CN111243043B - 基于修正线性混合模型的高光谱压缩感知方法、设备及系统 - Google Patents

基于修正线性混合模型的高光谱压缩感知方法、设备及系统 Download PDF

Info

Publication number
CN111243043B
CN111243043B CN201911146773.XA CN201911146773A CN111243043B CN 111243043 B CN111243043 B CN 111243043B CN 201911146773 A CN201911146773 A CN 201911146773A CN 111243043 B CN111243043 B CN 111243043B
Authority
CN
China
Prior art keywords
hyperspectral
compressed sensing
spectrum
matrix
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911146773.XA
Other languages
English (en)
Other versions
CN111243043A (zh
Inventor
王忠良
粘永健
何密
张珠
钟华
肖晶晶
李鹏岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Military Medical University TMMU
Tongling University
Original Assignee
Third Military Medical University TMMU
Tongling University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Military Medical University TMMU, Tongling University filed Critical Third Military Medical University TMMU
Priority to CN201911146773.XA priority Critical patent/CN111243043B/zh
Publication of CN111243043A publication Critical patent/CN111243043A/zh
Application granted granted Critical
Publication of CN111243043B publication Critical patent/CN111243043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明公开了一种基于修正线性混合模型的高光谱压缩感知方法、设备及系统。该方法包括:步骤S1,获取原始高光谱图像光谱维压缩采样后的观测数据Y=AX,其中A为观测矩阵,X为待重建的原始高光谱图像;步骤S2,构建修正线性混合模型:X=ES+BEH;其中,E为端元矩阵;S为丰度矩阵;B为端元E的修正矩阵;H为修正后的端元所对应的丰度矩阵;基于观测数据Y分别估计出B、S和H的最优值;步骤S3,将B、S和H的估计值代入修正线性混合模型来重建原始高光谱图像。修正线性混合模型引入了修正项BEH,可根据光谱上每个点的扰动情况自适应地进行修正,提高了模型表征高光谱图像的能力,进而提高了高光谱压缩感知的重建质量。

Description

基于修正线性混合模型的高光谱压缩感知方法、设备及系统
技术领域
本发明涉及高光谱压缩感知领域,特别是涉及一种基于修正线性混合模型的高光谱压缩感知方法、设备及系统。
背景技术
高光谱图像(HyperSpectral Imagery,HSI)可以提供丰富的地物光谱信息,在矿物勘探、农业生产、环境与灾害监测等领域得到广泛应用。然而,随着分辨率的不断提高,成像光谱仪获取的数据量呈指数量级增长。海量的高光谱数据给机载或者星载成像系统的功耗、计算能力以及数据的实时传输均带来了巨大压力。压缩感知(Compressed Sensing,CS)技术能以较低的采样率(远低于奈奎斯特采样率)采集数据,将数据采集与压缩融为一体,在成像的同时完成数据压缩,适合解决机载或者星载高光谱成像平台数据采集与压缩难题。目前,高光谱压缩感知(Hyperspectral Compressed Sensing,HCS)已经成为当今高光谱遥感领域研究的热点。
基于高光谱观测数据的重建是HCS研究中的关键问题之一。线性混合模型(LinearMixing Model,LMM)作为HSI简单而有效的假设已被广泛应用于光谱解混。LMM认为高光谱图像可以表示为端元矩阵与丰度矩阵的乘积。近年来,在LMM的假设下,基于光谱解混的重建方法逐渐应用于高光谱压缩感知的重建,不但提高了重建速度,而且较大程度地提高了重建质量。现有的基于光谱解混的重建算法均是建立在传统LMM的基础上;然而,由于光照条件、地形变化以及大气等因素的影响,所获取的地物成像光谱会发生扰动,从而偏离了地物的真实光谱,降低了LMM的适用性。
发明内容
本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种基于修正线性混合模型的高光谱压缩感知方法、设备及系统。
为了实现本发明的上述目的,根据本发明的第一个方面,本发明提供了一种基于修正线性混合模型的高光谱压缩感知方法,包括:
步骤S1,获取原始高光谱图像光谱维压缩采样后的观测数据Y=AX;
其中,矩阵X表示需要重建的原始高光谱图像数据,A为光谱维测量矩阵,Y为光谱维观测数据;
步骤S2,构建修正线性混合模型:X=ES+BEH;
其中,E为端元矩阵;S为丰度矩阵;B表示端元光谱的修正矩阵;H表示修正后的端元光谱所对应的丰度矩阵;
利用观测数据Y估计出B、S和H的最优值;
步骤S3,将B、S和H的最优估计值代入修正线性混合模型来重建原始高光谱图像数据X。
上述技术方案的有益效果为:该重建方法采用修正线性混合模型对原始高光谱图像数据进行重建,修正线性混合模型相比传统的线性混合模型,引入了修正项BEH,矩阵B能够根据光谱上每个点的扰动情况自适应地进行修正,提高了模型表征高光谱图像的能力,从而提高了高光谱压缩感知的重建质量,能够更好地恢复图像的细节与纹理,有利于后续的分类与识别等应用。
在本发明的一种优选实施方式中,在所述步骤S2中,利用观测数据Y迭代估计B、S和H的过程为:
步骤S21,预设迭代初始值,H0=0,B0=IL,
Figure BDA0002282425170000031
T1 0=0,/>
Figure BDA0002282425170000032
其中,变量R1=AB,变量R2=WB,变量R3=B,变量R4=FR3;IL表示L×L的单位矩阵,L为波段数;W为标准正交基;F表示全变分算子,T1为第一拉格朗日乘子,T2为第二拉格朗日乘子,T3为第三拉格朗日乘子,T4为第四拉格朗日乘子;
步骤S22,按照如下公式分别求得S、H和B在第k+1次迭代中的估计值Sk+1、Hk+1和Bk +1
Figure BDA0002282425170000033
Figure BDA0002282425170000034
Figure BDA0002282425170000035
其中,k为整数且k≥0;A为已知的光谱维测量矩阵;
Figure BDA0002282425170000036
表示变量R1的第k次迭代值,根据公式/>
Figure BDA0002282425170000037
获得,μ为正惩罚常数;T1 k表示T1的第k次迭代值,根据公式/>
Figure BDA0002282425170000038
获得;
Figure BDA0002282425170000039
表示T2的第k次迭代值,根据公式/>
Figure BDA00022824251700000310
获得;/>
Figure BDA00022824251700000311
表示T3的第k次迭代值,根据公式/>
Figure BDA0002282425170000041
获得;/>
Figure BDA0002282425170000042
表示T4的第k次迭代值,根据公式
Figure BDA0002282425170000043
获得;/>
Figure BDA0002282425170000044
表示变量R2的第k次迭代值,根据公式
Figure BDA0002282425170000045
获得;soft(*)表示soft-threshold函数,λ为大于零的第一正则项系数;/>
Figure BDA0002282425170000046
表示变量R3的第k次迭代值,根据公式/>
Figure BDA0002282425170000047
获得;FT表示F的转置;/>
Figure BDA0002282425170000048
表示变量R4的第k次迭代值,根据公式/>
Figure BDA0002282425170000049
获得,λTV为大于零的第二正则项系数;
步骤S23,判断步骤S22中获得的Sk+1、Hk+1
Figure BDA00022824251700000410
是否满足:||Y-AESk+1-R1 k+1EHk+1||F/||Y||F≤res;
若满足,停止迭代,获得原始高光谱图像数据的重建值为:
Figure BDA00022824251700000411
若不满足,令k=k+1,并返回步骤S22继续进行迭代;其中,res为预设的迭代收敛阈值,||||F表示取F范数。
上述技术方案的有益效果为:公开了矩阵S、H和B的估计公式,该方法在假设端元光谱已知的前提下,通过迭代的方式估计出最优的S、H和B。
在本发明的一种优选实施方式中,λ的取值范围为:10-3~10-6
和/或λTV取值范围为:10-3~10-6
上述技术方案的有益效果为:能够获得更好的高光谱压缩感知重建质量。
为了实现本发明的上述目的,根据本发明的第二个方面,本发明提供了一种高光谱压缩感知设备,包括数据获取单元和处理器;
所述数据获取单元获取原始高光谱图像光谱维压缩采样后的观测数据并传输给处理器,处理器获取观测数据后,按照本发明所述的基于修正线性混合模型的高光谱压缩感知方法进行原始高光谱图像数据的重建。
上述技术方案的有益效果为:该设备能够利用高光谱图像光谱维压缩采样后的观测数据高质量地重建原始高光谱图像数据,在重建过程中,能够根据光谱上每个点的扰动情况自适应地进行修正,较为精确地修正光谱扰动幅度,提高了模型表征高光谱图像的能力,进而提高了高光谱压缩感知的重建质量,能够更好地恢复图像的细节与纹理,有利于后续的分类与识别等应用。
为了实现本发明的上述目的,根据本发明的第三个方面,本发明提供了一种高光谱图像压缩感知系统,包括位于发送端的高光谱压缩感知成像模块与第一处理中心,以及位于接收端的如本发明所述的高光谱压缩感知重建设备;
所述高光谱压缩感知成像模块接收目标物表面反射的光线,对其进行光谱维压缩采样,获得原始高光谱图像的观测数据;
第一处理中心获取观测数据后并输出;
高光谱压缩感知重建设备接收观测数据并重建出原始高光谱图像数据。
上述技术方案的有益效果为:该系统在接收端能够利用高光谱图像光谱维压缩采样后的观测数据高质量地重建原始高光谱图像数据,在重建过程中,能够根据光谱上每个点的扰动情况自适应地进行修正,较为精确地修正光谱扰动幅度,提高了模型表征高光谱图像的能力,进而提高了高光谱压缩感知的重建质量,能够更好地恢复图像的细节与纹理,有利于后续的分类与识别等应用。
在本发明的一种优选实施方式中,所述压缩感知成像模块包括沿光路依次设置的物镜、分光元件、第一透镜、数字微镜阵列DMD、第二透镜、成像阵列;
所述物镜接收目标表面的多条反射光线并传递至所述分光元件,多条反射光线经所述分光元件分成多个单光谱发散光线束,多个单光谱发散光线束通过所述第一透镜后形成多个单光谱平行光线束,多个单光谱平行光线束由数字微镜阵列DMD光谱压缩后通过第二透镜汇聚在成像阵列上,形成原始高光谱图像光谱维压缩采样后的观测数据;
所述数字微镜阵列DMD的采样率输入端与第一处理中心的采样率输出端相连接。
上述技术方案的有益效果为:公开了光谱维压缩采样的具体结构,第一处理中心能够实时控制数字微镜阵列DMD,以获得不同光谱维采样率的观测数据;实现了波段数量的有效压缩,减轻了对机载或者星载成像系统的功耗、计算能力的需求,有利于实现高光谱海量数据的实时传输。
附图说明
图1是本发明一具体实施方式中高光谱压缩感知方法的流程示意图;
图2是本发明一具体实施方式中高光谱压缩感知重建设备的系统框图;
图3是本发明一具体实施方式中高光谱图像压缩感知系统的系统框图;
图4是本发明一具体实施方式中发送端结构框图;
图5是本发明一具体实施方式中光谱扰动和修正效果示意图;
附图标记:
1物镜;2分光元件;3第一透镜;4数字微镜阵列DMD;5第二透镜;6成像阵列;7第一处理中心。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本发明公开了一种基于修正线性混合模型的高光谱压缩感知方法,在一种优选实施方式中,该方法的流程示意图如图1所示,包括:
步骤S1,获取原始高光谱图像光谱维压缩采样后的观测数据Y=AX;
其中,矩阵X表示需要重建的原始高光谱图像数据,A为光谱维测量矩阵,Y为光谱维观测数据。
步骤S2,构建修正线性混合模型:X=ES+BEH;
其中,E为端元矩阵;S为丰度矩阵;B表示端元光谱的修正矩阵;H表示修正后的端元光谱所对应的丰度矩阵;
利用观测数据Y估计出B、S和H的最优值;
步骤S3,将B、S和H的最优估计值代入修正线性混合模型来重建原始高光谱图像数据X。
在本实施方式中,若采用矩阵
Figure BDA0002282425170000081
表示原始高光谱图像数据,其中L为波段数,N为每个波段的像素总数,/>
Figure BDA0002282425170000082
表示实数空间,传统的线性混合模型(Linear MixingModel,LMM)可表示为:X=ES,其中,/>
Figure BDA0002282425170000083
为端元矩阵,p为端元数量,/>
Figure BDA0002282425170000084
为丰度矩阵。现有的基于光谱解混的高光谱压缩感知(Hyperspectral Compressed Sensing,HCS)均是基于端元与丰度的乘积来重建原始高光谱图像。然而,LMM毕竟是一种理想模型,当存在光谱扰动时,LMM将难以准确描述高光谱图像。
在本实施方式中,图5给出了光谱扰动实例,其中曲线1为光谱库中明矾石的标准光谱曲线;曲线2为通过现有的顶点成分分析(Vertex Component Analysis,VCA)算法从Cuprite高光谱遥感数据集中提取的明矾石光谱曲线,显然两者之间差异较大,说明实测数据中的光谱发生了扰动。曲线3为现有的扩展的线性混合模型(Extended Linear MixedModel,ELMM)利用基于Cuprite高光谱数据集中提取的明矾石光谱数据重建明矾石的光谱曲线,该模型利用尺度缩放来修正该光谱扰动,虽然在一定程度上接近了标准光谱曲线1,但仍有较大差距,曲线5显示了曲线1与曲线3之间的光谱差异。
在本实施方式中,实际上,曲线1与曲线3之间光谱差异较大的原因是由于采用了单一的尺度缩放因子,这使得光谱曲线上每个点均按照同样的比例进行缩放,难以符合光谱扰动的实际情况。针对该问题,通过在LMM基础上引入修正项,提出了光谱扰动修正的线性混合模型(SPC_LMM,Spectral Perturbed Correction-Linear Mixing Mode):X=ES+BEH,其中BEH为修正项,
Figure BDA0002282425170000085
表示端元光谱的修正矩阵,/>
Figure BDA0002282425170000091
表示修正后的端元光谱所对应的丰度矩阵。修正矩阵B能够根据光谱上每个点的扰动情况自适应地进行修正,从而提升模型的表达精度,有利于实现更高质量的压缩感知重建。
在本实施方式中,图5中的曲线4为利用本发明提供的重建方法获得的明矾石的重建光谱曲线,可以看出,其更接近于曲线1,曲线6给出了曲线4和曲线1之间的光谱差异,可以看出,曲线6明显比曲线5更接近于零基准线,充分表明了本发明提出的基于光谱扰动的修正线性混合模型SPC_LMM比ELMM更能准确反映光谱的扰动情形,矩阵B能够根据光谱上每个点的扰动情况自适应地进行修正,并实现更精准的修正。
在一种优选实施方式中,在步骤S2中,利用观测数据Y迭代估计B、S和H的过程为:
步骤S21,预设迭代初始值,H0=0,B0=IL,
Figure BDA0002282425170000092
T1 0=0,/>
Figure BDA0002282425170000093
其中,变量R1=AB,变量R2=WB,变量R3=B,变量R4=FR3;IL表示L×L的单位矩阵,L为波段数;W为标准正交基;F表示全变分算子,T1为第一拉格朗日乘子,T2为第二拉格朗日乘子,T3为第三拉格朗日乘子,T4为第四拉格朗日乘子;
步骤S22,按照如下公式分别求得S、H和B在第k+1次迭代中的估计值Sk+1、Hk+1和Bk +1
Figure BDA0002282425170000094
Figure BDA0002282425170000101
Figure BDA0002282425170000102
其中,k为整数且k≥0;A为已知的光谱维测量矩阵;
Figure BDA0002282425170000103
表示变量R1的第k次迭代值,根据公式/>
Figure BDA0002282425170000104
获得,μ为正惩罚常数;T1 k表示T1的第k次迭代值,根据公式/>
Figure BDA0002282425170000105
获得;
Figure BDA0002282425170000106
表示T2的第k次迭代值,根据公式/>
Figure BDA0002282425170000107
获得;/>
Figure BDA0002282425170000108
表示T3的第k次迭代值,根据公式/>
Figure BDA0002282425170000109
获得;/>
Figure BDA00022824251700001010
表示T4的第k次迭代值,根据公式
Figure BDA00022824251700001011
获得;/>
Figure BDA00022824251700001012
表示变量R2的第k次迭代值,根据公式/>
Figure BDA00022824251700001013
获得;soft(*)表示soft-threshold函数,λ为大于零的第一正则项系数;/>
Figure BDA00022824251700001014
表示变量R3的第k次迭代值,根据公式/>
Figure BDA00022824251700001015
获得;FT表示F的转置;/>
Figure BDA00022824251700001016
表示变量R4的第k次迭代值,根据公式/>
Figure BDA00022824251700001017
获得,λTV为大于零的第二正则项系数;
步骤S23,判断步骤S22中获得的Sk+1、Hk+1
Figure BDA00022824251700001018
是否满足:||Y-AESk+1-R1 k+1EHk+1||F/||Y||F≤res;
若满足,停止迭代,获得原始高光谱图像数据的重建值为:
Figure BDA00022824251700001019
若不满足,令k=k+1,并返回步骤S22继续进行迭代;其中,res为预设的迭代收敛阈值,|| ||F表示取F范数。
目前,世界上多个学术机构建立起了一系列光谱库,例如USGS(United StatesGeological Survey,美国地质勘探局)数字光谱库、JPL(Jet Propulsion Laboratory,喷气推进实验室)光谱库以及加利福尼亚技术研究所的ASTER(Advanced SpaceborneThermal Emission and Reflection radiometer,先进星载热发射和反射辐射仪)光谱库等,这使得假设端元E已知是可行的。
在本实施方式中,对高光谱图像进行光谱维压缩采样可表示为:Y=AX=AES+ABEH,其中
Figure BDA0002282425170000111
表示光谱维压缩采样后的v个波段的观测数据(v<<L);/>
Figure BDA0002282425170000112
为高斯随机观测矩阵,光谱维压缩采样的采样率(Sampling Rate,SR)为v/L。需要指出的是,本文将高斯随机矩阵A归一化为0-1矩阵,这种处理方式便于DMD(Digital MicromirrorDevice,数字微镜设备)等光学器件的硬件实现,更符合实际应用的需求。
在本实施方式中,原始高光谱图像数据重建的目标是在已知端元矩阵E、观测数据Y与光谱维测量矩阵A的情况下,尽可能完全重建原始的高光谱数据X。在端元E已知的前提下,实现这一目标可以通过估计丰度矩阵S、修正矩阵B与丰度矩阵H来完成,详细过程为:
首先固定S和H,针对修正矩阵B的估计是一个欠定方程的优化求解问题,需要引入合理的先验假设。本发明在估计过程中引入全变分(Total Variation,TV)约束项;同时,考虑到修正矩阵B本身具有的稀疏特性,引入标准正交基下的稀疏约束。因此,重建过程的目标函数可表示为:
Figure BDA0002282425170000113
其中
Figure BDA0002282425170000114
称为C的Frobenius范数,上标T表示矩阵的转置;
Figure BDA0002282425170000115
Ci为C的第i列向量;W为标准正交基,优选但不限于选用正交小波基;
Figure BDA0002282425170000121
定义为空间各向异性TV范数,Fh与Fv分别表示水平和垂直方向的离散梯度算子;λ与λTV分别为大于零的第一正则项系数和第二正则项系数,优选的,λ的取值范围为:10-3~10-6;和/或λTV取值范围为:10-3~10-6
其次,固定B和H,由于p<<N,针对丰度S的估计为超定方程的求解问题。虽然增加先验信息(如丰度的稀疏等)有利于获得最优解,但相对于欠定问题的求解,约束项的增加对超定问题的求解影响较小。增加丰度的约束项不但无助于提高重建质量,而且会增加求解的复杂度。因此,本发明优选的采用最小二乘法估计S。同理,H的估计也采用类似的方法进行求解。
此外,在交替优化S、H与B之前,首先引入变量R1=AB,R2=WB,R3=B与R4=FR3,式(1)的无约束优化问题可以转化为如下的约束优化问题:
Figure BDA0002282425170000122
式(2)关于S、H、B、R1、R2、R3与R4的扩展拉格朗日函数为:
Figure BDA0002282425170000123
其中μ为正惩罚常数,用于控制迭代收敛速度,其大小优选但不限于为0.01-0.08,如选取为0.05;T1、T2、T3与T4分别为第一拉格朗日乘子、第二拉格朗日乘子、第三拉格朗日乘子和第四拉格朗日乘子。式(3)的扩展拉格朗日函数同时对所有变量的最小化是一非凸优化问题,但当固定其它变量,仅对单一变量的最小化就成为凸优化问题。因此,计算过程中首先固定其它变量,分别对Sk、Hk、Bk
Figure BDA0002282425170000131
与/>
Figure BDA0002282425170000132
中的一个变量进行最小化,然后再更新拉格朗日乘子T1 k、/>
Figure BDA0002282425170000133
与/>
Figure BDA0002282425170000134
其中上标k表示第k次迭代。
Sk最小化:扩展拉格朗日函数仅对Sk最小化是如下的最小二乘问题:
Figure BDA0002282425170000135
其解析解为:
Figure BDA0002282425170000136
其中C-1为矩阵C的逆矩阵。
Hk最小化:与Sk一样,Hk的最小化仍是最小二乘问题,其解析解为:
Figure BDA0002282425170000137
Bk最小化:Bk最小化的子问题表示如下:
Figure BDA0002282425170000138
其中W为正交基,WTW为单位矩阵。式(7)中Bk的最优解为:
Figure BDA0002282425170000139
其中IL表示L×L的单位矩阵。
Figure BDA00022824251700001310
最小化:/>
Figure BDA00022824251700001311
最小化的子问题如下:
Figure BDA00022824251700001312
其解可以利用式(10)进行更新:
Figure BDA00022824251700001313
Figure BDA00022824251700001314
最小化:/>
Figure BDA00022824251700001315
最小化可以转换成如下优化子问题:
Figure BDA0002282425170000141
该问题可以通过典型的soft-threshold方法求解,即
Figure BDA0002282425170000142
其中soft(*)表示soft-threshold函数。
Figure BDA0002282425170000143
最小化:/>
Figure BDA0002282425170000144
可以通过求解如下的无约束优化问题获得:
Figure BDA0002282425170000145
其解可以利用式(14)进行更新:
Figure BDA0002282425170000146
Figure BDA0002282425170000147
最小化:扩展拉格朗日函数对/>
Figure BDA0002282425170000148
的最小化可以得到式(15)的优化子问题:
Figure BDA0002282425170000149
Figure BDA00022824251700001410
的更新也可以用soft-threshold函数实现,如式(16)所示:
Figure BDA00022824251700001411
应用梯度下降法更新拉格朗日乘子T1 k
Figure BDA00022824251700001412
与/>
Figure BDA00022824251700001413
Figure BDA00022824251700001414
经过k次迭代后,在满足迭代终止条件下,即可利用式(18)得到原始高光谱图像的估计值为:
Figure BDA00022824251700001415
本发明还公开了一种高光谱压缩感知重建设备,在一种优选实施方式中,如图2所示,该重建设备包括数据获取单元和处理器;
数据获取单元获取原始高光谱图像光谱维压缩采样后的观测数据并传输给处理器,处理器获取观测数据后按照上述基于修正线性混合模型的高光谱压缩感知重建方法进行原始高光谱图像数据重建。
本发明还公开了一种高光谱图像压缩感知系统,在一种优选实施方式中,如图3所示,该系统包括位于发送端的高光谱压缩感知成像模块与第一处理中心7,以及位于接收端的上述高光谱压缩感知重建设备;
高光谱压缩感知成像模块接收目标物表面反射的光线,对其进行光谱维压缩采样,获得原始高光谱图像的观测数据;
第一处理中心7获取观测数据后并输出;
高光谱压缩感知重建设备接收观测数据并重建出原始高光谱图像数据。
在本实施方式中,第一处理中心7与高光谱压缩感知重建设备的数据获取单元均带有无线通信模块,两者无线通信。
在一种优选实施方式中,如图4所示,压缩感知成像模块包括沿光路依次设置的物镜1、分光元件2、第一透镜3、数字微镜阵列DMD 4、第二透镜5、成像阵列6;
物镜1接收目标表面的多条反射光线并传递至分光元件2,多条反射光线经分光元件2分成多个单光谱发散光线束,多个单光谱发散光线束通过第一透镜3后形成多个单光谱平行光线束,多个单光谱平行光线束由数字微镜阵列DMD 4光谱压缩后通过第二透镜5汇聚在成像阵列6上,形成观测数据;
数字微镜阵列DMD 4的采样率输入端与第一处理中心7的采样率输出端相连接。
在本实施方式中,DMD,Digital Micro-mirror Device,数字微镜器件。物镜1优选为远距型物镜,用于星载或机载时拍摄目标表面的景物。在本实施方式中,优选的,分光元件2为分光棱镜或分光光栅。
在本实施方式中,第一透镜3与第二透镜5优选但不限于为圆形、柱面与棱形等汇聚透镜,其用于将分散光转换为平行光,以及将平行光汇聚在一起。
在本实施方式中,数字微镜阵列DMD 4,是一种光调制器,为由成千上万个微镜组成的阵列,通过微镜反射入射光而实现光的调制,这些微镜阵列可通过器件内部的配置单元设定翻转角度,每个微镜可通过一个铰链实现两种固定的翻转状态,角度为水平方向的±12°翻转,当微镜翻转角度为+12°时,实现对入射光的对称角度反射,当微镜翻转角度为-12°时,微镜把入射光反射到芯片内置的光吸收材料上,没有反射光输出。数字微镜阵列DMD4优选但不限于选择美国德州仪器公司的DLP4710AFQL套片。数字微镜阵列DMD 4的光谱压缩率可调节,第一处理中心7发出采样率控制信号至数字微镜阵列DMD 4,调节各微镜的翻转角度进行预设。
在本实施方式中,成像阵列6优选但不限于为CCD阵列或CMOS阵列。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (5)

1.一种基于修正线性混合模型的高光谱压缩感知方法,其特征在于,包括:
步骤S1,获取原始高光谱图像光谱维压缩采样后的观测数据Y=AX;
其中,矩阵X表示需要重建的原始高光谱图像数据,A为光谱维测量矩阵,Y为光谱维观测数据;
步骤S2,构建修正线性混合模型:X=ES+BEH;
其中,E为端元矩阵;S为丰度矩阵;B表示端元光谱的修正矩阵;H表示修正后的端元光谱所对应的丰度矩阵;
利用观测数据Y估计出B、S和H的最优值,具体过程为:
步骤S21,预设迭代初始值,
H0=0,B0=IL,
Figure FDA0004058096990000011
Figure FDA0004058096990000012
其中,变量R1=AB,变量R2=WB,变量R3=B,变量R4=FR3;IL表示L×L的单位矩阵,L为波段数;W为标准正交基;F表示全变分算子,T1为第一拉格朗日乘子,T2为第二拉格朗日乘子,T3为第三拉格朗日乘子,T4为第四拉格朗日乘子;
步骤S22,按照如下公式分别求得S、H和B在第k+1次迭代中的估计值Sk+1、Hk+1和Bk+1
Figure FDA0004058096990000013
Figure FDA0004058096990000014
Figure FDA0004058096990000021
其中,k为整数且k≥0;A为已知的光谱维测量矩阵;
Figure FDA0004058096990000022
表示变量R1的第k次迭代值,根据公式
Figure FDA0004058096990000023
获得,μ为正惩罚常数;/>
Figure FDA0004058096990000024
表示T1的第k次迭代值,根据公式/>
Figure FDA0004058096990000025
获得;
Figure FDA0004058096990000026
表示T2的第k次迭代值,根据公式/>
Figure FDA0004058096990000027
获得;/>
Figure FDA0004058096990000028
表示T3的第k次迭代值,根据公式/>
Figure FDA0004058096990000029
获得;/>
Figure FDA00040580969900000210
表示T4的第k次迭代值,根据公式
Figure FDA00040580969900000211
获得;/>
Figure FDA00040580969900000212
表示变量R2的第k次迭代值,根据公式
Figure FDA00040580969900000213
获得;soft(*)表示soft-threshold函数,λ为大于零的第一正则项系数;/>
Figure FDA00040580969900000214
表示变量R3的第k次迭代值,根据公式/>
Figure FDA00040580969900000215
获得;FT表示F的转置;/>
Figure FDA00040580969900000216
表示变量R4的第k次迭代值,根据公式/>
Figure FDA00040580969900000217
获得,λTV为大于零的第二正则项系数;
步骤S23,判断步骤S22中获得的Sk+1、Hk+1
Figure FDA00040580969900000218
是否满足:||Y-AESk+1-R1 k+1EHk+1||F/||Y||F≤res;
若满足,停止迭代,获得原始高光谱图像数据的重建值为:
Figure FDA00040580969900000219
若不满足,令k=k+1,并返回步骤S22继续进行迭代;其中,res为预设的迭代收敛阈值,|| ||F表示取F范数;
步骤S3,将B、S和H的最优估计值代入修正线性混合模型来重建原始高光谱图像数据X。
2.如权利要求1所述的基于修正线性混合模型的高光谱压缩感知方法,其特征在于,
λ的取值范围为:10-3~10-6
和/或λTV取值范围为:10-3~10-6
3.一种高光谱压缩感知重建设备,其特征在于,包括数据获取单元和处理器;
所述数据获取单元获取原始高光谱图像光谱维压缩采样后的观测数据并传输给处理器,处理器获取观测数据后按照权利要求1-2之一所述的基于修正线性混合模型的高光谱压缩感知方法进行原始高光谱图像数据重建。
4.一种高光谱图像压缩感知系统,其特征在于,包括位于发送端的高光谱压缩感知成像模块与第一处理中心,以及位于接收端的如权利要求3所述的高光谱压缩感知重建设备;
所述高光谱压缩感知成像模块接收目标物表面反射的光线,对其进行光谱维压缩采样,获得原始高光谱图像的观测数据;
第一处理中心获取观测数据后并输出;
高光谱压缩感知重建设备接收观测数据并重建出原始高光谱图像数据。
5.如权利要求4所述的高光谱图像压缩感知系统,其特征在于,所述压缩感知成像模块包括沿光路依次设置的物镜、分光元件、第一透镜、数字微镜阵列DMD、第二透镜、成像阵列;
所述物镜接收目标表面的多条反射光线并传递至所述分光元件,多条反射光线经所述分光元件分成多个单光谱发散光线束,多个单光谱发散光线束通过所述第一透镜后形成多个单光谱平行光线束,多个单光谱平行光线束由数字微镜阵列DMD光谱压缩后通过第二透镜汇聚在成像阵列上,形成原始高光谱图像光谱维压缩采样后的观测数据;
所述数字微镜阵列DMD的采样率输入端与第一处理中心的采样率输出端相连接。
CN201911146773.XA 2019-11-21 2019-11-21 基于修正线性混合模型的高光谱压缩感知方法、设备及系统 Active CN111243043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911146773.XA CN111243043B (zh) 2019-11-21 2019-11-21 基于修正线性混合模型的高光谱压缩感知方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911146773.XA CN111243043B (zh) 2019-11-21 2019-11-21 基于修正线性混合模型的高光谱压缩感知方法、设备及系统

Publications (2)

Publication Number Publication Date
CN111243043A CN111243043A (zh) 2020-06-05
CN111243043B true CN111243043B (zh) 2023-06-16

Family

ID=70871762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911146773.XA Active CN111243043B (zh) 2019-11-21 2019-11-21 基于修正线性混合模型的高光谱压缩感知方法、设备及系统

Country Status (1)

Country Link
CN (1) CN111243043B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116567098B (zh) * 2023-07-10 2023-09-15 广东工业大学 一种混合广义期望一致的信号重构方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871087B (zh) * 2014-03-20 2016-07-13 西北工业大学 基于三维全变差稀疏先验的高光谱解混压缩感知方法
EP3347852B1 (en) * 2015-09-09 2019-11-20 Planetek Hellas E.P.E. Methods of compressing and decompressing spectral data
CN105957112A (zh) * 2016-05-06 2016-09-21 西安电子科技大学 基于快速uncls的高光谱亚像素探测方法

Also Published As

Publication number Publication date
CN111243043A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
EP3287949B1 (en) Image analysis system and method
US10274420B2 (en) Compact multifunctional system for imaging spectroscopy
US7907784B2 (en) Selectively lossy, lossless, and/or error robust data compression method
US8717551B2 (en) Adaptive search for atypical regions in incident light field and spectral classification of light in the atypical regions
US10302491B2 (en) Imaging method and apparatus
CN108291800B (zh) 光谱成像方法和系统
CN109697697B (zh) 基于优化启发的神经网络的光谱成像系统的重构方法
Mat Noor et al. Investigation into lossless hyperspectral image compression for satellite remote sensing
CN111243043B (zh) 基于修正线性混合模型的高光谱压缩感知方法、设备及系统
Martin et al. Hyperspectral coded aperture (HYCA): A new technique for hyperspectral compressive sensing
Kuiteing et al. Compressive hyperspectral imaging using progressive total variation
CN114638758A (zh) 一种基于压缩感知的光谱成像技术进行受损图像的恢复重构方法
Cheng et al. Unsupervised classification-based hyperspectral data processing: lossy compression
CN110390699B (zh) 一种基于压缩感知的高光谱图像分布式压缩方法及系统
CN108734672B (zh) 基于光谱库裁剪与协同稀疏回归的高光谱数据解混方法
CN116091640B (zh) 一种基于光谱自注意力机制的遥感高光谱重建方法及系统
Xiao et al. Distributed compressed sensing of hyperspectral images according to spectral library matching
CN116958807A (zh) 基于无监督动量对比学习的高光谱目标检测方法
Kawami et al. 2-Dimensional high-quality reconstruction of compressive measurements of phased array weather radar
CN112785693B (zh) 本征高光谱点云生成方法、系统及装置
CN114022364A (zh) 基于光谱库优化学习的多光谱图像光谱超分方法和系统
Zhang et al. Compressive hyperspectral imaging with spatial and spectral priors
Yao et al. Hyperspectral image inpainting based on low-rank representation: A case study on Tiangong-1 data
CN103400341B (zh) 基于压缩感知的空谱域联合恢复高光谱数据的方法
Nus et al. On-line blind unmixing for hyperspectral pushbroom imaging systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant