的 点,需经优化后替换原有点。
本实施例中在遴选出有问题的数据点的过程中,机械臂工作时, 激光和激光传感器3由同一运动平台控制,间距为50cm,随着激光 焊接头4的移动,激光传感器3也随之移动,可不断扫描下一位置, 每次将扫描的点送至控制器中进行处理,生成新的焊缝点,控制激光 焊接头4进行焊接,实现边扫描边焊接;在此过程中扫描点的分段叠 加方法如下:
假设一次扫描的数据有N个,扫描单元工件产生的点数为C个,确 定有效点数为AC<N-A<2C,下一次扫描从A+1位置开始;
每次扫描的开始与上次扫描数据结束处有N-A个数据是重合的, 即每次扫描的结尾和下次扫描的开始有N-A个数据重合,在叠加情 况下确定待优化的数据,避免了错误数据参与优化计算;
若某次扫描进入优化计算的数据的开始处连续B个数据有问题, 就采用上一段已经过优化后的kA+1开始的B个数据作为正确数据, 并作为此段开始待处理的B个数据与此段剩下的N-B个数据一起作 为待处理的数据进行优化;
上一段结尾处可能会遇到分离群点,为避免优化数据出错,顾叠 加时未采用上段kA+1开始至k-1A+N处所有数据进行优化,只采用 了上段从kA+1开始优化的B个数据;
最后对叠加形成的新数据进行优化。
本实施例中最小二乘法拟合的具体方法如下:
y=a0+a1x+a2x2+a3x3 公式1
y为扫描点的纵坐标,x为扫描点的横坐标,a0、a1、a2、a3为局部最小二 乘法因子
从错误数据段往前、往后延伸几个数据确保是稳定的正确数据来拟合 局部最小二乘法相关因子。
为使目标函数
Figure BDA0002339449290000111
公式2为最小,可使:
Figure BDA0002339449290000112
Figure BDA0002339449290000113
E为实际值与计算值之前的差值平方,目标值越小越好;
K为次方,这里选择0-3.
m为参与局部最小二乘法的扫描点的个数,此处选4;
Figure BDA0002339449290000114
Figure BDA0002339449290000115
从错误数据区域段往前、往后延伸各几个数据,确保数据是正确 的,考虑到控制器的运算性能与工件的特性,此处选择临近问题数据 两侧4个正确轮廓点的坐标数据带入上式6,由此可得a0、a1、a2、a3的数值;
若从xi+1,yi+1开始连续有若干个分离群点,则由xi+1通过局部最小 二乘拟合的公式1计算获得yi+1,其他有问题的点依次类推,即拟合 了正确的曲线。
实施例2
本实施例中一种高精度铝合金激光自熔焊接工艺,具体的焊接工 艺如下:
1:首先通过限位组件12对待焊接的铝合金加工件进行限位;
2:然后对铝合金加工件的待焊接部位进行表面处理,并对处理 部分进行清洗;
3:然后通过焊接机构上的激光传感器3对待焊工件的焊缝进行 焊缝扫描,拾取焊缝点数据;
4:当激光传感器3扫描后将扫描的信息通过模拟量模块送至控 制器,控制器通过优化算法修正焊缝点数据,形成与铝合金工件 匹配度高的焊缝曲线,即对激光传感器3获取的焊缝轮廓曲线优 化;
5:然后控制器根据修正后的焊缝点数据通过激光焊接头4对铝 合金工件的待处理焊缝进行激光焊接;
6:最后对焊接后的工件进行清理和检验即可。
本实施例中在工作方法的步骤2中激光传感器3获取的焊缝轮廓 曲线优化的具体方法如下:
1:首先对激光传感器3拾取的点进行差分计算,即:通过差分 计算,遴选出有问题的数据点;
2:剔除分离群点,即对分离群点进行剔除,从而获得最优焊缝 轮廓曲线。
激光传感器3获取的焊缝轮廓曲线优化方法的步骤2中具体的剔 除分离群点方法如下:
1:通过差分计算,遴选出有问题的数据点;
2:然后分析这些数据是否在每次激光传感器3扫描数据的开始;
3:若是则表明目前扫描到的数据为分离群点,误差较大,则采 用上一次扫描后相应位置已经优化的数据点替代此次相应位置的数 据进行这次的数据优化计算;
4:如果分析得出步骤1中数据不在每次激光传感器3扫描数据 的开始位置,那么其将直接继续下一步骤,即除起始端外其他中间段 数据若有误差则直接采用上述最小二乘法拟合最优曲线;
5:经过步骤3或者步骤4分析后,对位于分离群点两侧正确数 据进行最小二乘法拟合;
6:再根据最小二乘法重置分离群点数据即可。
本实施例中步骤1中通过差分计算,遴选出有问题的数据点的具 体工作方法如下:
先通过差分排查选出有问题的扫描点,再进行拟合;
差分排除有问题扫描点的方法如下:
经过多次试测,确定差分阈值δ;
假设一个扫描点的坐标位置是xi,yi,下一个扫描点的坐标位置是 xi+1,yi+1,若
Figure BDA0002339449290000131
Figure BDA0002339449290000132
则认为xi+1,yi+1为有问题的 点,需经优化后替换原有点。
本实施例中在遴选出有问题的数据点的过程中,机械臂工作时, 激光和激光传感器3由同一运动平台控制,间距为50cm,随着激光 焊接头4的移动,激光传感器3也随之移动,可不断扫描下一位置, 每次将扫描的点送至控制器中进行处理,生成新的焊缝点,控制激光 焊接头4进行焊接,实现边扫描边焊接;在此过程中扫描点的分段叠 加方法如下:
假设一次扫描的数据有N个,扫描单元工件产生的点数为C个,确 定有效点数为AC<N-A<2C,下一次扫描从A+1位置开始;
每次扫描的开始与上次扫描数据结束处有N-A个数据是重合的, 即每次扫描的结尾和下次扫描的开始有N-A个数据重合,在叠加情 况下确定待优化的数据,避免了错误数据参与优化计算;
若某次扫描进入优化计算的数据的开始处连续B个数据有问题, 就采用上一段已经过优化后的kA+1开始的B个数据作为正确数据, 并作为此段开始待处理的B个数据与此段剩下的N-B个数据一起作 为待处理的数据进行优化;
上一段结尾处可能会遇到分离群点,为避免优化数据出错,顾叠 加时未采用上段kA+1开始至k-1A+N处所有数据进行优化,只采用 了上段从kA+1开始优化的B个数据;
最后对叠加形成的新数据进行优化。
本实施例中最小二乘法拟合的具体方法如下:
y=a0+a1x+a2x2+a3x3。 公式1
y为扫描点的纵坐标,x为扫描点的横坐标,a0、a1、a2、a3为局部最小二 乘法因子
从错误数据段往前、往后延伸几个数据确保是稳定的正确数据来拟合 局部最小二乘法相关因子。
为使目标函数
Figure BDA0002339449290000151
公式2为最小,可使:
Figure BDA0002339449290000152
Figure BDA0002339449290000153
Figure BDA0002339449290000154
E为实际值与计算值之前的差值平方,目标值越小越好;
K为次方,这里选择0-3.
m为参与局部最小二乘法的扫描点的个数,此处选4;
Figure BDA0002339449290000155
Figure BDA0002339449290000156
Figure BDA0002339449290000157
从错误数据区域段往前、往后延伸各几个数据,确保数据是正确 的,考虑到控制器的运算性能与工件的特性,此处选择临近问题数据 两侧4个正确轮廓点的坐标数据带入上式6,由此可得a0、a1、a2、a3的数值;
若从xi+1,yi+1开始连续有若干个分离群点,则由xi+1通过局部最小 二乘拟合的公式1计算获得yi+1,其他有问题的点依次类推,即拟合 了正确的曲线。
本实施例中还包括激光焊接机,所述激光焊接机上设有机架1、 焊接机械臂2、用于拾取焊点位置的激光位移传感器3和激光焊接头 4,所述机架1上设有工作台11,所述工作台11上设有一组限位组 件12,所焊接机械臂2设于机架1上,所述激光卫衣传感器3安装 于焊接机械臂2上,所述激光激光焊接头44安装于机械臂2的端部。
本实施例中所述机械臂2通过转盘与机架1做可旋转式连接。
本实施例中所述限位组件12与工作台11做可拆式连接,所述限 位组件12能够根据实际焊接的铝合金工件进行更换。
本实施例中所述工作台11上设有轨道,所述限位组件12通过滑 块与工作台11上的轨道做滑动式连接,且所述限位组件12的后方设 有用于驱动限位组件12移动的驱动气缸。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领 域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出 若干改进,这些改进也应视为本发明的保护范围。

Claims (10)

1.一种高精度铝合金激光自熔焊接工艺,其特征在于:具体的焊接工艺如下:
1):首先通过限位组件(12)对待焊接的铝合金加工件进行限位;
2):然后对铝合金加工件的待焊接部位进行表面处理,并对处理部分进行清洗;
3):然后通过焊接机构上的激光传感器(3)对待焊工件的焊缝进行焊缝扫描,拾取焊缝点数据;
4):当激光传感器(3)扫描后将扫描的信息通过模拟量模块送至控制器,控制器通过优化算法修正焊缝点数据,形成与铝合金工件匹配度高的焊缝曲线,即对激光传感器(3)获取的焊缝轮廓曲线优化;
5):然后控制器根据修正后的焊缝点数据通过激光焊接头(4)对铝合金工件的待处理焊缝进行激光焊接;
6):最后对焊接后的工件进行清理和检验即可。
2.根据权利要求1所述的高精度铝合金激光自熔焊接工艺,其特征在于:在工作方法的步骤2中激光传感器(3)获取的焊缝轮廓曲线优化的具体方法如下:
1):首先对激光传感器(3)拾取的点进行差分计算,即:通过差分计算,遴选出有问题的数据点;
2):剔除分离群点,即对分离群点进行剔除,从而获得最优焊缝轮廓曲线。
3.根据权利要求2所述的高精度铝合金激光自熔焊接工艺,其特征在于:步骤2中具体的剔除分离群点方法如下:
1):通过差分计算,遴选出有问题的数据点;
2):然后分析这些数据是否在每次激光传感器(3)扫描数据的开始;
3):若是则表明目前扫描到的数据为分离群点,误差较大,则采用上一次扫描后相应位置已经优化的数据点替代此次相应位置的数据进行这次的数据优化计算;
4):如果分析得出步骤1中数据不在每次激光传感器(3)扫描数据的开始位置,那么其将直接继续下一步骤,即除起始端外其他中间段数据若有误差则直接采用上述最小二乘法拟合最优曲线;
5):经过步骤3或者步骤4分析后,对位于分离群点两侧正确数据进行最小二乘法拟合;
6):再根据最小二乘法重置分离群点数据即可。
4.根据权利要求3所述的高精度铝合金激光自熔焊接工艺,其特征在于:步骤1中通过差分计算,遴选出有问题的数据点的具体工作方法如下:
先通过差分排查选出有问题的扫描点,再进行拟合;
差分排除有问题扫描点的方法如下:
经过多次试测,确定差分阈值δ;
假设一个扫描点的坐标位置是(xi,yi),下一个扫描点的坐标位置是(xi+1,yi+1),若
Figure FDA0002339449280000031
Figure FDA0002339449280000032
则认为(xi+1,yi+1)为有问题的点,需经优化后替换原有点。
5.根据权利要求4所述的高精度铝合金激光自熔焊接工艺,其特征在于:在权5中机械臂工作时,激光焊接头(4)和激光传感器(3)由同一运动平台控制,间距为50cm,随着激光焊接头(4)的移动,激光传感器(3)也随之移动,可不断扫描下一位置,每次将扫描的点送至控制器中进行处理,生成新的焊缝点,控制激光焊接头(4)进行焊接,实现边扫描边焊接;在此过程中扫描点的分段叠加方法如下:
假设一次扫描的数据有N个,扫描单元工件产生的点数为C个,确定有效点数为A(C<N-A<2C),下一次扫描从A+1位置开始;
每次扫描的开始与上次扫描数据结束处有(N-A)个数据是重合的,即每次扫描的结尾和下次扫描的开始有(N-A)个数据重合,在叠加情况下确定待优化的数据,避免了错误数据参与优化计算;
若某次扫描进入优化计算的数据的开始处连续B个数据有问题,就采用上一段已经过优化后的kA+1开始的B个数据作为正确数据,并作为此段开始待处理的B个数据与此段剩下的N-B个数据一起作为待处理的数据进行优化;
上一段结尾处可能会遇到分离群点,为避免优化数据出错,顾叠加时未采用上段kA+1开始至(k-1)A+N处所有数据进行优化,只采用了上段从kA+1开始优化的B个数据;
最后对叠加形成的新数据进行优化。
6.根据权利要求5所述的高精度铝合金激光自熔焊接工艺,其特征在于:最小二乘法拟合的具体方法如下:
y=a0+a1x+a2x2+a3x3。(公式1)
y为扫描点的纵坐标,x为扫描点的横坐标,a0、a1、a2、a3为局部最小二乘法因子从错误数据段往前、往后延伸几个数据(确保是稳定的正确数据)来拟合局部最小二乘法相关因子。
为使目标函数
Figure FDA0002339449280000041
为最小,可使:
Figure FDA0002339449280000042
Figure FDA0002339449280000043
Figure FDA0002339449280000044
E为实际值与计算值之前的差值平方,目标值越小越好;
K为次方,这里选择0-3.
m为参与局部最小二乘法的扫描点的个数,此处选4;
Figure FDA0002339449280000045
Figure FDA0002339449280000046
从错误数据区域段往前、往后延伸各几个数据,确保数据是正确的,考虑到控制器的运算性能与工件的特性,此处选择临近问题数据两侧4个正确轮廓点的坐标数据带入上式(6),由此可得a0、a1、a2、a3的数值;
若从(xi+1,yi+1)开始连续有若干个分离群点,则由xi+1通过局部最小二乘拟合的公式1计算获得yi+1,其他有问题的点依次类推,即拟合了正确的曲线。
7.根据权利要求1所述的高精度铝合金激光自熔焊接工艺,其特征在于:还包括激光焊接机,所述激光焊接机上设有机架(1)、焊接机械臂(2)、用于拾取焊点位置的激光位移传感器(3)和激光焊接头(4),所述机架(1)上设有工作台(11),所述工作台(11)上设有一组限位组件(12),所焊接机械臂(2)设于机架(1)上,所述激光卫衣传感器(3)安装于焊接机械臂(2)上,所述激光激光焊接头(4)(4)安装于机械臂(2)的端部。
8.根据权利要求7所述的高精度铝合金激光自熔焊接工艺,其特征在于:所述机械臂(2)通过转盘与机架(1)做可旋转式连接。
9.根据权利要求7所述的高精度铝合金激光自熔焊接工艺,其特征在于:所述限位组件(12)与工作台(11)做可拆式连接,所述限位组件(12)能够根据实际焊接的铝合金工件进行更换。
10.根据权利要求7所述的高精度铝合金激光自熔焊接工艺,其特征在于:所述工作台(11)上设有轨道,所述限位组件(12)通过滑块与工作台(11)上的轨道做滑动式连接,且所述限位组件(12)的后方设有用于驱动限位组件(12)移动的驱动气缸。
CN201911371591.2A 2019-12-26 2019-12-26 一种高精度铝合金激光自熔焊接工艺 Active CN111250868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911371591.2A CN111250868B (zh) 2019-12-26 2019-12-26 一种高精度铝合金激光自熔焊接工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911371591.2A CN111250868B (zh) 2019-12-26 2019-12-26 一种高精度铝合金激光自熔焊接工艺

Publications (2)

Publication Number Publication Date
CN111250868A true CN111250868A (zh) 2020-06-09
CN111250868B CN111250868B (zh) 2022-08-23

Family

ID=70923462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911371591.2A Active CN111250868B (zh) 2019-12-26 2019-12-26 一种高精度铝合金激光自熔焊接工艺

Country Status (1)

Country Link
CN (1) CN111250868B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077757A (ko) * 2002-03-27 2003-10-04 사단법인 고등기술연구원 연구조합 로봇을 이용한 레이저 용접헤드 위치제어장치 및 제어방법
CN2605955Y (zh) * 2002-12-24 2004-03-10 华中科技大学 薄板激光切割—焊接设备
CN101559512A (zh) * 2009-05-21 2009-10-21 山东大学 基于激光测距的平板对接焊缝焊接轨迹检测与控制方法
CN201514565U (zh) * 2009-07-22 2010-06-23 中国科学院沈阳自动化研究所 一种激光焊接焊缝跟踪实现装置
CN102163291A (zh) * 2010-02-22 2011-08-24 上海镭立激光科技有限公司 激光标刻多重加密二维码指纹防伪认证方法和系统
CN105382410A (zh) * 2015-12-29 2016-03-09 苏州润昇精密机械有限公司 具有自动跟踪功能的激光焊接设备
CN105397285A (zh) * 2015-12-29 2016-03-16 苏州润昇精密机械有限公司 激光焊接机自动跟踪机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077757A (ko) * 2002-03-27 2003-10-04 사단법인 고등기술연구원 연구조합 로봇을 이용한 레이저 용접헤드 위치제어장치 및 제어방법
CN2605955Y (zh) * 2002-12-24 2004-03-10 华中科技大学 薄板激光切割—焊接设备
CN101559512A (zh) * 2009-05-21 2009-10-21 山东大学 基于激光测距的平板对接焊缝焊接轨迹检测与控制方法
CN201514565U (zh) * 2009-07-22 2010-06-23 中国科学院沈阳自动化研究所 一种激光焊接焊缝跟踪实现装置
CN102163291A (zh) * 2010-02-22 2011-08-24 上海镭立激光科技有限公司 激光标刻多重加密二维码指纹防伪认证方法和系统
CN105382410A (zh) * 2015-12-29 2016-03-09 苏州润昇精密机械有限公司 具有自动跟踪功能的激光焊接设备
CN105397285A (zh) * 2015-12-29 2016-03-16 苏州润昇精密机械有限公司 激光焊接机自动跟踪机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王旋: "焊接机器人焊缝信息视觉检测系统研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Also Published As

Publication number Publication date
CN111250868B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN110153534B (zh) 适应焊接变形的多层多道机器人焊接路径规划方法及系统
CN110834132B (zh) 椭球面箱底上铝合金法兰电弧熔丝增材制造方法
CN112518072B (zh) 一种基于线结构光视觉的空间相贯曲线焊缝结构建模方法
CN103170707A (zh) 缸体机器人焊接工作站
CN105127551A (zh) 一种基于可移动式厚板的自动焊接系统及其焊接方法
CN115255555A (zh) 一种焊接工艺
CN104475897B (zh) 一种铝钢cmt熔钎焊接过程控制方法
GB2131571A (en) Automatically following a sensed path for welding
CN215238786U (zh) 焊接装置
CN108788394B (zh) 一种激光扫描焊缝跟踪装置及其跟踪方法
CN111250868B (zh) 一种高精度铝合金激光自熔焊接工艺
EP2594356A2 (en) Tig welding machine
CN101554671B (zh) 电弧焊接法
CN114669834A (zh) 一种坡口焊接方法
CN113664431A (zh) 一种可实时调整姿态的钢结构件焊接臂及调整方法
CN111843120B (zh) 基于电弧传感和位置前馈的机器人焊缝跟踪算法
CN110608684B (zh) 一种单层多道焊缝堆积熔敷效果检测方法及系统
CN113042926A (zh) 一种电力杆塔法兰肋板自动焊接装置及方法
CN1215641A (zh) Co2气体保护双丝短路过渡窄间隙全位置自动焊接设备
CN111421231A (zh) 一种全方位激光焊接生产线及其焊接方法
WO2023202025A1 (zh) 铁路货车端墙部件焊接方法
CN106216828A (zh) 电伺服c型机器人焊钳
CN214867913U (zh) 基于线激光焊缝检测与跟踪的曲面拼板焊接装置
JP2021023977A (ja) 可搬型溶接ロボットの溶接制御方法、溶接制御装置、可搬型溶接ロボット及び溶接システム
CN113787247B (zh) 一种焊接跟踪装置及其跟踪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220803

Address after: 518000 floor 3, building 3, hekeng Industrial Park, Langkou community, Dalang street, Longhua new area, Shenzhen, Guangdong

Applicant after: SHENZHEN WANSHUNXING SCIENCE & TECHNOLOGY CO.,LTD.

Address before: Fenghuangjing Village, Weitang Town, Xiangcheng District, Suzhou City, Jiangsu Province 215100 (next to Fenghuangjing Village Committee)

Applicant before: SUZHOU QIAOFENG PRECISION MACHINERY CO.,LTD.

GR01 Patent grant
GR01 Patent grant