CN111240347A - 一种自抗扰控制的无人机航向角误差补偿方法、系统 - Google Patents
一种自抗扰控制的无人机航向角误差补偿方法、系统 Download PDFInfo
- Publication number
- CN111240347A CN111240347A CN202010053932.8A CN202010053932A CN111240347A CN 111240347 A CN111240347 A CN 111240347A CN 202010053932 A CN202010053932 A CN 202010053932A CN 111240347 A CN111240347 A CN 111240347A
- Authority
- CN
- China
- Prior art keywords
- disturbance rejection
- active disturbance
- observer
- extended state
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004364 calculation method Methods 0.000 claims description 16
- 230000006870 function Effects 0.000 description 17
- 238000004590 computer program Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000009699 differential effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 101710163391 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase Proteins 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开一种自抗扰控制的无人机航向角误差补偿系统,所述系统包括:第一获取单元:用于获取航向角;第一自抗扰控制器单元:其中所示第一自抗扰控制器单元包括:一第一跟踪微分器,一第一扩展状态观测器;所述第一扩展状态观测器,在所述第一扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;第二自抗扰控器单元:所述第二自抗扰控制器包括一第二扩展状态观测器;所述第二扩展状态观测器,在所述第二扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器。本发明提高了四旋翼无人机航向角的抗干扰能力和控制精度。
Description
技术领域
本发明涉及四旋翼无人机姿态控制技术领域,具体是一种自抗扰控制的四旋翼无人机航向角误差补偿方法。
背景技术
铜电解是铜冶炼过程的最后一步,电解过程中阴阳极板在电解槽中紧密排布,由于极板、电解液、阳极泥等原因,使阴极板局部生长较快,形成凸起的铜粒子,导致阴阳极板使杂质金属也吸附到阴极板,造成极板短路,且短路部位发热严重。四旋翼无人机因其运动灵活、效率高的特点而被广泛应用,故可搭载红外成像仪,作为巡检无人机,以非接触的方式大面积地反应铜电解槽面温度分布,代替人工巡检,来检测电解厂内电解过程中极板是否发生短路。但是电解厂内会存在着强磁场,在此磁场干扰下,由于四旋翼无人机的航向是电子罗盘来确定,加速度计和陀螺仪几乎不受影响,而电子罗盘是利用地球磁场来定向的装置,其输出极易受到周围环境磁场的影响,会导致航向角出现误差,因此给四旋翼无人机的导航带来很大困难。
本文提供的背景描述用于总体上呈现本公开的上下文的目的。除非本文另外指示,在该章节中描述的资料不是该申请的权利要求的现有技术并且不要通过包括在该章节内来承认其成为现有技术。
发明内容
针对相关技术中的上述技术问题,本发明提出一种自抗扰控制的无人机航向角误差补偿方法,解决磁场干扰下四旋翼无人机航向无法精确确定的问题。
为实现上述技术目的,本发明的实施例提供了一种自抗扰控制的无人机航向角误差补偿方法,其包括如下步骤:
S1.获取无人机的航向角;
S2.通过自抗扰控制器获取无人机的新的航向角;
所述自抗扰控制器包括如下结构:
第一自抗扰控制器,第二自抗扰控制器,所述第一自抗扰控制器的输出作为所述第二自抗扰控制器的输入;
其中第一自抗扰控制器包括一第一跟踪微分器,一第一扩展状态观测器;
所述第二自抗扰控制器包括一第二扩展状态观测器;
所述第一扩展状态观测器以及第二扩展状态观测器,在所述第一扩展状态观测器和所述第二扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
进一步地,所述预设值为1。
进一步地,所述线性观测器为:
其中
进一步地,所述非线性观测器为:
其中
β1=3ω,β2=3ω2,β3=ω3
进一步地,所述第一跟踪微分器为:
其中:
进一步地,所述第一自抗扰控制器和所述第二自抗扰控制器的误差反馈律为:
其中:
为了为实现上述技术目的,本发明的实施例还公开了一种自抗扰控制的无人机航向角误差补偿控制系统,其包括:
第一获取单元:用于获取无人机航向角;
第一自抗扰控制器单元:其中所示第一自抗扰控制器单元包括:
一第一跟踪微分器,一第一扩展状态观测器;
所述第一扩展状态观测器,在所述第一扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
第二自抗扰控制器单元:
所述第二自抗扰控制器包括一第二扩展状态观测器;
所述第二扩展状态观测器,在所述第二扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
第一控制计算单元,用于根据所述第二自抗扰控制器的输出计算控制量;
第二控制计算单元,用于根据所述第一控制计算单元的输出的控制量计算最终的航向角。
进一步地,所述预设值为1。
进一步地,所述线性观测器为:
其中
进一步地,所述非线性观测器为:
其中
β1=3ω,β2=3ω2,β3=ω3
进一步地,所述第一跟踪微分器为:
其中:
进一步地,所述第一自抗扰控制器和所述第二自抗扰控制器的误差反馈律为:
其中:
此外,本发明的实施例还公开了一种非易失性存储器,其上包含指令,所述指令在执行时用于实现所述的自抗扰控制的无人机航向角误差补偿的方法。
本发明的有益效果:本实施例根据扩展状态观测器的跟踪误差的不同,采用非线性自抗扰和线性自抗扰结合的方法,此外,本实施例还改进了状态反馈率,从而提高四旋翼无人机航向角的抗干扰能力和控制精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是自抗扰控制技术的示意图;
图2是本发明实施例提供的一种自抗扰控制的无人机航向角误差补偿系统的示意图;
图3-5分别是是本发明实施例的自抗扰控制的无人机航向角误差补偿系统的加白噪声的效果示意图;
图6是本发明实施例提供的一种自抗扰控制的无人机航向角误差补偿设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
下面先对自抗扰控制技术做一个简单介绍,参考附图1(图示为非线性自抗扰)自抗扰控制技术包含着微分跟踪器即图中所示的安排过渡过程,一扩展状态观测器(ESO)和状态误差反馈率三个部分。自抗扰控制技术有着非线性自抗扰和线性自抗扰之分。
其中,所述微分跟踪器(TD),主要作用是给输入的信号安排一个过渡过程,同时提取其微分量。对不连续或者带有噪声的输入或测量信号也能得到连续的跟踪信号和合理的高品质微分信号,改善了系统的控制性能。另外,相同参数的跟踪微分器还能适应较多的对象,提高了控制器的适应性。
以设定值v为输入,安排过渡过程,离散形式的TD为:
最速控制综合函数fhan(v1,v2,r,h):
其中,sign表示符号函数,v1,v2表示系统的状态,T表示系统的采样周期,r表示系统的速度因子,决定了微分器跟踪信号的速度,h表示滤波因子,对输入信号里的噪声起滤波作用。利用fhan(v1,v2,r,h)函数来建立的跟踪微分器如下式所示:
从而实现了v1快速无超调的跟踪上输入信号v,而v2作为v的近似微分,代表了跟踪过程的微分信号。
其中,跟踪微分器的参数包括速度因子r和滤波因子h。r的大小直接影响TD的跟踪输入信号的速度,但是过大则会放大噪声,从而影响系统性能;h的大小与滤波的效果成正比,但是过大则会造成跟踪信号的相位滞后严重,所以要对r和h进行折中考虑。
扩张状态观测器(ESO),用来观测模型不确定性及受到的外部未知扰动。ESO将未知总扰动扩张成一个新的变量,不依赖扰动的具体模型,也不用直接测量,只需要通过ESO对扰动进行观测就能得到扰动的估计值。这里的扰动,不但包括外界实际飞行环境的磁场干扰给电子罗盘施加的外部扰动,也包括了系统参数的变化和不确定性引起的内部扰动。若系统为非线性系统,其中包含的模型不确定性以及外部未知扰动,均可通过ESO进行观测,估计出总扰动并实时补偿。同时,将含有不确定扰动的非线性系统,用非线性状态反馈转化为“串联型积分器”的控制系统,能使被控系统具有较好的适应性和鲁棒性。
ESO的基本思想是将系统总扰动扩张成一个新状态变量,然后利用系统输出估计系统状态和总扰动。其基本算法如下:
其中,fal(ε,αi,δ)为非线性函数,表示为:
ESO的离散形式为:
其中,ESO有α1,α2,δ,β1,β2,β3六个参数。fal(ε,αi,δ)函数的非线性形状取决于α的大小,为了便于实现,α1一般取0.5,α2一般取0.25;δ表示该函数线性区间的宽度,主要用来消除零点处的高频脉动,一般取0.01左右。
β1,β2,β3为观测器的增益,参数大小与ESO的收敛速度有关。其中β1,β2越大,ESO估计系统状态z1,z2的速度也较快,β1的取值在一定范围内对系统的控制品质影响不大,但是β2过大则会产生高频噪声。β3主要影响ESO估计扰动的时间,但是β3过大容易引起ESO出现振荡,减弱噪声的抑制作用。可采取以下方法进行参数整定:
β1=3ω,β2=3ω2,β3=ω3
其中,ω为ESO的带宽。
状态误差反馈律,可以为非线性误差反馈率也可以是线性误差反馈率,本文以为非线性状态误差反馈律(NLSEF)为例进行说明。基于TD输出的跟踪信号xv1,微分信号x2与ESO输出信号z1,z2,构造系统的误差信号e1和误差微分信号e2,只需将它们通过fal(ei,αi,δ)函数进行非线性组合,得到非线性误差反馈控制律:
其中,控制量u0(k)中,k1fal(e1,α3,δ2)相当于PID控制中的比例作用,k2fal(e2,α4,δ3)相当于PID控制中的微分作用,在比例作用情况下,根据低误差采用低增益的原则,一般取0<α3<1;在微分作用情况下,根据小误差选小增益,大误差选大增益的原则,一般取α4>1。一般实际应用中,一般取α3=0.75,α4=1.25或者α3=0.5,α4=1.5。系数k1,k2的调节作用类似于PID控制器中P、D的调节作用,参数选定方法与此类似,本文不再赘述。
实施例一
参考附图2,本实施例提供了一种自抗扰控制的无人机航向角误差补偿系统,所述系统包括:
第一获取单元(图中未示出):用于获取航向角;
四旋翼无人机安装了多种传感器,例如电子罗盘,可用于实时获取四旋翼无人机的航向角;在这种情况下,所述第一获取单元,从所述传感器获取航向角。
另一种情况,四旋翼无人机的传感器输出的数据不能直接代表其航向角,需要使用卡尔曼滤波器来处理相应的传感器输出的数据来计算无人机的航向角,在这种情况下,所述第一获取单元获取的是所述卡尔曼滤波器处理后获取的无人机的航向角。
第一自抗扰控制器单元:其中所示第一自抗扰控制器单元包括:
一第一跟踪微分器,一第一扩展状态观测器;
所述第一扩展状态观测器,在所述第一扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
非线性扩展状态观测器,虽然比线性形式具有更高的效率,并且对初始状态误差相对不敏感,但是总扰动过大时导致性能急剧恶化。本实施例根据扩展状态观测器的跟踪误差,来决定是使用非线性形式,还是线性形式,可以使得系统快速稳定。
第二自抗扰控制器单元:
所述第二自抗扰控制器包括一第二扩展状态观测器;
所述第二扩展状态观测器,在所述第二扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
第一控制计算单元,用于根据所述第二自抗扰控制器的输出计算;
其中所述第第一控制计算单元的输出作为第二自抗扰控制器单元的反馈信号。
第二控制计算单元,用于根据所述第一控制计算单元的输出计算最终的航向角。
其中所述第二控制计算单元的输出作为第一自抗扰控制器单元的反馈信号。
进一步地,所述预设值可以设置为1。
参考附图2,附图2是一个二阶系统,其中,输入的航向角υ(t)输入本实施例中的自抗扰控制器,本实施例的自抗扰控制器包括一第一自抗扰控制器单元(ADRC1),所述第一自抗扰控制器单元根据输入的航向角υ(t)输出u1、一第二自抗扰控制器单元(ADRC2),所述第二自抗扰控制器单元根据第一自抗扰控制器单元ADRC1的输出u1输出u,以及一第一控制计算单元 所述第一控制计算单元用于计算地磁强度,其中f2是计算地磁强度的函数表达式,属于本领域中公知的方式,本领域技术人员可以选择任何可以计算地磁强度的函数来计算地磁强度,本实施例不做限制;w为外部磁场干扰、一第二控制计算单元,其中f1是计算航向角的函数表达式,属于本领域中公知的方式,本领域技术人员可以选择任何可以计算航向角的函数来计算航向角,本实施例不做限制;所述第二控制计算单元用于计算相较其输出的最终航向角为y=x1。
本实施例中的自抗扰控制器,把变量x2当作控制被控输出x1的“虚拟控制量”u1,然后用实际控制量u来控制中间变量x2,让它跟踪上面确定的“虚拟控制量”u1,以此来完成实际控制量u来控制被控输出y=x1的目的。
为了使该串级控制方法取得更好的效果,设计“外环”第一自抗扰控制器时,尽可能的让其输出u1变化缓慢一些,在设计“内环”第二自抗扰控制器时,为了使变量x2尽可能实现“外环”给出的“虚拟控制量”u1,故在第二自抗扰控制器中取消了安排过渡过程的部分。
参考附图3-5,通过对系统施加白噪声干扰,分别为0.1、0.2、0.3为例,,PID控制输出会有一定的延迟,而且随着干扰指的增加,稳定性降低,而本实施例中的自抗扰控制跟踪效果优异,稳定性优于PID控制,体现了本实施例自抗扰控制优异的抗干扰能力。
本实施例根据扩展状态观测器的跟踪误差的不同,采用非线性自抗扰和线性自抗扰结合的方法,从而提高四旋翼无人机航向角的抗干扰能力和控制精度。
进一步地,所述第一自干扰控制器和所述第二自干扰控制的控制量u:
其中,b0是决定补偿强弱的补偿因子,作为自抗扰系统中与控制目标相关的唯一参数,当系统模型不确定时,可以当做一个参数来整定,b0值的选取不同,系统的补偿分量也就会不同,即b0可以看做是系统总扰动补偿量的比例系数。
进一步地,所述线性观测器为:
其中
进一步地,所述非线性观测器为:
其中
β1=3ω,β2=3ω2,β3=ω3
进一步地,所述第一跟踪微分器为:
其中:
进一步地,所述第一自抗扰控制器和所述第二自抗扰控制器的误差反馈律为:
其中:
实施例二
实施例提供了一种自抗扰控制的无人机航向角误差补偿方法,其包括如下步骤:
S1.获取无人机的航向角;
S2.通过自抗扰控制器获取无人机的新的航向角;
所述自抗扰控制器包括如下结构:
第一自抗扰控制器,第二自抗扰控制器,所述第一自抗扰控制器的输出作为所述第二自抗扰控制器的输入;
其中第一自抗扰控制器包括一第一跟踪微分器,一第一扩展状态观测器;
所述第二自抗扰控制器包括一第二扩展状态观测器;
所述第一扩展状态观测器以及第二扩展状态观测器,在所述第一扩展状态观测器和所述第二扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
进一步地,所述预设值可以设置为1。
参考附图3-5,通过对系统施加白噪声干扰,分别为0.1、0.2、0.3为例,,PID控制输出会有一定的延迟,而且随着干扰指的增加,稳定性降低,而本实施例中的自抗扰控制跟踪效果优异,稳定性优于PID控制,体现了本实施例自抗扰控制优异的抗干扰能力。
本实施例根据扩展状态观测器的跟踪误差的不同,采用非线性自抗扰和线性自抗扰结合的方法,从而提高四旋翼无人机航向角的抗干扰能力和控制精度。
进一步地,所述线性观测器为:
其中
进一步地,所述非线性观测器为:
其中
β1=3ω,β2=3ω2,β3=ω3。
进一步地,所述第一跟踪微分器为:
其中:
进一步地,所述第一自抗扰控制器和所述第二自抗扰控制器的误差反馈律为:
其中:
实施例三
参考附图6,本实施例提供了一种自抗扰控制的无人机航向角差补偿设备20的结构示意图。该实施例的自抗扰控制的无人机航向角差补偿设备20包括处理器21、存储器22以及存储在所述存储器22中并可在所述处理器21上运行的计算机程序。所述处理器21执行所述计算机程序时实现上述自抗扰控制的无人机航向角差补偿方法实施例中的步骤,例如步骤S1、S2。或者,所述处理器21执行所述计算机程序时实现上述各装置实施例中各模块/单元的功能,例如第一获取单元。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器22中,并由所述处理器21执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述移动边缘计算任务卸载设备20中的执行过程。
所述自抗扰控制的无人机航向角差补偿设备20可包括,但不仅限于,处理器21、存储器22。本领域技术人员可以理解,所述示意图仅仅是自抗扰控制的无人机航向角差补偿设备20的示例,并不构成对自抗扰控制的无人机航向角差补偿设备20的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述自抗扰控制的无人机航向角差补偿设备20还可以包括输入输出设备、网络接入设备、总线等。
所述处理器21可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器21是所述自抗扰控制的无人机航向角差补偿设备20的控制中心,利用各种接口和线路连接整个自抗扰控制的无人机航向角差补偿设备20的各个部分。
所述存储器22可用于存储所述计算机程序和/或模块,所述处理器21通过运行或执行存储在所述存储器22内的计算机程序和/或模块,以及调用存储在存储器22内的数据,实现所述自抗扰控制的无人机航向角差补偿设备20的各种功能。所述存储器22可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中,所述自抗扰控制的无人机航向角差补偿设备20集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器21执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
Claims (13)
1.一种自抗扰控制的无人机航向角误差补偿方法,其包括如下步骤:
S1.获取无人机的航向角;
S2.通过自抗扰控制器获取无人机的新的航向角;
所述自抗扰控制器包括如下结构:
第一自抗扰控制器,第二自抗扰控制器,所述第一自抗扰控制器的输出作为所述第二自抗扰控制器的输入;
其中第一自抗扰控制器包括一第一跟踪微分器,一第一扩展状态观测器;
所述第二自抗扰控制器包括一第二扩展状态观测器;
所述第一扩展状态观测器以及第二扩展状态观测器,在所述第一扩展状态观测器和所述第二扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器。
2.根据权利要求1所述的方法,所述预设值为1。
7.一种自抗扰控制的无人机航向角误差补偿控制系统,其包括:
第一获取单元:用于获取无人机航向角;
第一自抗扰控制器单元:其中所示第一自抗扰控制器单元包括:
一第一跟踪微分器,一第一扩展状态观测器;
所述第一扩展状态观测器,在所述第一扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
第二自抗扰控制器单元:
所述第二自抗扰控制器包括一第二扩展状态观测器;
所述第二扩展状态观测器,在所述第二扩展状态观测器的跟踪误差大于预设值时为线性观测器;在跟踪误差小于或等于预设值时,采用非线性观测器;
第一控制计算单元,用于根据所述第二自抗扰控制器的输出计算控制量;
第二控制计算单元,用于根据所述第一控制计算单元的输出的控制量计算最终的航向角。
8.根据权利要求7所述的系统,所述预设值为1。
13.一种非易失性存储器,其上包含指令,所述指令在执行时用于实现权利要求1-6所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010053932.8A CN111240347A (zh) | 2020-01-17 | 2020-01-17 | 一种自抗扰控制的无人机航向角误差补偿方法、系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010053932.8A CN111240347A (zh) | 2020-01-17 | 2020-01-17 | 一种自抗扰控制的无人机航向角误差补偿方法、系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111240347A true CN111240347A (zh) | 2020-06-05 |
Family
ID=70868702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010053932.8A Pending CN111240347A (zh) | 2020-01-17 | 2020-01-17 | 一种自抗扰控制的无人机航向角误差补偿方法、系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111240347A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111781941A (zh) * | 2020-06-15 | 2020-10-16 | 上海航天控制技术研究所 | 基于滑模自抗扰复合控制的飞行器滚动通道姿态控制方法 |
CN112000007A (zh) * | 2020-07-17 | 2020-11-27 | 无锡卡尔曼导航技术有限公司 | 一种用于农机无人驾驶的扰动抑制控制方法 |
CN112558481A (zh) * | 2020-12-17 | 2021-03-26 | 广东工业大学 | 船舶操纵系统中的航向角度自抗扰控制方法及相关装置 |
CN113138612A (zh) * | 2020-07-28 | 2021-07-20 | 西安天和防务技术股份有限公司 | 天文导航的自抗扰控制方法、装置及电子设备 |
CN113534842A (zh) * | 2021-07-29 | 2021-10-22 | 电子科技大学 | 一种基于自抗扰的无人机控制方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102830622A (zh) * | 2012-09-05 | 2012-12-19 | 北京理工大学 | 一种四旋翼飞行器自抗扰自动飞行控制方法 |
CN104865968A (zh) * | 2015-04-22 | 2015-08-26 | 浙江工业大学 | 一种采用串级自抗扰控制技术的四旋翼飞行器悬停控制方法 |
CN105182750A (zh) * | 2015-09-02 | 2015-12-23 | 中国人民解放军军械工程学院 | 一种线性/非线性自抗扰控制系统切换控制方法 |
CN106444812A (zh) * | 2016-10-26 | 2017-02-22 | 华南智能机器人创新研究院 | 一种基于四旋翼无人机的姿态控制的方法及其系统 |
CN108762099A (zh) * | 2018-09-07 | 2018-11-06 | 广东电网有限责任公司 | 一种自抗扰控制方法及自抗扰控制器 |
CN108803326A (zh) * | 2018-06-06 | 2018-11-13 | 黄山学院 | 具有干扰和时延的工业机械臂线性自抗扰跟踪控制方法 |
CN109062237A (zh) * | 2018-09-17 | 2018-12-21 | 南京航空航天大学 | 一种无人倾转旋翼机自抗扰姿态控制方法 |
CN109507885A (zh) * | 2018-12-20 | 2019-03-22 | 中国海洋大学 | 基于自抗扰的无模型自适应auv控制方法 |
CN110209054A (zh) * | 2019-06-11 | 2019-09-06 | 大连海事大学 | 基于rbf神经网络的无人船艇航向自抗扰控制系统 |
-
2020
- 2020-01-17 CN CN202010053932.8A patent/CN111240347A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102830622A (zh) * | 2012-09-05 | 2012-12-19 | 北京理工大学 | 一种四旋翼飞行器自抗扰自动飞行控制方法 |
CN104865968A (zh) * | 2015-04-22 | 2015-08-26 | 浙江工业大学 | 一种采用串级自抗扰控制技术的四旋翼飞行器悬停控制方法 |
CN105182750A (zh) * | 2015-09-02 | 2015-12-23 | 中国人民解放军军械工程学院 | 一种线性/非线性自抗扰控制系统切换控制方法 |
CN106444812A (zh) * | 2016-10-26 | 2017-02-22 | 华南智能机器人创新研究院 | 一种基于四旋翼无人机的姿态控制的方法及其系统 |
CN108803326A (zh) * | 2018-06-06 | 2018-11-13 | 黄山学院 | 具有干扰和时延的工业机械臂线性自抗扰跟踪控制方法 |
CN108762099A (zh) * | 2018-09-07 | 2018-11-06 | 广东电网有限责任公司 | 一种自抗扰控制方法及自抗扰控制器 |
CN109062237A (zh) * | 2018-09-17 | 2018-12-21 | 南京航空航天大学 | 一种无人倾转旋翼机自抗扰姿态控制方法 |
CN109507885A (zh) * | 2018-12-20 | 2019-03-22 | 中国海洋大学 | 基于自抗扰的无模型自适应auv控制方法 |
CN110209054A (zh) * | 2019-06-11 | 2019-09-06 | 大连海事大学 | 基于rbf神经网络的无人船艇航向自抗扰控制系统 |
Non-Patent Citations (4)
Title |
---|
CHENGAO 等: "ADRC for spacecraft attitude and position synchronization in libration point orbits", 《SCI》 * |
LINXING XU 等: "Cascade active disturbance rejection control for quadrotor UAV", 《2019 CHINESE CONTROL CONFERENCE (CCC)》 * |
刘威: "基于随机鲁棒方法的高速飞行器自抗扰姿态控制", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
李杰 等: "线性_非线性自抗扰切换控制方法研究", 《自动化学报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111781941A (zh) * | 2020-06-15 | 2020-10-16 | 上海航天控制技术研究所 | 基于滑模自抗扰复合控制的飞行器滚动通道姿态控制方法 |
CN112000007A (zh) * | 2020-07-17 | 2020-11-27 | 无锡卡尔曼导航技术有限公司 | 一种用于农机无人驾驶的扰动抑制控制方法 |
CN113138612A (zh) * | 2020-07-28 | 2021-07-20 | 西安天和防务技术股份有限公司 | 天文导航的自抗扰控制方法、装置及电子设备 |
CN112558481A (zh) * | 2020-12-17 | 2021-03-26 | 广东工业大学 | 船舶操纵系统中的航向角度自抗扰控制方法及相关装置 |
CN112558481B (zh) * | 2020-12-17 | 2023-02-10 | 广东工业大学 | 船舶操纵系统中的航向角度自抗扰控制方法及相关装置 |
CN113534842A (zh) * | 2021-07-29 | 2021-10-22 | 电子科技大学 | 一种基于自抗扰的无人机控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111240347A (zh) | 一种自抗扰控制的无人机航向角误差补偿方法、系统 | |
CN105651242B (zh) | 一种基于互补卡尔曼滤波算法计算融合姿态角度的方法 | |
CN106200693B (zh) | 土地调查小型无人机的云台实时控制系统及控制方法 | |
CN110687799B (zh) | 一种智能船舶自动舵系统的模糊自适应输出反馈控制方法及系统 | |
CN109883423B (zh) | 基于卡尔曼滤波的定位方法、系统、设备及存储介质 | |
CN112229405B (zh) | 一种基于图像跟踪与激光测距的无人机目标运动估计方法 | |
CN109164709A (zh) | 一种基于改进型Smith预估器的光电跟踪系统控制方法 | |
CN111552305B (zh) | 一种无人机姿态控制方法、装置及设备 | |
CN106705936A (zh) | 一种无人机高度优化方法及装置 | |
CN113110511B (zh) | 一种基于广义模糊双曲模型的智能船舶航向控制方法 | |
CN105466456B (zh) | 动中通天线稳定陀螺动态消除零点漂移的方法 | |
CN110941285A (zh) | 一种基于双ip核的无人机飞行控制系统 | |
CN111347418B (zh) | 一种电控伺服系统控制的方法、电控伺服系统及机器人 | |
CN111750865A (zh) | 一种用于双功能深海无人潜器导航系统的自适应滤波导航方法 | |
CN110986928A (zh) | 光电吊舱三轴陀螺仪漂移实时修正方法 | |
CN108919646B (zh) | 一种基于支持向量机的快速偏转镜视轴抖振抑制方法 | |
CN110530400B (zh) | 陀螺仪漂移修正方法、装置、光电吊舱及飞行器 | |
CN102359782A (zh) | 挠性陀螺数字变换放大与再平衡装置 | |
CN112034869A (zh) | 一种无人机变参神经动力学控制器的设计方法及其应用 | |
CN114018241A (zh) | 用于无人机的定位方法和设备 | |
CN107305308A (zh) | 用于光学图像稳定的方法和装置 | |
CN116107220B (zh) | Smith预估器的位置控制器优化方法、装置 | |
CN118473368B (zh) | 一种针对动态偏差的自适应两级强跟踪滤波方法 | |
CN112346485A (zh) | 一种光电跟踪控制方法、系统、电子设备及存储介质 | |
CN105955016B (zh) | 一种不同带宽传感器的最优闭环融合方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200605 |
|
RJ01 | Rejection of invention patent application after publication |