CN111248876B - 基于压电薄膜传感信号的心率和呼吸率的计算方法 - Google Patents

基于压电薄膜传感信号的心率和呼吸率的计算方法 Download PDF

Info

Publication number
CN111248876B
CN111248876B CN202010125549.9A CN202010125549A CN111248876B CN 111248876 B CN111248876 B CN 111248876B CN 202010125549 A CN202010125549 A CN 202010125549A CN 111248876 B CN111248876 B CN 111248876B
Authority
CN
China
Prior art keywords
signal
calculating
time
rate
dtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010125549.9A
Other languages
English (en)
Other versions
CN111248876A (zh
Inventor
张雅勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Changhong Electric Co Ltd
Original Assignee
Sichuan Changhong Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Changhong Electric Co Ltd filed Critical Sichuan Changhong Electric Co Ltd
Priority to CN202010125549.9A priority Critical patent/CN111248876B/zh
Publication of CN111248876A publication Critical patent/CN111248876A/zh
Application granted granted Critical
Publication of CN111248876B publication Critical patent/CN111248876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/04Babies, e.g. for SIDS detection
    • A61B2503/045Newborns, e.g. premature baby monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency

Abstract

本发明公开了一种基于压电薄膜传感信号的心率和呼吸率的计算方法,包括:以f*aHz的采样率采集原始信号,从中截取信号S并进行重采样、去噪和6层小波分解,小波分解后的第5层和第6层的细节系数,并分别进行重构相加,获取峰值点,对峰值点对应的时间间隔进行筛选后求其平均值,计算心率=60/平均值;提取小波分解后近似系数,并进行重构、滤波后获取峰值点,并对时间间隔求平均值;计算呼吸率=60/平均值。本发明采用时频结合的方法,在时域针选用了f*a的采样率和去噪方法,有利于抑制噪声,突出有用信号特征;在频域针对性的减小小波分解的失真,并对频率范围进行匹配,减少了无用信号的影响。

Description

基于压电薄膜传感信号的心率和呼吸率的计算方法
技术领域
本发明涉及信号处理技术领域,具体的说,是基于压电薄膜传感信号的心率和呼吸率的计算方法。
背景技术
心率和呼吸率是人体最基础的生命体征指标,具有重要的生理意义。新生儿由于发育不完善,力量不足,又无法表达,加之家庭照料缺乏专业监护设备,睡眠中发生口鼻遮挡、吐奶阻塞气管、疾病等状态下出现心率或呼吸的异常,不易被及时觉察,极易延误救治,导致新生儿死亡等严重后果,具有极大的危害性。
在家庭环境下通过传感器连续实时监测新生儿心率和呼吸率具有重要意义。目前已有的方案主要基于接触式传感器检测呼吸心率,这些传感器通常置于腕带、衣物、睡袋、尿不湿、床垫等与身体近距离接触的物体表面,需要定制,价格昂贵,舒适性低,清洗不便,难以在家庭监护领域推广使用。
近年来出现的压电薄膜传感器,放置于人体下方的床垫下方也可采集到身体振动信号,传感器柔软无感且无需和身体直接接触,在新生儿的家庭监护上有良好的应用前景。但新生儿心跳呼吸表浅,传递到床垫下方的身体振动信号十分微弱,干扰多,信噪比极低。此外,新生儿的心率和呼吸率波动范围很大,心率可达60-240次/分,呼吸率可达15-120次/分,两者在频率上难以区分,常规信号处理方法无法准确计算心率和呼吸率。因此,需要开发一种可分离出心率和呼吸率的新型计算方法。
发明内容
本发明的目的在于提供基于压电薄膜传感信号的心率和呼吸率的计算方法,用于解决现有技术中压电播磨传感器采集的信息在心率和呼吸率的频率上难以区分无法准确计算心率和呼吸率的问题。
本发明通过下述技术方案解决上述问题:
一种基于压电薄膜传感信号的心率和呼吸率的计算方法,包括:
步骤S1:以f*aHz的采样率从压电薄膜传感器采集M分钟的原始信号;其中60<f<70,f∈N+,a>1且a∈N,M大于1且M∈N+,从中截取至少1分钟的信号S,且截取的信号的长度是f的整数倍,信号长度指信号的点数,为了简化后续重采样步骤,截取的信号长度为重采样后频率的倍数,新信号S’中的一个点是由原信号S中的a个点共同得到;所述压电薄膜传感器用于采集新生儿身体振动信号;
步骤S2:将信号S重采样为采样率fHz的信号并同时进行去噪,得到信号s′,
Figure BDA0002394290520000021
其中k∈N+,且1≤k≤L/a,L信号S的长度;
步骤S3:对信号s′进行6层小波分解,其中小波基使用sym8;
步骤S4:计算实时心率和实时呼吸率,具体包括:
步骤S411:获取小波分解后的第5层和第6层的细节系数,并分别进行重构;
步骤S412:将重构后得到的信号相加,并提取相加后信号的所有峰值点的时间点,记作th1、th2、…、thn
步骤S413:求取所有相邻峰值点之间的时间间隔,组成序列[dth1,dth2,…,dthi,…,dthn-1],dthi=thi+1-thi,i=1,2,3,…,n-1;
步骤S414:基于先验知识,生理信号应有一个合理的范围,即去除明显过长和过短的间隔,因此从序列中去除大于1秒以及从序列中去除小于0.24秒的时间间隔,对剩余的时间间隔求取均值,记为mean_dth;
步骤S415:计算得到:心率=60/(mean_dth)次/分;
步骤S421:提取小波分解后的第5层的近似系数,并进行重构;
步骤S422:对重构后得到的信号进行高通滤波,通带截止频率为0.25Hz;
步骤S423:对高通滤波后的信号提取所有峰值点的时间点,记为tb1、tb2、…、tbm
步骤S424:求取所有相邻峰值点之间的时间间隔,组成序列[dtb1,dtb2,…,dtbj,…,dtbm-1],dtbj=tbj+1-tbj,j=1,2,3,…,m-1;
步骤S425:从序列中去除大于4秒的时间间隔以及去除小于0.5秒的时间间隔,对剩余的时间间隔求取均值,记为mean_dtb;
步骤S426:计算得到:呼吸率=60/(mean_dtb)次/分。
本发明采用高采样率再进行降采样同步均值去噪的方法,可使信号中的随机噪声、工频噪声等互相抵消,消减短时高频噪音成分,平滑信号波形,且保留有用信号特征。采样率范围结合降采样,可减小小波分解层数,减少小波分解带来的信号失真。本方案采用sym8小波基,并针对心率和呼吸率计算分别选取不同的小波系数重构,可使小波分解后的频带与新生儿心率呼吸率频率范围更好匹配,减少无用信号的影响。
本发明与现有技术相比,具有以下优点及有益效果:
本发明采用时频结合的方法,在时域针对新生儿心率和呼吸率特点,选用了f*a的采样率和去噪方法,有利于抑制噪声,突出有用信号特征;在频域针对性的减小小波分解的失真,并对频率范围进行匹配,减少了无用信号的影响,从而更加有利于从重构信号中提取到心率和呼吸率。
附图说明
图1为本发明中压电薄膜传感器采集的原始身体振动信号;
图2为计算心率时处理后的波形及峰值点;
图3为计算呼吸率时处理后的波形及峰值点。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1:
一种基于压电薄膜传感信号的心率和呼吸率的计算方法,包括:
(1)利用压电薄膜传感器放置于婴儿床床垫下以采样率4096Hz采集2分钟的身体振动信号S,如图1所示;
(2)将该信号重采样至64Hz的采样率并同时进行去噪,得到信号s′,
Figure BDA0002394290520000041
其中k是信号S′每个点的下标,k∈N+,且1≤k≤L/a,L信号S的长度;
(3)使用sym8小波基对信号S′进行6层小波分解;
(4)计算实时心率:
(4.11)提取小波分解后第5层、第6层的细节系数;
(4.12)分别对第5层、第6层的细节系数进行重构;
(4.13)将第5层、第6层细节系数重构后得到的信号相加,并提取相加后信号的所有峰值点的时间点,记为th1、th2、…、thn,如图2所示;
(4.14)求取所有相邻峰值点之间的时间间隔,得到序列dthi=thi+1-thi,i=1,2,3,…,n-1;
(4.15)去除大于1秒或小于0.24秒的时间间隔,对剩余的时间间隔求取均值,记为mean_dth;
(4.16)心率=60/mean_dth次/分;
(5)计算实时呼吸率:
(5.1)提取步骤2小波分解后第5层的近似系数;
(5.2)对第5层的近似系数进行重构;
(5.3)对第5层近似系数重构后得到的信号进行高通滤波,其中通带截止频率为0.25Hz,阻带截止频率为0.2Hz,通带最大衰减3dB,阻带最小衰减20dB;
(5.4)对高通滤波后的信号提取所有峰值点的时间点,记为tb1、tb2、…、tbm
(5.5)求取所有相邻峰值点之间的时间间隔,得到序列dtbj=tbj+1-tbj,j=1,2,3,…,m-1,如图3所示;
(5.6)去除大于4秒或小于0.5秒的时间间隔,对剩余的时间间隔求取均值,记为mean_dtb;
(5.7)呼吸率=60/mean_dtb次/分。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (1)

1.基于压电薄膜传感信号的心率和呼吸率的计算方法,其特征在于,包括:
步骤S1:以f*aHz的采样率从压电薄膜传感器采集M分钟的原始信号,从中截取至少1分钟的信号S,且截取的信号的长度是f的整数倍,其中60<f<70,f∈N+,a>1且a∈N,M大于1且M∈N+;
步骤S2:将信号S重采样为采样率f Hz的信号并同时进行去噪,得到信号
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE004
=
Figure DEST_PATH_IMAGE006
,其中t为采样时间点,
Figure DEST_PATH_IMAGE008
为信号S第t个采样时间点对应的幅值,t为正整数;
Figure DEST_PATH_IMAGE009
为信号
Figure 202908DEST_PATH_IMAGE002
的第k个点,k∈N+,且1≤k≤L/a,L为信号S的长度;
步骤S3:对信号
Figure DEST_PATH_IMAGE010
进行6层小波分解,其中小波基使用sym8;
步骤S4:计算实时心率和实时呼吸率,具体包括:
步骤S411:获取小波分解后的第5层和第6层的细节系数,并分别进行重构;
步骤S412:将重构后得到的信号相加,并提取相加后信号的所有峰值点的时间点,记作th1、th2、…、thn
步骤S413:求取所有相邻峰值点之间的时间间隔,组成序列[dth1,dth2,…,dthi,…,dthn-1],dthi=thi+1-thi,i=1,2,3,…,n-1;
步骤S414:从序列中去除大于1秒的时间间隔和小于0.24秒的时间间隔,对剩余的时间间隔求取均值,记为mean_dth;
步骤S415:计算得到:心率=60⁄(mean_dth)次/分;
步骤S421:提取小波分解后的第5层的近似系数,并进行重构;
步骤S422:对重构后得到的信号进行高通滤波,通带截止频率为0.25Hz;
步骤S423:对高通滤波后的信号提取所有峰值点的时间点,记为tb1、tb2、…、tbm
步骤S424:求取所有相邻峰值点之间的时间间隔,组成序列[dtb1,dtb2,…,dtbj,…,dtbm-1],dtbj=tbj+1-tbj,j=1,2,3,…,m-1;
步骤S425:从序列中去除大于4秒的时间间隔和小于0.5秒的时间间隔,对剩余的时间间隔求取均值,记为mean_dtb;
步骤S426:计算得到:呼吸率=60⁄(mean_dtb)次/分。
CN202010125549.9A 2020-02-27 2020-02-27 基于压电薄膜传感信号的心率和呼吸率的计算方法 Active CN111248876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010125549.9A CN111248876B (zh) 2020-02-27 2020-02-27 基于压电薄膜传感信号的心率和呼吸率的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010125549.9A CN111248876B (zh) 2020-02-27 2020-02-27 基于压电薄膜传感信号的心率和呼吸率的计算方法

Publications (2)

Publication Number Publication Date
CN111248876A CN111248876A (zh) 2020-06-09
CN111248876B true CN111248876B (zh) 2021-10-29

Family

ID=70941629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010125549.9A Active CN111248876B (zh) 2020-02-27 2020-02-27 基于压电薄膜传感信号的心率和呼吸率的计算方法

Country Status (1)

Country Link
CN (1) CN111248876B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113143228A (zh) * 2021-04-30 2021-07-23 中科院计算所泛在智能研究院 一种应用于压电传感器信号的心率呼吸率提取方法
CN113854991A (zh) * 2021-11-19 2021-12-31 山东大学 一种心率监测系统
CN114305374A (zh) * 2021-12-29 2022-04-12 广州广电计量检测股份有限公司 一种胎心模拟仪校准装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001735A1 (en) * 2006-06-30 2008-01-03 Bao Tran Mesh network personal emergency response appliance
US20130172691A1 (en) * 2006-05-16 2013-07-04 Bao Tran Health monitoring appliance
US20140213862A1 (en) * 2013-01-28 2014-07-31 Covidien Lp Wavelet-based system and method for analyzing a physiological signal
CN104434064A (zh) * 2014-11-26 2015-03-25 中国科学院计算技术研究所 一种心率和呼吸率信号处理与跟踪方法及其系统
CN104812300A (zh) * 2012-09-19 2015-07-29 瑞思迈传感器技术有限公司 用于确定睡眠阶段的系统和方法
CN105640184A (zh) * 2016-02-16 2016-06-08 毛亚松 一种多功能智能枕头
CN106037704A (zh) * 2016-05-19 2016-10-26 四川长虹电器股份有限公司 一种心音心率计算方法
CN106073745A (zh) * 2016-06-15 2016-11-09 西北工业大学 基于智能手机的心率检测方法
CN107506716A (zh) * 2017-08-17 2017-12-22 华东师范大学 一种基于视频图像的非接触式实时心率测量方法
CN109733257A (zh) * 2019-02-28 2019-05-10 南京信息工程大学 一种用于监控儿童安全的汽车智能座椅及控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069517A1 (en) * 1999-05-12 2000-11-23 Medtronic, Inc. Monitoring apparatus using wavelet transforms for the analysis of heart rhythms
US20110196243A1 (en) * 2010-02-05 2011-08-11 Riheng Wu Non-contact detection of physiological data using stochastic resonance
US10123761B2 (en) * 2015-07-01 2018-11-13 William E. Butler Device and method for spatiotemporal reconstruction of a moving vascular pulse wave in the brain and other organs
CN106175723A (zh) * 2016-06-27 2016-12-07 中国人民解放军第三军医大学第附属医院 一种基于fmcw宽带雷达的多生命监护系统
CN106901695B (zh) * 2017-02-22 2019-08-23 北京理工大学 一种生命信号提取方法及装置
CN107049699A (zh) * 2017-05-11 2017-08-18 南京信息工程大学 一种催眠智能躺椅垫及其心率和呼吸波的测量方法
CN108665054A (zh) * 2018-05-23 2018-10-16 中国计量大学 基于遗传算法优化阈值的Mallat算法在心音信号降噪的应用
CN109359506B (zh) * 2018-08-24 2021-07-27 浙江工业大学 一种基于小波变换的心磁信号降噪方法
CN109497992A (zh) * 2019-01-04 2019-03-22 济南汇医融工科技有限公司 基于机器学习方法的冠心病智能筛查装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172691A1 (en) * 2006-05-16 2013-07-04 Bao Tran Health monitoring appliance
US20080001735A1 (en) * 2006-06-30 2008-01-03 Bao Tran Mesh network personal emergency response appliance
CN104812300A (zh) * 2012-09-19 2015-07-29 瑞思迈传感器技术有限公司 用于确定睡眠阶段的系统和方法
US20140213862A1 (en) * 2013-01-28 2014-07-31 Covidien Lp Wavelet-based system and method for analyzing a physiological signal
CN104434064A (zh) * 2014-11-26 2015-03-25 中国科学院计算技术研究所 一种心率和呼吸率信号处理与跟踪方法及其系统
CN105640184A (zh) * 2016-02-16 2016-06-08 毛亚松 一种多功能智能枕头
CN106037704A (zh) * 2016-05-19 2016-10-26 四川长虹电器股份有限公司 一种心音心率计算方法
CN106073745A (zh) * 2016-06-15 2016-11-09 西北工业大学 基于智能手机的心率检测方法
CN107506716A (zh) * 2017-08-17 2017-12-22 华东师范大学 一种基于视频图像的非接触式实时心率测量方法
CN109733257A (zh) * 2019-02-28 2019-05-10 南京信息工程大学 一种用于监控儿童安全的汽车智能座椅及控制方法

Also Published As

Publication number Publication date
CN111248876A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111248876B (zh) 基于压电薄膜传感信号的心率和呼吸率的计算方法
CN108158573B (zh) 基于自适应阈值小波变换的心电信号降噪方法
Han et al. Electrocardiogram signal denoising based on empirical mode decomposition technique: an overview
US9572504B2 (en) Continuous non-invasive monitoring of a pregnant human subject
Lydon et al. Robust heartbeat detection from in-home ballistocardiogram signals of older adults using a bed sensor
Han et al. Electrocardiogram signal denoising based on a new improved wavelet thresholding
EP3270774B1 (en) Continuous non-invasive monitoring of a pregnant human subject
Taebi et al. Noise cancellation from vibrocardiographic signals based on the ensemble empirical mode decomposition
Prasanth et al. Fetal ECG extraction using adaptive filters
Su et al. Pulse rate estimation using hydraulic bed sensor
CN109498022A (zh) 一种基于光电容积脉搏波的呼吸频率提取方法
Paskaranandavadivel et al. Suppression of ventilation artifacts for gastrointestinal slow wave recordings
Tan et al. EMD-based electrocardiogram delineation for a wearable low-power ECG monitoring device
Santo et al. Respiration rate extraction from ECG signal via discrete wavelet transform
Xu et al. Adaptive motion-artifact reduction in capacitive ECG measurements by using the power-line interference
CN110010145B (zh) 一种消除电子听诊器摩擦声的方法
Wang et al. A capacitive electrocardiography system with dedicated noise-cancellation algorithms for morphological analysis
Fehér Denoising ECG signals by applying discrete wavelet transform
Pandey et al. Wavelet based cancellation of respiratory artifacts in impedance cardiography
Chung et al. Spatial feature extraction from wrist pulse signals
Fei et al. A new type of wavelet de-noising algorithm for lung sound signals
Hsueh et al. Respiratory wheeze detection system
Fedotov Myographic interference filtering from ECG signals using multiresolution wavelet transform
CN206792404U (zh) 心电信号采集前端
CN112908291A (zh) 一种电子听诊器的毛刺噪声消除方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant