CN111244872A - 一种高压输电线路架空地线的布置方法 - Google Patents

一种高压输电线路架空地线的布置方法 Download PDF

Info

Publication number
CN111244872A
CN111244872A CN202010205382.7A CN202010205382A CN111244872A CN 111244872 A CN111244872 A CN 111244872A CN 202010205382 A CN202010205382 A CN 202010205382A CN 111244872 A CN111244872 A CN 111244872A
Authority
CN
China
Prior art keywords
ground wire
insulation
opgw
transmission line
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010205382.7A
Other languages
English (en)
Other versions
CN111244872B (zh
Inventor
张葛祥
杨强
范松海
姚光乐
刘重稷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN202010205382.7A priority Critical patent/CN111244872B/zh
Publication of CN111244872A publication Critical patent/CN111244872A/zh
Application granted granted Critical
Publication of CN111244872B publication Critical patent/CN111244872B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/22Arrangements of earthing wires suspended between mastheads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/20Spatial arrangements or dispositions of lines or cables on poles, posts or towers

Landscapes

  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

本发明公开了一种高压输电线路架空地线的布置方法,包括确定地线绝缘段长度、分段绝缘、中间换位和两点接地的步骤。进一步地,确定地线绝缘段长度具体为:计算最大节距、根据最大节距计算得到地线绝缘段长度等。本发明中两根架空地线均采用相同的布置方式,避免了OPGW逐塔接地,普通地线分段绝缘、单点接地的布置方法时,OPGW更易遭受雷击而导致断股和通信中断的现象,保证了OPGW中信息传输和通信的顺畅,为电力系统的安全稳定运行提供了基础。与分段绝缘、单点接地方式相比,能有效地降低绝缘段首末两端的感应电压;在输电线路单相接地短路运行时,故障相的潜供电流较小,在一定程度上缩短潜供电弧的熄灭时间,提高自动重合闸的成功率。

Description

一种高压输电线路架空地线的布置方法
技术领域
本发明涉及一种高压输电线路架空地线的布置方法,属于高压输电线路领域。
背景技术
我国的架设高压输电线路电压等级高,输电线路长,输电容量大,运行环境恶劣,运行中易遭受雷击的破坏,且随着电压等级的升高,电力杆塔高度增加,杆塔和输电线路遭受雷击的概率也随之增加。若输电线路遭受雷击而导致线路跳闸甚至毁坏电力设备,必会影响电力系统的安全稳定运行,带来巨大的经济损失。因此,为了保证输电线路的安全稳定运行,避免线路遭受雷击,我国220kV及以上的高压输电线路,均布置了两条架空地线,其中一根为普通的钢绞线,另一根为光纤复合架空地线(OPGW)。普通地线的作用为防雷,OPGW兼具有通信和防雷的双重功能,为电力系统内部信息传输和通信的载体。鉴于OPGW的优良性质,近年来,在高压输电线路领域得到了广泛的应用。工程中,普通的钢芯铝绞线均采用分段绝缘、单点接地的布置方法,OPGW采用逐塔接地的布置方法。
输电线路和架空地线为平行架设,各条线路间存在互感和互电容,线路正常运行时,通电的导线周围会产生电磁场,地线上会感应出电磁感应电压和静电感应电压,对于普通地线,从接地点到分段点的末端,感应电压逐渐升高,较高的感应电压会增加线路在绝缘方面的投资,同时也会对线路检修人员产生威胁,对于OPGW,由于采用逐塔接地的布置方法,会形成OPGW--铁塔--大地--铁塔--OPGW的环流,在地线上产生大量的损耗,带来巨大的经济损失,同时也会导致金具发热等一系列问题。两根地线的布置方式不同,导致OPGW更容易遭受雷击,造成地线断股甚至通信中断的问题,给电力系统的稳定性带来一定的影响。在线路单相接地故障时,故障相在接地点会产生潜供电流,潜供电流的幅值是影响潜供电弧熄灭的重要因素之一。地线的布置方法对接地相潜供电流的幅值也有一定的影响,现有普通地线分段绝缘、单点接地,OPGW逐塔接地的布置方法,会在一定程度上增大潜供电流,使得接地线路熄弧时间更长,线路单相重合闸的成功率大大降低。
发明内容
为了克服目前工程中地线布置方法的不足,本发明提供了一种高压输电线路架空地线布置方法,能有效的减小地线上的感应电压、感应电流和损耗,同时能在一定程度上减小单相接地故障时的潜供电流。
实现本发明目的的技术方案为:
一种高压输电线路架空地线的布置方法,包括确定地线绝缘段长度;
分段绝缘:依据地线绝缘段长度,将普通地线与OPGW的对应点分别断开得到绝缘段,绝缘段的前、后两端分别通过带放电间隙的绝缘子挂载到前、后两端位置的杆塔,并保持OPGW光纤连接;
中间换位:普通地线与OPGW的绝缘段,在其中间位置的杆塔,通过跳线将普通地线和OPGW的布置位置进行互换,并分别通过带放电间隙的绝缘子挂载到中间位置的杆塔;
两点接地:临近普通地线与OPGW的绝缘段的长度三分之一和三分之二的点,分别通过对应位置的杆塔接地;普通地线与OPGW的绝缘段还分别通过带放电间隙的绝缘子挂载到其余位置的杆塔。
进一步地,所述确定地线绝缘段长度,具体为:计算最大节距l,
Figure BDA0002420623650000021
其中,Um为架空地线上的感应电压限值;
n为输电线路的回路数;
j为虚数单位;
w为输电线路工频角频率;
IA(i)、IB(i)、IC(i)为最大输电容量时第i个回路中A、B、C三相中的电流;
LDA(i)、LDB(i)、LDC(i)分别为第i个回路中A、B、C三相与地线的互感;
令依次排列的多个杆塔所承载的普通地线或OPGW的长度之和为地线绝缘段长度,且地线绝缘段长度小于最大节距l。
与现有技术相比,本发明的有益效果在于:
1、本发明中两根架空地线均采用相同的布置方式,避免了OPGW逐塔接地,普通地线分段绝缘、单点接地的布置方法时,OPGW更易遭受雷击而导致断股和通信中断的现象,保证了OPGW中信息传输和通信的顺畅,为电力系统的安全稳定运行提供了基础。
2、本发明中地线分段绝缘、两点接地、中点换位的布置方法,在绝缘段内线路三分之一和三分之二附近杆塔处接地,对于同样长度的架空地线,和分段绝缘、单点接地方式相比,能有效地降低绝缘段首末两端的感应电压,减少绝缘的投资;同时,在绝缘段内的中点进行地线换位的方法,换位前后地线上的感应电压得到中和,对于档距相近,导线对称布置的输电线路来说,两接地点中间段的环流接近于0,地线损耗非常低,与现有工程中的布置方式相比,地线上的损耗可忽略不计,能极大地减小供电公司的输电成本。
3、本发明的地线布置方法,在输电线路单相接地短路运行时,与现有地线布置方法相比,故障相的潜供电流较小,在一定程度上缩短潜供电弧的熄灭时间,提高自动重合闸的成功率。
4、本发明适用于任何架设两根架空地线的输电线路,结构简单,适用范围广,损耗低。
附图说明
图1是一个绝缘段内地线布置示意图。
图2是线路布置平面示意图。
图3是建模杆塔塔型及参数图。
图4是仿真模型图。
图5是感应电压分布图。
图6是感应电流分布图。
具体实施方式
为了使本发明的优点和技术方案更加清楚明了,以下将结合附图和实施例对本发明具体实施方法做描述。
首先结合附图对本文提出的分段绝缘、两点接地、中点换位的地线布置方法的实施方法进行说明。其次,建立一个输电线路仿真模型,地线采用本发明的布置方法,通过仿真正常运行时的感应电压、感应电流和地线损耗,单相接地故障运行时的地线潜供电流,验证本文方法的合理性和有效性。
步骤一:线路参数的收集
收集线路的杆塔、导线和地线的型号,线路长度,电压等级和输电容量等线路的结构参数和运行参数。
步骤二:计算地线分段最大节距
本发明中,地线布置方式的分段最大节距为:
Figure BDA0002420623650000031
式中:Um为架空地线上的感应电压限值;
n为输电线路的回路数;
j为虚数单位;
w为输电线路工频角频率;
IA(i)、IB(i)、IC(i)为最大输电容量时第i个回路中A、B、C三相中的电流;
LDA(i)、LDB(i)、LDC(i)分别为第i个回路中A、B、C三相与地线的互感。
分段最大节距的计算也可以采样其它方法,在满足地线两端最大感应电压低于1000V时的分段分段节距,均适用于被发明的地线布置方法。
步骤三:分段绝缘的实现
按照不大于步骤二中计算的地线分段最大节距,将两根地线分成多个绝缘段,且在同一位置两根地线绝缘段长度对应相等,在每个绝缘段内保持地线的连通。对于普通地线分段,每个绝缘段之间保持断开,绝缘段两端分别通过带放电间隙的绝缘子与杆塔连接,实现地线的分段与大地的绝缘。对于OPGW分段,需要保证内部光纤连续,以保证电力信息正常传输。因此,在分段中,通过OPGW绝缘接续盒来实现相邻两绝缘段之间电气绝缘而光纤连续,每个绝缘段的两端部也通过带放电间隙的绝缘子与杆塔连接。
步骤四:两点接地的实现
在绝缘段内靠近线路三分之一处和三分之二处位置的杆塔处通过地线引下线与直接大地连接。在绝缘段内的其余杆塔处,地线均通过带放电间隙的绝缘子与大地连接。在正常运行时地线与大地绝缘,减少环流回路,在雷击时放电间隙被击穿,对雷电流起到分流作用。
步骤五:中点换位的实现
在绝缘段内靠近线路中间位置的杆塔处,通过跳线将普通地线和OPGW进行换位,将OPGW换至普通地线的位置,将普通地线换至OPGW位置,两根地线通过带放电间隙的绝缘子与杆塔连接。
一个绝缘段内地线的布置示意图如图1所示,线路布置平面示意图如图2所示。
仿真验证
利用ATPDraw建立仿真输电线路模型,对本发明所提的架空地线布置方法进行仿真,同时对现有工程中的地线布置方式建模仿真,将两种布置方法的仿真结果进行对比,以验证本发明在线路正常运行时减小地线感应电压、降低地线损耗和单相接地故障运行时减小潜供电流方面的的有效性。
建模时采用我国首条特高压输电线路晋东南-南阳-荆门线路的参数,所用杆塔及其参数如图3所示,线路的相关结构参数和运行参数如表1所示,分别建立输电线路LCC模型,电源模型、负荷模型。
表1建模线路的结构参数和运行参数
塔高(m) 59.5 模型线路长度(km) 6
横担长度(m) 53.12 导线型号 8*LGJ-500/35
相线悬挂高度(m) 40 地线型号 JLB20A-170
地线悬挂高度(m) 59.5 OPGW型号 OPGW-175
相线弧垂(m) 15 档距(m) 500
地线弧垂(m) 9 线路额定电压(kV) 1000
相线挂点离中心线距离(m) 26.56 输送功率(MVA) 5000
地线挂点离中心线距离(m) 28.56 功率因素 0.95
在LCC模型中,经过计算,选择建模的地线分段长度为3km,对于地线每个绝缘段的中点换位,在仿真中,通过LCC中参数的设置实现,将各模型按电力系统的连接方式进行连接,建立的仿真模型如图4所示。利用建立的SIGT布置方式输电线路仿真模型,在线路正常运行时,对地线的感应电压和感应电流进行仿真。将仿真结果的数据通过matlab处理得到,每个绝缘段内,地线感应电压的分布特征如图5所示,从仿真结果得到,地线每个档距的感应电压约为63V,每个绝缘段末端的最大感应电压约为130.7V。地线的感应电流沿线分布特征如图6所示,地线每个绝缘段的感应电流变化趋势相同,绝缘段内基本呈对称分布,最大感应电流为0.28A。线路单相接地故障运行时故障相的潜供电流为25.68A。再建立现有工程中地线布置方法下的仿真模型,仿真结果如表2所示。
表2仿真结果
Figure BDA0002420623650000051
通过表2的仿真结果对比得到,地线分段长度相同时,本发明提出的高压输电线路架空地线布置方法,地线最大感应电压仅为现有分段绝缘、单点接地布置方法的22.7%,感应电压低,能减小绝缘投资;地线损耗远远低于现有地线布置方法,低于现有布置方法的1%,极大的降低输电经济损失;在单相接地故障条件下运行时,本发明的地线布置方法的潜供电流低于现有地线布置方法的4.45%。

Claims (2)

1.一种高压输电线路架空地线的布置方法,其特征在于,包括
确定地线绝缘段长度;
分段绝缘:依据地线绝缘段长度,将普通地线与OPGW的对应点分别断开得到绝缘段,绝缘段的前、后两端分别通过带放电间隙的绝缘子挂载到前、后两端位置的杆塔,并保持OPGW光纤连接;
中间换位:普通地线与OPGW的绝缘段,在其中间位置的杆塔,通过跳线将普通地线和OPGW的布置位置进行互换,并分别通过带放电间隙的绝缘子挂载到中间位置的杆塔;
两点接地:临近普通地线与OPGW的绝缘段的长度三分之一和三分之二的点,分别通过对应位置的杆塔接地;普通地线与OPGW的绝缘段还分别通过带放电间隙的绝缘子挂载到其余位置的杆塔。
2.如权利要求1所述的一种高压输电线路架空地线的布置方法,其特征在于,所述确定地线绝缘段长度,具体为:计算最大节距l,
Figure FDA0002420623640000011
其中,Um为架空地线上的感应电压限值;
n为输电线路的回路数;
j为虚数单位;
w为输电线路工频角频率;
IA(i)、IB(i)、IC(i)为最大输电容量时第i个回路中A、B、C三相中的电流;
LDA(i)、LDB(i)、LDC(i)分别为第i个回路中A、B、C三相与地线的互感;
令依次排列的多个杆塔所承载的普通地线或OPGW的长度之和为地线绝缘段长度,且地线绝缘段长度小于最大节距l。
CN202010205382.7A 2020-03-22 2020-03-22 一种高压输电线路架空地线的布置方法 Expired - Fee Related CN111244872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010205382.7A CN111244872B (zh) 2020-03-22 2020-03-22 一种高压输电线路架空地线的布置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010205382.7A CN111244872B (zh) 2020-03-22 2020-03-22 一种高压输电线路架空地线的布置方法

Publications (2)

Publication Number Publication Date
CN111244872A true CN111244872A (zh) 2020-06-05
CN111244872B CN111244872B (zh) 2021-06-11

Family

ID=70871822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010205382.7A Expired - Fee Related CN111244872B (zh) 2020-03-22 2020-03-22 一种高压输电线路架空地线的布置方法

Country Status (1)

Country Link
CN (1) CN111244872B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644611A (zh) * 2021-09-09 2021-11-12 重庆大学 基于六相输电技术与绝缘横担的输电线路增容方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188205A (ja) * 1984-10-08 1986-05-06 Nippon Telegr & Teleph Corp <Ntt> 光フアイバケ−ブル接続部の収納方法
CN201430401Y (zh) * 2009-06-19 2010-03-24 河南省电力勘测设计院 一种杆塔地线换位连接系统
CN201549859U (zh) * 2009-12-04 2010-08-11 西北电网有限公司 一种高压输电线路的接地系统
CN202119956U (zh) * 2010-12-30 2012-01-18 国家电网公司 交流特高压的光纤复合架空地线
CN102780194A (zh) * 2012-07-06 2012-11-14 广东电网公司电力科学研究院 一种同塔双回输电线路架空地线的降损方法
CN102780176A (zh) * 2012-07-06 2012-11-14 广东电网公司电力科学研究院 一种降低交流输电线路绝缘架空地线感应电压的方法
CN104124658A (zh) * 2014-03-24 2014-10-29 王力 一种采用OPGW光缆节能运行方式的220kV输电线路
CN104573245A (zh) * 2015-01-15 2015-04-29 国家电网公司 一种特高压输电线路中地线损耗的计算方法
CN105958422A (zh) * 2016-05-25 2016-09-21 国网辽宁省电力有限公司辽阳供电公司 一种输电架空地线新型防雷接地方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188205A (ja) * 1984-10-08 1986-05-06 Nippon Telegr & Teleph Corp <Ntt> 光フアイバケ−ブル接続部の収納方法
CN201430401Y (zh) * 2009-06-19 2010-03-24 河南省电力勘测设计院 一种杆塔地线换位连接系统
CN201549859U (zh) * 2009-12-04 2010-08-11 西北电网有限公司 一种高压输电线路的接地系统
CN202119956U (zh) * 2010-12-30 2012-01-18 国家电网公司 交流特高压的光纤复合架空地线
CN102780194A (zh) * 2012-07-06 2012-11-14 广东电网公司电力科学研究院 一种同塔双回输电线路架空地线的降损方法
CN102780176A (zh) * 2012-07-06 2012-11-14 广东电网公司电力科学研究院 一种降低交流输电线路绝缘架空地线感应电压的方法
CN104124658A (zh) * 2014-03-24 2014-10-29 王力 一种采用OPGW光缆节能运行方式的220kV输电线路
CN104573245A (zh) * 2015-01-15 2015-04-29 国家电网公司 一种特高压输电线路中地线损耗的计算方法
CN105958422A (zh) * 2016-05-25 2016-09-21 国网辽宁省电力有限公司辽阳供电公司 一种输电架空地线新型防雷接地方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
彭向阳,毛先胤,胡卫: "架空地线的损耗特性及节能技术", 《中国电力》 *
彭向阳,胡卫,毛先胤等: "输电线路架空地线接地方式对线路零序参数的影响", 《电网技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644611A (zh) * 2021-09-09 2021-11-12 重庆大学 基于六相输电技术与绝缘横担的输电线路增容方法

Also Published As

Publication number Publication date
CN111244872B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN101499638B (zh) 一种提高超、特高压输电线路防雷能力的方法
CN202978174U (zh) 输电线路防风偏闪络装置
CN108832607B (zh) 一种对称双极柔性直流工程换流站绝缘配合方法及系统
CN107991559A (zh) 一种大型接地网地电位升极限值的校核方法
CN111244872B (zh) 一种高压输电线路架空地线的布置方法
Yin et al. The design and optimization of the down-lead system for a novel 400 kV composite pylon
CN112083278A (zh) 一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法
CN105958422A (zh) 一种输电架空地线新型防雷接地方法
Sun et al. Analysis of induced voltage of ground wires in 1000kV transmission lines
CN109779373A (zh) 一种双回同杆并架输电线路中用于破口一回的电缆终端杆
Phan Reduction of the number of faults caused by lightning for transmission line
CN113836856A (zh) 一种750kV同塔双回路超高塔防雷设计方法
CN109815593B (zh) 一种配网相继故障耦合传播机理的分析方法
CN114896815A (zh) 针对多分支配电线路的雷电监测终端布点分析方法及装置
Bi et al. Study on lightning withstand level and induced voltage after insulation reconstruction of overhead ground wire
Li et al. Study of overvoltage and insulation coordination of UHV DC transmission line
CN104882871A (zh) 一种风电场电缆合闸过电压的防护方法
CN203632182U (zh) 一种20kV架空线路的防雷装置
CN205688919U (zh) 直流线路与接地极线同塔垂直排列的输电塔
CN216110007U (zh) 一种双回路直流输电线路用分歧塔
CN203445574U (zh) 电缆系统
CN212624822U (zh) 一种新型架空输电线路避雷线
Wang et al. Overvoltage and Restriction of 1000kV Long-Distance Transmission Lines in Weak System
CN219864355U (zh) 一种混压三回路直线钢管双杆
CN113742895B (zh) 一种10kV配网复合横担防雷仿真方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210611