CN111244751A - 一种集成激光器和光电探测器的光通信收发结构 - Google Patents

一种集成激光器和光电探测器的光通信收发结构 Download PDF

Info

Publication number
CN111244751A
CN111244751A CN202010061790.XA CN202010061790A CN111244751A CN 111244751 A CN111244751 A CN 111244751A CN 202010061790 A CN202010061790 A CN 202010061790A CN 111244751 A CN111244751 A CN 111244751A
Authority
CN
China
Prior art keywords
layer
laser
ingaasp
inp
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010061790.XA
Other languages
English (en)
Other versions
CN111244751B (zh
Inventor
唐强
朱旭愿
梁松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202010061790.XA priority Critical patent/CN111244751B/zh
Publication of CN111244751A publication Critical patent/CN111244751A/zh
Application granted granted Critical
Publication of CN111244751B publication Critical patent/CN111244751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/153Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种集成激光器和光电探测器的光通信收发结构,至少包括一多模干涉耦合器、一激光器以及一光电探测器,激光器和光电探测器分别连接于所述多模干涉耦合器同侧的发射端和接收端,其中:激光器以及光电探测器由下至上均依次包括:衬底(1)、n‑InP缓冲层(2)、AlInAs限制层(3)、AlGaInAs下限制层(4)、多量子阱有源层(5)、AlGaInAs上限制层(6)、AlInAs限制层(7)、InGaAsP光栅层(8)、p‑InP层(9)、p‑InGaAsP刻蚀阻止层(10)、上p‑InP盖层(11)、第一p‑InGaAs欧姆接触层(12)、金属电极层(13);多模干涉耦合器由下至上依次包括:衬底(1)、n‑InP缓冲层(2)、InGaAsP波导芯层(14)、p‑InGaAsP刻蚀阻止层(10)、上p‑InP盖层(11)以及第二p‑InGaAs欧姆接触层(15)。

Description

一种集成激光器和光电探测器的光通信收发结构
技术领域
本公开涉及光通信技术领域,尤其涉及一种集成激光器和光电探测器的光通信收发结构。
背景技术
PON网络是现代通信中的接入网的主流发展技术,具有点到多点以及光节点单元(ONU)纯无源的优点。在现在PON网络中,PON技术的标准主要分为两种,分别是EPON和GPON。EPON和GPON的下行光信号的波长均为1480-1550nm,并且提供一个单独的视频信号在1550nm波长,而EPON的上行波长在1260-1360nm,GPON的上行波长在1290-1330nm,因此PON网络中的光收发模块承担着同时接收和发送两个波长光信号的重要任务,并且随着4K,8K视频基于现代VR/AR技术的出现,PON网络飞速发展,对网络节点中的光源,接收机以及波分复用模块也提出了更多的需求。波分复用技术是PON网络中光收发机的重要技术,其利用同一波段不同间隔波长的光信号,为人们提供海量的通信信道,从而提高通信系统的整体通信容量。因此,其同时传输一定间隔的多个波长的光信号,并且通过合波器和分波器实现信号的提取与合并。在PON网络的光收发模块中,波分复用器是重点研究对象之一。光收发模块除了用于波分复用的波分复用器外,还包括负责上下行信号收发的光信号发射器以及光信号接收器。但随着PON技术的发展,上下行传输速率的提升提高了人们对发射器和接收器传输速率的要求。尤其是在新一代的XG-EPON和XG-GPON的技术指标中,上下行的传输速率已经达到了10Gpbs,由于PON网络中的光线路终端OLT和ONU都需要使用光收发模块,因此光收发模块的收发速率成为了亟待解决的问题。
发明内容
(一)要解决的技术问题
本公开提供了一种集成激光器和光电探测器的光通信收发结构,至少解决以上技术问题。
(二)技术方案
本公开提供了一种集成激光器和光电探测器的光通信收发结构,至少包括一多模干涉耦合器、一激光器以及一光电探测器,激光器和光电探测器分别连接于多模干涉耦合器同侧的发射端和接收端,其中:激光器以及光电探测器由下至上均依次包括:衬底1、n-InP缓冲层2、AlInAs限制层3、AlGaInAs下限制层4、多量子阱有源层5、AlGaInAs上限制层6、AlInAs限制层7、InGaAsP光栅层8、p-InP层9、p-InGaAsP刻蚀阻止层10、上p-InP盖层11、第一p-InGaAs欧姆接触层12、金属电极层13,其中,激光器的InGaAsP光栅层8的表面为布拉格光栅结构,n-InP缓冲层2上设有金属电极层13对应的负极;多模干涉耦合器由下至上依次包括:衬底1、n-InP缓冲层2、InGaAsP波导芯层14、p-InGaAsP刻蚀阻止层10、上p-InP盖层11以及第二p-InGaAs欧姆接触层15,其中,InGaAsP波导芯层14与AlInAs限制层3、AlGaInAs下限制层4、多量子阱有源层5、AlGaInAs上限制层6、AlInAs限制层7、InGaAsP光栅层8以及p-InP层9连接,第二p-InGaAs欧姆接触层15与第一p-InGaAs欧姆接触层12之间设有间隙。
可选地,激光器的金属电极层13为高频圆盘电极,所述光电探测器的金属电极层为高频GSG电极,其中,高频GSG电极的G极与S极之间间隔225μm。
可选地,多量子阱有源层5为九个量子阱接结构,带隙波长为1540~1560nm。
可选地,AlGaInAs下限制层4的厚度为50~100nm,带隙波长沿厚度方向从950nm渐变至1050nm。
可选地,AlGaInAs上限制层6的厚度为50~100nm,带隙波长沿厚度方向从1050nm渐变至950nm。
可选地,InGaAsP波导芯层14材料的带隙波长为1.2μm。
可选地,间隙的宽度为30~50μm。
可选地,多模干涉耦合器的输入和输出波导的宽度与激光器和光电探测器的宽度相同。
可选地,多模干涉耦合器的输入和输出波导的宽度为2μm。
可选地,多模干涉耦合器的宽度为5.5μm,长度为289μm,发射端和接收端波导宽度为2μm,沿长度方向倾斜角度为4°,激光器和光电探测器的长度为200μm。
(三)有益效果
本公开实施例中的集成激光器和光电探测器的光通信收发结构的多模干涉耦合器制作容差大,工艺简单,可实现低损耗的上下行传输;可单端口实现信号的上行和下行传输;采用高速可直接调制的激光器和光电探测器,可高速接收和发送光信号。
附图说明
图1示意性示出了根据本公开实施例的集成激光器和探测器的光通信收发结构示意图;
图2示意性示出了根据本公开实施例的集成激光器和探测器的光通信收发结构的详细尺寸图;
图3示意性示出了根据本公开实施例的激光器、隔离区和多模干涉耦合器的结构示意图;
图4示意性示出了根据本公开实施例的光电探测器、隔离区和多模干涉耦合器的结构示意图;
图5示意性示出了根据本公开实施例的图3所示结构的俯视图;
图6示意性示出了根据本公开实施例的图4所示结构的俯视图;
图7示意性示出了根据本公开实施例的集成激光器和探测器的光通信收发结构传输上行信号的示意图;
图8示意性示出了根据本公开实施例的集成激光器和探测器的光通信收发结构传输下行信号的示意图。
具体实施方式
一种集成激光器和探测器的光通信收发结构,如图1所示,至少包括一多模干涉耦合器、一激光器以及一光电探测器,所述激光器和光电探测器分别连接于所述多模干涉耦合器同侧的发射端和接收端,其中:激光器以及光电探测器由下至上均依次包括:衬底1、n-InP缓冲层2、AlInAs限制层3、AlGaInAs下限制层4、多量子阱有源层5、AlGaInAs上限制层6、AlInAs限制层7、InGaAsP光栅层8、p-InP层9、p-InGaAsP刻蚀阻止层10、上p-InP盖层11、第一p-InGaAs欧姆接触层12、金属电极层13,其中,激光器的InGaAsP光栅层8的表面为布拉格光栅结构,n-InP缓冲层2上设有金属电极层13对应的负极;
多模干涉耦合器由下至上依次包括:衬底1、n-InP缓冲层2、InGaAsP波导芯层14、p-InGaAsP刻蚀阻止层10、上p-InP盖层11以及第二p-InGaAs欧姆接触层12,其中,InGaAsP波导芯层14与AlInAs限制层3、AlGaInAs下限制层4、多量子阱有源层5、AlGaInAs上限制层6、AlInAs限制层7、InGaAsP光栅层8以及p-InP层9连接,第二p-InGaAs欧姆接触层12与第一p-InGaAs欧姆接触层12之间设有间隙。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图1所示,本公开实施例提供的集成激光器和探测器的光通信至少包括一多模干涉耦合器、一激光器以及一光电探测器,该激光器和光电探测器分别连接于多模干涉耦合器同侧的发射端和接收端。例如,如图2所示,本公开实施例中激光器和光电探测器分别连接在多模干涉波分复用器的1550nm发射端和1310接收端,长度优选为200nm,宽度优选为2μm。多模干涉耦合器的宽度优选为5.5μm,长度优选为289μm,输入输出端宽度优选为2μm,倾斜角度优选为4°。激光器和光电探测器结构相似,如图3和图4所示,激光器和光电探测器结构均包括:
衬底1,该衬底可以为半绝缘的SI型InP衬底;
n-InP缓冲层2,该n-InP缓冲层制作在衬底1上,可以通过刻蚀工艺在该n-InP缓冲层2上制作激光器和光电探测器的电极负极;
AlInAs限制层3,该AlInAs限制层3制作在上述n-InP缓冲层2上,其厚度优选为50-100nm;
AlGaInAs下限制层4,该AlGaInAs下限制层4制作在上述AlInAs限制层3上,其厚度优选为50nm50-100nm,带隙波长从950nm变化到1050nm;
多量子阱有源层5,该多量子阱有源层5制作在上述AlGaInAs下限制层4上,该多量子阱有源层5为九个量子阱接结构,带隙波长优选为1540~1560nm。半导体和光电探测器均具有相同结构的多量子阱有源层,并且该有源层的带隙波长为1540~1560nm,因此,由于1310nm波长的光子能量大于该多量子阱有源层5的带隙,因而1310nm的光信号可以被多量子阱有源层5吸收,实现信号的光电转换,从而该多量子阱有源层5不仅可以用来制作1550nm激光器,还可以用来制作1310nm的光电探测器。
AlGaInAs上限制层6,该AlGaInAs上限制层6制作在上述多量子阱有源层5上,其厚度优选为50-100nm 50nm,带隙波长从1050nm渐变到950nm;
AlInAs限制层7,该AlInAs限制层7制作在上述AlGaInAs上限制层6上,其厚度优选为50-100nm;
InGaAsP光栅层8,该InGaAsP光栅层8制作在该AlGaInAs上限制层7上。在激光器中该InGaAsP光栅层8的表面形成有布拉格光栅结构,如图3所示,该布拉格光栅结构制作于整个激光器上,其厚度优选为100-150nm,该光栅层通过光栅的选模作用,选择特定波长范围的激射模式,实现激光器特定波长范围的单模激射;
p-InP层9,该p-lnp层9制作在该InGaAsP光栅层8上,厚度优选为20nm;
p-InGaAsP刻蚀阻止层10,该p-InGaAsP刻蚀阻止层10制作在上述p-InP层9上,厚度优选为10-20nm。其可以防止波导刻蚀时进一步刻蚀进入多量子阱有源层5;
上p-InP盖层11,该上p-InP盖层11制作在上述p-InGaAsP刻蚀阻止层10上,厚度优选为1.5-2微米;
第一p-InGaAs欧姆接触层12,该第一p-InGaAs欧姆接触层12制作在上述上p-InP盖层11上,厚度优选为200nm,该第一p-InGaAs欧姆接触层12用于和金属电极形成导电性良好的欧姆接触。在该第一p-InGaAs欧姆接触层12与第二p-InGaAs欧姆接触层15之间有间隙,间隙的宽度优选为30~50μm,间隙以下区域注入氦离子形成具有高电阻的隔离区,以阻断激光器和光电探测器之间通过多模干涉耦合器的波导形成的漏电通道,排除两区域电极之间的电串扰。
金属电极层13,该金属电极层13制作在该第一p-InGaAs欧姆接触层12上,该金属电极优选为Ti/Pt/Au。激光器的金属电极层优选为应用于高频信号调制的高频圆盘电极,如图5所示。光电探测器电极优选为直接传输微波信号的高频GSG电极,如图6所示,该电极由一个正极S极,以及分布在S极两边的负极G极构成,三个电极之间的距离为225μm。GSG电极可以直接把光电探测器的采集的光信号转换为微波信号供仪器采集。高频圆盘电极和GSG电极的负极通过刻蚀工艺制作在最底部的n-InP缓冲层2上。
激光器和光电探测器中衬底1、n-InP缓冲层2、AlInAs限制层3、AlGaInAs下限制层4、多量子阱有源层5、AlGaInAs上限制层6、AlInAs限制层7、InGaAsP光栅层8、p-InP层9、p-InGaAsP刻蚀阻止层10以及上p-InP盖层11组成了激光器和光电探测器的半导体波导结构。激光器和光电探测器的波导宽度相同,本公开实施例中优选为2μm。多模干涉耦合器中衬底1、n-InP缓冲层2、InGaAsP波导芯层14、p-InGaAsP刻蚀阻止层10以及上p-InP盖层11组成了多模干涉耦合器的半导体波导结构。多模干涉耦合器的波导宽度与激光器和光电探测器上的波导宽度相同。因此半激光器和光电探测器可以不需要模斑转换器直接与多模干涉耦合器的波导连接。
多模干涉耦合器采用多模干涉原理,根据波导的多模干涉理论,波导中的入射光信号在传播固定距离之后,通过波导内的干涉,重新汇聚增强形成入射光波的镜像点,该距离即为该波长光信号的镜像长度。在该多模干涉耦合器中1310nm和1550nm波长的光信号具有不同的镜像长度,即可以传播不同距离,在不同位置的波导端面重新汇聚成镜像点,在该镜像点设置输入波导,即可分别收集该光信号并且实现不同位置的光信号输出,本设计的分波消光比高,光信号串扰小,满足PON网络的波分复用要求。
如图3和图4所示包括:
衬底1,该衬底可以为半绝缘的SI型InP衬底;
n-InP缓冲层2,该n-InP缓冲层制作在衬底1上;
InGaAsP波导芯层14,该InGaAsP波导芯层14制作在该n-InP缓冲层2上,该层厚度优选为300-600nm,材料带隙波长为1.2μm;InGaAsP波导芯层14与上述激光器或光电探测器的AlInAs限制层3、AlGaInAs下限制层4、多量子阱有源层5、AlGaInAs上限制层6、AlInAs限制层7、InGaAsP光栅层8以及p-InP层9之间通过隔离区连接;
p-InGaAsP刻蚀阻止层10,该p-InGaAsP刻蚀阻止层10制作在该InGaAsP波导芯层14上,厚度优选为10-20nm;
上p-InP盖层11,该上p-InP盖层11制作在该p-InGaAsP刻蚀阻止层10上,厚度优选为1.5-2μm;
第二p-InGaAs欧姆接触层15,该第二p-InGaAs欧姆接触层15制作在该上p-InP盖层11上,厚度优选为200-300nm。
多模干涉耦合器的输入输出端负责接收PON网络里面上传的1310nm光信号,然后该信号将通过解复用器分波进入光电探测器转换为电信号被系统接收,如图7所示。
多模干涉耦合器的输入输出端也负责发送1550nm激光器发射的1550nm下行光信号,通过复用该信号将在多模干涉波分复用器的右端输出,然后下行传输到其他光通信节点,如图8所示。因此该设计可以单端口同时实现1310nm上行信号的接收和1550nm下行信号的发送。
综上所述,本公开实施例中的集成激光器和光电探测器的光通信收发结构的多模干涉耦合器制作容差大,工艺简单,可实现低损耗的上下行传输;可单端口实现信号的上行和下行传输;采用高速可直接调制的激光器和光电探测器,可高速接收和发送光信号。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种集成激光器和光电探测器的光通信收发结构,至少包括一多模干涉耦合器、一激光器以及一光电探测器,所述激光器和光电探测器分别连接于所述多模干涉耦合器同侧的发射端和接收端,其中:
所述激光器以及光电探测器由下至上均依次包括:衬底(1)、n-InP缓冲层(2)、AlInAs限制层(3)、AlGaInAs下限制层(4)、多量子阱有源层(5)、AlGaInAs上限制层(6)、AlInAs限制层(7)、InGaAsP光栅层(8)、p-InP层(9)、p-InGaAsP刻蚀阻止层(10)、上p-InP盖层(11)、第一p-InGaAs欧姆接触层(12)、金属电极层(13),其中,所述激光器的InGaAsP光栅层(8)的表面为布拉格光栅结构,所述n-InP缓冲层(2)上设有所述金属电极层(13)对应的负极;
所述多模干涉耦合器由下至上依次包括:衬底(1)、n-InP缓冲层(2)、InGaAsP波导芯层(14)、p-InGaAsP刻蚀阻止层(10)、上p-InP盖层(11)以及第二p-InGaAs欧姆接触层(15),其中,所述InGaAsP波导芯层(14)与所述AlInAs限制层(3)、AlGaInAs下限制层(4)、多量子阱有源层(5)、AlGaInAs上限制层(6)、AlInAs限制层(7)、InGaAsP光栅层(8)以及p-InP层(9)连接,所述第二p-InGaAs欧姆接触层(15)与所述第一p-InGaAs欧姆接触层(12)之间设有间隙。
2.根据权利要求1所述的光通信收发结构,所述激光器的金属电极层(13)为高频圆盘电极,所述光电探测器的金属电极层为高频GSG电极,其中,所述高频GSG电极的G极与S极之间间隔225μm。
3.根据权利要求1所述的光通信收发结构,所述多量子阱有源层(5)为九个量子阱接结构,带隙波长为1540~1560nm。
4.根据权利要求1所述的光通信收发结构,所述AlGaInAs下限制层(4)的厚度为50~100nm,带隙波长沿厚度方向从950nm渐变至1050nm。
5.根据权利要求1所述的光通信收发结构,所述AlGaInAs上限制层(6)的厚度为50~100nm,带隙波长沿厚度方向从1050nm渐变至950nm。
6.根据权利要求1所述的光通信收发结构,所述InGaAsP波导芯层(14)材料的带隙波长为1.2μm。
7.根据权利要求1所述的光通信收发结构,所述间隙的宽度为30~50μm。
8.根据权利要求1所述的光通信收发结构,所述多模干涉耦合器的输入和输出波导的宽度与所述激光器和光电探测器的波导的宽度相同。
9.根据权利要求8所述的光通信收发结构,所述多模干涉耦合器的输入和输出波导的宽度为2μm。
10.根据权利要求8所述的光通信收发结构,所述多模干涉耦合器的宽度为5.5μm,长度为289μm,发射端和接收端波导宽度为2μm,沿长度方向倾斜角度为4°,所述激光器和光电探测器的长度为200μm。
CN202010061790.XA 2020-01-19 2020-01-19 一种集成激光器和光电探测器的光通信收发结构 Active CN111244751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010061790.XA CN111244751B (zh) 2020-01-19 2020-01-19 一种集成激光器和光电探测器的光通信收发结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010061790.XA CN111244751B (zh) 2020-01-19 2020-01-19 一种集成激光器和光电探测器的光通信收发结构

Publications (2)

Publication Number Publication Date
CN111244751A true CN111244751A (zh) 2020-06-05
CN111244751B CN111244751B (zh) 2021-08-03

Family

ID=70872833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010061790.XA Active CN111244751B (zh) 2020-01-19 2020-01-19 一种集成激光器和光电探测器的光通信收发结构

Country Status (1)

Country Link
CN (1) CN111244751B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540967A (zh) * 2021-07-16 2021-10-22 杰创半导体(苏州)有限公司 Vcsel和pd集成芯片、制作方法和电子器件
CN114639753A (zh) * 2022-03-16 2022-06-17 中国科学院半导体研究所 单片集成光收发芯片及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061481A (en) * 1995-06-19 2000-05-09 Heinrich-Hertz-Institut Fuer Nachrichtentechnik Berlin Gmbh. Optoelectronic circuit
US6408121B1 (en) * 1999-02-26 2002-06-18 Nec Corporation Optical communication module
CN1573385A (zh) * 2003-06-24 2005-02-02 三星电子株式会社 具有布喇格衍射光栅的光多路分解器及使用其的光通信模块
CN101309115A (zh) * 2008-06-24 2008-11-19 浙江大学 一种用于光纤到户的单片集成单纤多向收发器
CN103456829A (zh) * 2012-05-30 2013-12-18 国家电网公司 一种单片集成pon网络onu端光收发芯片及其制作方法
CN104914506A (zh) * 2015-06-23 2015-09-16 中国科学院半导体研究所 基于多模干涉耦合器的InP基模分复用/解复用器结构
CN106684104A (zh) * 2016-12-29 2017-05-17 中国科学院半导体研究所 一种单片集成平衡探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061481A (en) * 1995-06-19 2000-05-09 Heinrich-Hertz-Institut Fuer Nachrichtentechnik Berlin Gmbh. Optoelectronic circuit
US6408121B1 (en) * 1999-02-26 2002-06-18 Nec Corporation Optical communication module
CN1573385A (zh) * 2003-06-24 2005-02-02 三星电子株式会社 具有布喇格衍射光栅的光多路分解器及使用其的光通信模块
CN101309115A (zh) * 2008-06-24 2008-11-19 浙江大学 一种用于光纤到户的单片集成单纤多向收发器
CN103456829A (zh) * 2012-05-30 2013-12-18 国家电网公司 一种单片集成pon网络onu端光收发芯片及其制作方法
CN104914506A (zh) * 2015-06-23 2015-09-16 中国科学院半导体研究所 基于多模干涉耦合器的InP基模分复用/解复用器结构
CN106684104A (zh) * 2016-12-29 2017-05-17 中国科学院半导体研究所 一种单片集成平衡探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540967A (zh) * 2021-07-16 2021-10-22 杰创半导体(苏州)有限公司 Vcsel和pd集成芯片、制作方法和电子器件
CN114639753A (zh) * 2022-03-16 2022-06-17 中国科学院半导体研究所 单片集成光收发芯片及其制备方法

Also Published As

Publication number Publication date
CN111244751B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Beling et al. InP-based high-speed photodetectors
KR100759805B1 (ko) 광증폭 듀플렉서
CN101566777B (zh) 基于边带注入锁定用于产生高频微波的集成光电子器件
WO2007113502A1 (en) Photodetector
CN107910746B (zh) 一种反射式半导体光放大器
CN111244751B (zh) 一种集成激光器和光电探测器的光通信收发结构
CN107294606B (zh) 一种单模光纤双向光收发器
CN112786717B (zh) 一种微环耦合多通道集成光电探测器
JP2022516019A (ja) 半導体レーザ、光伝送部品、光回線端末および光ネットワークユニット
US20100215308A1 (en) Electroabsorption modulators with a weakly guided optical waveguide mode
KR100785775B1 (ko) 반사형 반도체 광증폭기(rsoa) 및 rsoa를 이용한rsoa 모듈 및 수동형 광가입자망
Umezawa et al. Multi-core based 94-GHz radio and power over fiber transmission using 100-GHz analog photoreceiver
WO2019128341A1 (zh) 一种激光器芯片、光发射组件、光模块及网络设备
Sasaki Development of silicon photonics integrated circuits for next generation optical access networks
KR101500056B1 (ko) 광학 네트워크용 반사 반도체 광학 증폭기
Liou et al. Monolithically integrated semiconductor LED-amplifier for applications as transceivers in fiber access systems
CN113395114B (zh) 光模块、数据中心系统以及数据传输方法
Okimoto et al. 80-GHz Bandwidth and High Responsivity of InP Coherent Receiver PIC with Butt-joint waveguide PDs
Tolstikhin et al. 44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate
Ben-Michael et al. A bi-directional transceiver PIC for ping-pong local loop configurations operating at 1.3-μm wavelength
Umezawa et al. Application of Resonant-Cavity 4x4 Arrayed Photodetector for SDM-WDM-FSO Beam Detection
CN114639753B (zh) 单片集成光收发芯片及其制备方法
KR100289043B1 (ko) 수직형광집적소자
CN203942534U (zh) 一体式光收发组件
Yao et al. High-density monolithic 6× 30 Gb/s tunable WDM transmitter in generic III-V platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant