CN111239234B - Non-radioactive method for on-line monitoring of ammonia gas - Google Patents
Non-radioactive method for on-line monitoring of ammonia gas Download PDFInfo
- Publication number
- CN111239234B CN111239234B CN201811443928.1A CN201811443928A CN111239234B CN 111239234 B CN111239234 B CN 111239234B CN 201811443928 A CN201811443928 A CN 201811443928A CN 111239234 B CN111239234 B CN 111239234B
- Authority
- CN
- China
- Prior art keywords
- gas
- migration
- sample
- ammonia
- reagent molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000012544 monitoring process Methods 0.000 title claims abstract description 9
- 239000007789 gas Substances 0.000 claims abstract description 84
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 35
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 30
- 239000012159 carrier gas Substances 0.000 claims abstract description 25
- 238000001228 spectrum Methods 0.000 claims abstract description 20
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 238000001871 ion mobility spectroscopy Methods 0.000 claims abstract description 8
- 230000002285 radioactive effect Effects 0.000 claims abstract description 8
- 238000013508 migration Methods 0.000 claims description 33
- 230000005012 migration Effects 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 230000005684 electric field Effects 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 238000005485 electric heating Methods 0.000 claims 4
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000000523 sample Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 18
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000000180 cavity ring-down spectroscopy Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010006326 Breath odour Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000009127 Glutaminase Human genes 0.000 description 1
- 108010073324 Glutaminase Proteins 0.000 description 1
- 206010019375 Helicobacter infections Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- 102000010909 Monoamine Oxidase Human genes 0.000 description 1
- 108010062431 Monoamine oxidase Proteins 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 208000007386 hepatic encephalopathy Diseases 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005891 transamination reaction Methods 0.000 description 1
- 230000004143 urea cycle Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/622—Ion mobility spectrometry
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种对氨气进行快速、准确、连续监测的非放射性装置及方法。本发明利用试剂分子辅助光电离的非放射性离子迁移谱,在正离子模式下,选用丁酮做试剂分子,实现了氨气的快速、准确、高灵敏在线测量。检测装置包括:漂气、载气、试剂分子发生装置、离子迁移谱系统、泵等。
The invention discloses a non-radioactive device and method for fast, accurate and continuous monitoring of ammonia. The invention utilizes the non-radioactive ion mobility spectrum assisted by photoionization of reagent molecules, and selects methyl ethyl ketone as the reagent molecule in the positive ion mode to realize fast, accurate and highly sensitive online measurement of ammonia gas. The detection device includes: drift gas, carrier gas, reagent molecule generating device, ion mobility spectrometry system, pump, etc.
Description
技术领域technical field
本发明隶属离子迁移谱技术领域。利用非放射性真空紫外灯离子迁移谱,在正离子模式下采用吸气式采样,并通过优化筛选试剂分子,对二甲苯,引发化学反应,提高了氨气检测的灵敏度和选择性,实现了氨气的快速、准确在线监测。The invention belongs to the technical field of ion mobility spectrometry. Utilize non-radioactive vacuum ultraviolet lamp ion mobility spectrometry, adopt suction sampling in positive ion mode, and optimize the screening of reagent molecules, p-xylene, trigger chemical reactions, improve the sensitivity and selectivity of ammonia detection, and realize ammonia Rapid and accurate online monitoring of gas.
技术背景technical background
氨气是一种无色,强烈刺激性气味的无机气体,极易溶于水,是一种路易斯碱,在人体和环境中均有存在。Ammonia is a colorless inorganic gas with a strong pungent odor, easily soluble in water, a Lewis base, and exists in the human body and the environment.
在人体中,氨气具有重要的作用,并被认为是一种重要的呼出气生物标记物。人体中氨的主要来源包括:氨基酸的脱氨作用,在肾脏中大部分的氨基酸会与α-酮戊二酸在谷酰胺酶的的作用下通过转氨作用形成谷氨酸。此外,氨气还可以由嘌呤和嘧啶化合物代谢产生;肠道细菌对食物中氨基酸的分解以及单胺氧化酶分解也会产生氨气。氨气在肝门处被吸收,并通过尿素循环在肝脏中别转化为尿素。部分氨气也会以呼出气的形式排出体外。实际上,氨气是一种有害气体,在肝脏和肾脏中被转化无害的物质,当血液中的氨气无法被正常过滤掉时,氨气就会使得这些器官发生功能性紊乱。氨气还能损害神经系统,造成肝性脑病。当血液中的氨气含量增加,就可以扩散到肺部并通过呼出气的形式排出。目前研究发现,呼出气中的氨气与许多疾病均存在相关性,如肾衰竭,哮喘,幽门螺旋杆菌感染,口臭等。In humans, ammonia plays an important role and is considered an important exhaled breath biomarker. The main sources of ammonia in the human body include: deamination of amino acids, most of the amino acids in the kidney will form glutamic acid through transamination with α-ketoglutarate under the action of glutaminase. In addition, ammonia can also be produced by the metabolism of purine and pyrimidine compounds; the decomposition of amino acids in food by intestinal bacteria and the decomposition of monoamine oxidase can also produce ammonia. Ammonia is absorbed at the porta hepatis and is converted to urea in the liver through the urea cycle. Part of the ammonia is also excreted in exhaled breath. In fact, ammonia is a harmful gas that is transformed into harmless substances in the liver and kidneys. When the ammonia in the blood cannot be filtered out normally, the ammonia will cause functional disorders in these organs. Ammonia can also damage the nervous system and cause hepatic encephalopathy. When ammonia levels in the blood increase, it can diffuse to the lungs and be expelled in exhaled air. Current studies have found that ammonia in exhaled breath is associated with many diseases, such as renal failure, asthma, Helicobacter pylori infection, and bad breath.
在环境中,氨气是大气环境中唯一的高浓度碱性气体,可与二氧化硫、氮氧化物和挥发性有机物VOCs反应生成气溶胶颗粒物,从而影响全球辐射平衡,它是气雾霾污染过程二次颗粒物形成的重要原因,并且能够造成河流、湖泊富营养化。In the environment, ammonia is the only high-concentration alkaline gas in the atmosphere, which can react with sulfur dioxide, nitrogen oxides and volatile organic compounds (VOCs) to generate aerosol particles, thereby affecting the global radiation balance. It is an important reason for the formation of secondary particles and can cause eutrophication of rivers and lakes.
因此氨气的检测在人类疾病诊断以及大气质量检测等方面具有重要的意义。Therefore, the detection of ammonia is of great significance in the diagnosis of human diseases and the detection of air quality.
目前用于检测氨气的主要仪器和方法有质谱(MS),气相色谱-质谱联用(GC-MS),光谱法,如腔衰荡光谱(CRDS),声光光谱(PAS),化学传感器等。质谱和GC-MS的检测极限可达ppb至ppt量级,但其体积大,而且价格昂贵,需要专业人员操作。光谱法的检测的极限可至ppb量级,但其存在较大的背景干扰。化学传感器便携,简单,检测限低但它们的稳定性普遍较差,使用寿命较短。At present, the main instruments and methods used to detect ammonia are mass spectrometry (MS), gas chromatography-mass spectrometry (GC-MS), spectroscopic methods, such as cavity ring-down spectroscopy (CRDS), acousto-optic spectroscopy (PAS), and chemical sensors. wait. The detection limit of mass spectrometry and GC-MS can reach the level of ppb to ppt, but they are bulky and expensive, requiring professionals to operate. The detection limit of the spectroscopic method can reach the ppb level, but there is a large background interference. Chemical sensors are portable, simple, and have low detection limits, but they generally suffer from poor stability and short lifetime.
离子迁移谱是在大气压下利用离子迁移率的不同实现离子分离的仪器。它的结构简单,成本低易于小型化,并且离子迁移谱的灵敏度到,响应时间短,非常适合在线监测。但目前所用的电离源均为放射性63Ni,限制了其广泛应用。Ion mobility spectrometry is an instrument that uses the difference in ion mobility to separate ions at atmospheric pressure. It has simple structure, low cost and easy miniaturization, and the sensitivity of ion mobility spectrometer is high, and the response time is short, which is very suitable for online monitoring. However, the ionization sources currently used are all radioactive 63 Ni, which limits its wide application.
发明内容Contents of the invention
本发明的目的在于提供一种氨气快速在线监测的非放射性装置及方法。The object of the present invention is to provide a non-radioactive device and method for rapid on-line monitoring of ammonia gas.
一种在线监测氨气的非放射性装置及方法包括:样品气,载气,试剂分子发生装置,泵,尾气,射频真空紫外灯,迁移管系统,漂气。A non-radioactive device and method for on-line ammonia monitoring includes: sample gas, carrier gas, reagent molecule generator, pump, exhaust gas, radio frequency vacuum ultraviolet lamp, transfer tube system, and drift gas.
技术方案为:采用装置包括以射频真空紫外灯为电离源的迁移谱,迁移谱的迁移管包括反应区、离子门、离子迁移区,于远离反应区的离子迁移区一侧设有漂气入口;于远离离子迁移区的反应区一侧设有气体总出口,于气体总出口处设有泵;于靠近离子门的反应区一侧设有样品气和载气入口,样品气和载气入口通过管路与样品气气源相连,样品气和载气入口通过管路与试剂分子发生装置的气体出口相连,试剂分子发生装置气体进口与载气气源相连;试剂分子发生装置为一密闭容器,密闭容器内放置有盛放有试剂分子的敞口容器,密闭容器上部设有气体出口和气体进口;试剂分子为丁酮。The technical scheme is: the device includes a migration spectrum with a radio frequency vacuum ultraviolet lamp as an ionization source, the migration tube of the migration spectrum includes a reaction zone, an ion gate, and an ion migration zone, and a drift gas inlet is provided on the side of the ion migration zone far away from the reaction zone ; There is a total gas outlet on the side of the reaction area far away from the ion migration area, and a pump is provided at the main gas outlet; there are sample gas and carrier gas inlets on the side of the reaction area near the ion gate, and sample gas and carrier gas inlets The sample gas and carrier gas inlets are connected to the gas outlet of the reagent molecule generating device through pipelines, and the gas inlet of the reagent molecule generating device is connected to the carrier gas source; the reagent molecule generating device is a closed container , an open container containing reagent molecules is placed in the airtight container, and a gas outlet and a gas inlet are arranged on the upper part of the airtight container; the reagent molecule is butanone.
气路所采用的导管材质均为聚四氟乙烯,以减少氨气吸附。The tubes used in the gas path are made of polytetrafluoroethylene to reduce ammonia gas adsorption.
离子迁移谱所采用的试剂分子为2-丁酮。试剂分子发生装置包含恒温系统,温度范围为30-60℃,使试剂分子发生装置的温度保持在特定的温度范围内。The reagent molecule used in ion mobility spectrometry is 2-butanone. The reagent molecule generating device includes a constant temperature system with a temperature range of 30-60°C to keep the temperature of the reagent molecule generating device within a specific temperature range.
载气流速范围为50-100ml/min,漂气流速范围为500-600ml/min,尾气流量范围为600-750ml/min;The carrier gas flow rate range is 50-100ml/min, the drift gas flow rate range is 500-600ml/min, and the tail gas flow rate range is 600-750ml/min;
迁移管温度范围为100-150℃,迁移区电场强度范围为450-500V/cm。The temperature range of the migration tube is 100-150° C., and the electric field intensity range of the migration region is 450-500 V/cm.
本发明的优点为:The advantages of the present invention are:
本发明所开发的仪器及方法基于结构简单的离子迁移谱技术,采用真空紫外灯非放射性电离源,丁酮作为试剂分子,能够快速准确在线监测氨气,提高了氨气检测的选择性,便于大规模应用。The instrument and method developed by the present invention are based on ion mobility spectrometry technology with simple structure, using vacuum ultraviolet lamp non-radioactive ionization source, methyl ethyl ketone as reagent molecule, can quickly and accurately monitor ammonia on-line, improve the selectivity of ammonia detection, and facilitate large-scale application.
附图说明Description of drawings
图1为快速在线监测氨气的结构示意图。其中:1为射频真空紫外灯,2为反应区,3为离子门,4为迁移区,5为迁移管系统,6为漂气,7为载气,8为试剂分子发生装置,9为样品气,10为泵,11为尾气。Figure 1 is a structural schematic diagram of rapid on-line ammonia monitoring. Among them: 1 is the radio frequency vacuum ultraviolet lamp, 2 is the reaction area, 3 is the ion gate, 4 is the migration area, 5 is the migration tube system, 6 is the drift gas, 7 is the carrier gas, 8 is the reagent molecule generating device, 9 is the sample Gas, 10 is the pump, and 11 is the exhaust gas.
图2为2-丁酮做试剂分子时,氨气的离子迁移谱图Figure 2 is the ion mobility spectrum of ammonia gas when 2-butanone is used as a reagent molecule
图3氨气的工作曲线Figure 3 Ammonia working curve
图4为连续监测一天的室外大气谱图Figure 4 is the outdoor atmospheric spectrum of continuous monitoring for one day
具体实施方式Detailed ways
以下实施例说明本发明的使用,但不限制所述的应用范围。The following examples illustrate the use of the invention without limiting the scope of application described.
采用装置包括以射频真空紫外灯为电离源的迁移谱,迁移谱的迁移管包括反应区、离子迁移区,于远离反应区的离子迁移区一侧设有漂气入口;于远离离子迁移区的反应区一侧设有气体总出口,于气体总出口处设有真空泵;于靠近离子迁移区的反应区一侧设有样品气和载气入口,样品气和载气入口通过管路与样品气气源相连,样品气和载气入口通过管路与试剂分子发生装置的气体出口相连,试剂分子发生装置气体进口与载气气源相连;试剂分子发生装置为一密闭容器,密闭容器内放置有盛放有试剂分子的敞口容器,密闭容器上部设有气体出口和气体进口;试剂分子为丁酮。The device used includes a mobility spectrum using a radio frequency vacuum ultraviolet lamp as an ionization source. The migration tube of the mobility spectrum includes a reaction zone and an ion migration zone, and a drift gas inlet is provided on the side of the ion migration zone far away from the reaction zone; on the side far away from the ion migration zone There is a total gas outlet on one side of the reaction zone, and a vacuum pump is installed at the total gas outlet; there are sample gas and carrier gas inlets on the side of the reaction zone close to the ion migration zone, and the sample gas and carrier gas inlets are connected to the sample gas through the pipeline. The gas source is connected, the sample gas and carrier gas inlet are connected to the gas outlet of the reagent molecule generator through pipelines, the gas inlet of the reagent molecule generator is connected to the carrier gas source; the reagent molecule generator is a closed container, and the sealed container is placed An open container containing reagent molecules, and a gas outlet and a gas inlet are arranged on the upper part of the airtight container; the reagent molecule is butanone.
实施例1Example 1
采用试剂分子辅助光电离正离子迁移谱检测氨气,试剂分子为丁酮,载气流速范围为50-100ml/min,漂气流速范围为500-600ml/min,尾气流量范围为600-750ml/min;迁移管温度范围为100-150℃,迁移区电场强度范围为450-500V/cm。氨气的离子迁移谱图如图2,产物离子为丁酮与氨气的复合物,其约化迁移率为1.87,试剂离子的约化迁移率为1.66,二者能够完全分离。Ammonia gas is detected by reagent molecule-assisted photoionization positive ion mobility spectrometry. The reagent molecule is butanone, the carrier gas flow rate range is 50-100ml/min, the drift flow rate range is 500-600ml/min, and the tail gas flow rate range is 600-750ml/min. min; the temperature range of the migration tube is 100-150°C, and the electric field intensity range of the migration region is 450-500V/cm. The ion mobility spectrum of ammonia gas is shown in Figure 2. The product ion is a complex of methyl ethyl ketone and ammonia gas with a reduced mobility of 1.87, and the reduced mobility of the reagent ion is 1.66. The two can be completely separated.
实施例2Example 2
含有一系列已知梯度浓度的氨气的空气和/或氮气为标准气,标准气通过迁移谱的样品气和载气入口进入迁移谱中检测,获得一系列梯度浓度的标准气的迁移谱图;以一系列梯度浓度的标准气的信号强度对浓度作图,得到氨气的工作曲线,如图3;其线性范围为25-455ppb,检测下限为6ppb。Air and/or nitrogen containing a series of known gradient concentrations of ammonia gas is used as the standard gas. The standard gas enters the migration spectrum through the sample gas and carrier gas inlet of the migration spectrum for detection, and obtains the migration spectrum of a series of gradient concentrations of the standard gas. Concentration plotting with the signal intensity of the standard gas of a series of gradient concentrations, obtains the working curve of ammonia, as Figure 3; Its linear range is 25-455ppb, and detection limit is 6ppb.
实施例3Example 3
将待测样品气通入迁移谱中检测,将待测样品气的迁移谱图信号强度带入工作曲线方程中,得到样品气中氨气的浓度。图3为一天中室外大气中氨气的浓度变化。The sample gas to be tested is passed into the migration spectrum for detection, and the signal intensity of the migration spectrum of the sample gas to be tested is brought into the working curve equation to obtain the concentration of ammonia in the sample gas. Figure 3 shows the changes in the concentration of ammonia in the outdoor atmosphere in one day.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811443928.1A CN111239234B (en) | 2018-11-29 | 2018-11-29 | Non-radioactive method for on-line monitoring of ammonia gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811443928.1A CN111239234B (en) | 2018-11-29 | 2018-11-29 | Non-radioactive method for on-line monitoring of ammonia gas |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111239234A CN111239234A (en) | 2020-06-05 |
CN111239234B true CN111239234B (en) | 2023-04-07 |
Family
ID=70879303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811443928.1A Active CN111239234B (en) | 2018-11-29 | 2018-11-29 | Non-radioactive method for on-line monitoring of ammonia gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111239234B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113588767A (en) * | 2021-08-03 | 2021-11-02 | 大连工业大学 | Biogenic amine detection method based on time-resolved dynamic thermal desorption ion mobility spectrometry |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413919A (en) * | 2007-08-01 | 2009-04-22 | 中国科学院大连化学物理研究所 | Method for recognizing and analyzing sample and ion transfer spectrometer |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102033100B (en) * | 2009-09-25 | 2013-03-13 | 同方威视技术股份有限公司 | Detecting system of ion migration spectrometer (IMS) using doping agent and detecting method thereof |
CN102074448B (en) * | 2009-11-20 | 2014-09-24 | 同方威视技术股份有限公司 | Ion mobility spectrometer and method for improving detection sensitivity thereof |
CN105628783A (en) * | 2014-10-28 | 2016-06-01 | 中国科学院大连化学物理研究所 | Application of reagent molecules in ion mobility spectrometry detection of explosive peroxide HMTD |
CN204204795U (en) * | 2014-11-27 | 2015-03-11 | 中国科学院大连化学物理研究所 | A kind of radio frequency electrical of vacuum UV lamp is from excitation apparatus |
CN106841365A (en) * | 2015-12-07 | 2017-06-13 | 中国科学院大连化学物理研究所 | A kind of online high speed detection method of ammonia |
CN106226384B (en) * | 2016-09-22 | 2019-08-13 | 大连工业大学 | A kind of trimethylamine detection method based on Ion mobility spectrometry |
CN106501346B (en) * | 2016-09-22 | 2019-08-13 | 大连工业大学 | A kind of method of trimethylamine in quick detection aquatic products |
CN108007999A (en) * | 2016-10-28 | 2018-05-08 | 中国科学院大连化学物理研究所 | A kind of ion mobility spectrometry detection method of etomidate in etomidate injection |
CN108072689A (en) * | 2016-11-17 | 2018-05-25 | 中国科学院大连化学物理研究所 | A kind of quantitative analysis method for ion mobility spectrometry |
CN108088892A (en) * | 2016-11-21 | 2018-05-29 | 中国科学院大连化学物理研究所 | A kind of SF6On-line rapid measurement device and method |
-
2018
- 2018-11-29 CN CN201811443928.1A patent/CN111239234B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413919A (en) * | 2007-08-01 | 2009-04-22 | 中国科学院大连化学物理研究所 | Method for recognizing and analyzing sample and ion transfer spectrometer |
Also Published As
Publication number | Publication date |
---|---|
CN111239234A (en) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ohira et al. | Micro gas analyzers for environmental and medical applications | |
CN106226384B (en) | A kind of trimethylamine detection method based on Ion mobility spectrometry | |
Agbroko et al. | A novel, low-cost, portable PID sensor for the detection of volatile organic compounds | |
Tang et al. | Breath analysis: technical developments and challenges in the monitoring of human exposure to volatile organic compounds | |
JP2005534029A (en) | Gas detection method and apparatus by measuring ozone removal | |
CN103487481A (en) | Expiration ammonia gas analyzer | |
CN111239234B (en) | Non-radioactive method for on-line monitoring of ammonia gas | |
CN109884158B (en) | A non-radioactive method for online monitoring of ammonia | |
CN108088887A (en) | A kind of detection method of front three amine gas | |
IL156149A (en) | Method for measuring the total concentration of carbon monoxide and hydrocarbons in oxygen by means of ion mobility spectrometry | |
Erxleben et al. | Automized procedures for the determination of ozone and ammonia contents in air by using the chromatomembrane method for gas-liquid extraction | |
Peng et al. | Dopant titrating ion mobility spectrometry for trace exhaled nitric oxide detection | |
CN111220682B (en) | A method for online monitoring of exhaled breath anesthetics by ion mobility spectrometry | |
Manchukutty et al. | Dual photoionization source-based differential mobility sensor for trace gas detection in human breath | |
JP2013145228A (en) | Method for determining formaldehyde concentration in gas | |
CN109813792B (en) | A Quantitative Method of Ion Mobility Spectrometry for Sample Detection | |
CN112924526B (en) | A method for simultaneous on-line detection of exhaled ammonia and acetone | |
CN108088884B (en) | Device and method for rapidly detecting cyanide in gas-solid-liquid sample | |
Magnano et al. | Exhaled volatile organic compounds and respiratory disease: recent progress and future outlook | |
Wen et al. | Online detection of HCN in humid exhaled air by gas flow-assisted negative photoionization mass spectrometry | |
CN112924533B (en) | A kind of method for online detection of exhaled breath acetone | |
Hashemipour et al. | Ammonia detection and measurement | |
Song et al. | Selective measurement of Cl 2 and HCl based on dopant-assisted negative photoionization ion mobility spectrometry combined with semiconductor cooling | |
CN112924521A (en) | Real-time online ion mobility spectrometry quantification method | |
CN104990785A (en) | Tungsten filament pre-enrichment device for determining zinc and using method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |