CN111238473A - 地心地固坐标系下惯导系统高度通道的二阶阻尼方法 - Google Patents

地心地固坐标系下惯导系统高度通道的二阶阻尼方法 Download PDF

Info

Publication number
CN111238473A
CN111238473A CN202010068837.5A CN202010068837A CN111238473A CN 111238473 A CN111238473 A CN 111238473A CN 202010068837 A CN202010068837 A CN 202010068837A CN 111238473 A CN111238473 A CN 111238473A
Authority
CN
China
Prior art keywords
coordinate system
height
ecef
damping
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010068837.5A
Other languages
English (en)
Other versions
CN111238473B (zh
Inventor
付强文
李四海
贺剑
郑翔
明轩
暴苗刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Mechanical And Electrical Engineering General Design Department
Northwestern Polytechnical University
Original Assignee
Beijing Mechanical And Electrical Engineering General Design Department
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Mechanical And Electrical Engineering General Design Department, Northwestern Polytechnical University filed Critical Beijing Mechanical And Electrical Engineering General Design Department
Priority to CN202010068837.5A priority Critical patent/CN111238473B/zh
Publication of CN111238473A publication Critical patent/CN111238473A/zh
Application granted granted Critical
Publication of CN111238473B publication Critical patent/CN111238473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种地心地固坐标系下惯导系统高度通道的二阶阻尼方法,用于解决现有惯导系统高度通道阻尼方法实用性差的技术问题。技术方案是首先将ECEF编排解算的位置坐标转换至地理坐标系,再计算惯性解算高度与外部测量高度之差,并转换至地心地固坐标系,借鉴经典的地理坐标系高度通道阻尼方法,设计ECEF编排下的二阶高度阻尼网络。本发明利用ECEF坐标系与地理坐标系之间的转换关系,将高度量测误差转换至地心地固坐标系,并构建二阶阻尼网络对ECEF编排的天向通道进行等效阻尼,通过高度阻尼系数抑制了外部测量高度的噪声和突变影响,通过天向速度阻尼系数抑制了天向速度误差,提高ECEF编排的天向速度和高度精度。实用性好。

Description

地心地固坐标系下惯导系统高度通道的二阶阻尼方法
技术领域
本发明涉及一种惯导系统高度通道阻尼方法,特别涉及一种地心地固坐标系下惯导系统高度通道的二阶阻尼方法。
背景技术
与经典地理坐标系下的惯性导航编排相比,地心地固坐标系(ECEF)导航编排能够实现包括极地区域在内的全球导航,并且计算量小,计算效率高。但是惯导系统的高度通道是不稳定的,没有外界高度阻尼的纯惯性解算不适合长时间导航。由于ECEF坐标系为非水平坐标系,发散的垂向通道误差会耦合到各个轴向,给高度阻尼带来困难。
文献“GNSS+SINS组合导航地固系高度阻尼算法,测绘通报,2016,Vol11,p12-14”公开了一种ECEF坐标系下的高度阻尼方法。该方法首先将ECEF坐标编排解算的位置信息转换至地理坐标系,并用外部观测高度替换惯性指示高度后,再转换回ECEF坐标系,抑制了高度通道的发散趋势。但是,文献所述方法直接使用外部辅助高度替换惯性解算高度,不能对天向速度误差进行等效阻尼,也不能有效抑制外部辅助高度的噪声和突变误差。
发明内容
为了克服现有惯导系统高度通道阻尼方法实用性差的不足,本发明提供一种地心地固坐标系下惯导系统高度通道的二阶阻尼方法。该方法首先将ECEF编排解算的位置坐标转换至地理坐标系,再计算惯性解算高度与外部测量高度之差,并转换至地心地固坐标系,借鉴经典的地理坐标系高度通道阻尼方法,设计ECEF编排下的二阶高度阻尼网络。本发明利用ECEF坐标系与地理坐标系之间的转换关系,将高度量测误差转换至地心地固坐标系,并构建二阶阻尼网络对ECEF编排的天向通道进行等效阻尼,通过高度阻尼系数抑制了外部测量高度的噪声和突变影响,通过天向速度阻尼系数抑制了天向速度误差,能够有效抑制导航解算的天向速度误差和外部测量高度的噪声,提高ECEF编排的天向速度和高度精度,获得与经典地理坐标系高度阻尼相同的效果。实用性好。
本发明解决其技术问题所采用的技术方案:一种地心地固坐标系下惯导系统高度通道的二阶阻尼方法,其特点是包括以下步骤:
(a)将ECEF编排解算的位置坐标pe=[xe ye ze]T转换至地理坐标系得到pg=[λ Lh]T
λ=atan2(ye,xe) (1)
Figure BDA0002376756650000021
Figure BDA0002376756650000022
式中xe、ye、ze为ECEF坐标系下惯导解算的三维位置坐标;λ、L、h为转换获得的经度、纬度和高度;上标T表示向量转置;e1为地球第一偏心率;Re和Rp为地球半长轴和半短轴;RN为当地卯酉圈半径;地心纬度θ=atan2(zeRe,RRp),赤道面半径
Figure BDA0002376756650000023
(b)计算惯性解算高度与外部测量高度之差,并转换至ECEF坐标系
Figure BDA0002376756650000024
式中δhe为ECEF坐标系下的高度误差,hr为外部辅助高度。
(c)借鉴经典的地理坐标系高度通道阻尼方法,设计ECEF编排下的二阶高度阻尼网络,其速度、位置微分方程为:
Figure BDA0002376756650000025
Figure BDA0002376756650000026
式中,ve为ECEF坐标系下的速度,
Figure BDA0002376756650000027
为其导数;
Figure BDA0002376756650000028
为ECEF编排下解算的姿态矩阵,fb为机体系比力信息,
Figure BDA0002376756650000029
为ECEF坐标系下的地球自转角速率矢量,ge为ECEF坐标系下的重力加速度矢量,
Figure BDA00023767566500000210
为ECEF坐标系下位置矢量的导数;k1为设计的高度阻尼系数,k2为天设计的向速度阻尼系数。
本发明的有益效果是:该方法首先将ECEF编排解算的位置坐标转换至地理坐标系,再计算惯性解算高度与外部测量高度之差,并转换至地心地固坐标系,借鉴经典的地理坐标系高度通道阻尼方法,设计ECEF编排下的二阶高度阻尼网络。本发明利用ECEF坐标系与地理坐标系之间的转换关系,将高度量测误差转换至地心地固坐标系,并构建二阶阻尼网络对ECEF编排的天向通道进行等效阻尼,通过高度阻尼系数抑制了外部测量高度的噪声和突变影响,通过天向速度阻尼系数抑制了天向速度误差,能够有效抑制导航解算的天向速度误差和外部测量高度的噪声,提高ECEF编排的天向速度和高度精度,获得与经典地理坐标系高度阻尼相同的效果。实用性好。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明设计的ECEF编排下的高度通道二阶阻尼网络。
图2是本发明实施例提供的高度和天向速度仿真轨迹曲线。
图3是本发明实施例提供的外部辅助高度误差曲线。
图4是本发明技术获得的高度误差和天向速度误差。
图5是本发明技术获得的结果与经典地理系阻尼结果的差异。
图6是背景技术获得的高度误差和天向速度误差。
具体实施方式
参照图1-5。本发明地心地固坐标系下惯导系统高度通道的二阶阻尼方法具体步骤如下:
1、位置信息转换至地理系。
定义地心地固坐标系(ECEF)为e系;定义地理坐标系为g系,坐标轴指向当地位置的东北天方向。将ECEF编排每周期解算的位置坐标pe=[xe ye ze]T转换为地理坐标系位置pg=[λ L h]T
λ=atan2(ye,xe) (1)
Figure BDA0002376756650000031
Figure BDA0002376756650000032
式中xe、ye、ze为ECEF坐标系下惯导解算的三维位置坐标;λ、L、h为转换获得的经度、纬度和高度;上标T表示向量转置;e1为地球第一偏心率;Re和Rp为地球半长轴和半短轴;RN为当地卯酉圈半径;地心纬度θ=atan2(zeRe,RRp),赤道面半径
Figure BDA0002376756650000041
2、计算地理系高度误差并转换回ECEF坐标系。
计算地理系高度测量误差为δh=h-hr,并通过位置方向余弦矩阵将其转换至ECEF坐标系得到
Figure BDA0002376756650000042
其中矩阵
Figure BDA0002376756650000043
Figure BDA0002376756650000044
带入并化简得到
Figure BDA0002376756650000045
式中δhe为ECEF坐标系下的高度误差,hr为外部辅助高度。
3、构造ECEF坐标系二阶高度阻尼网络。
借鉴经典的地理坐标系高度通道阻尼方法,设计ECEF编排下的高度通道二阶阻尼网络,参照附图1。对应的速度、位置微分方程为:
Figure BDA0002376756650000046
Figure BDA0002376756650000047
式中,ve为ECEF坐标系下的速度,
Figure BDA0002376756650000048
为其导数;
Figure BDA0002376756650000049
为ECEF编排下解算的姿态矩阵,fb为机体系比力信息,
Figure BDA00023767566500000410
为ECEF坐标系下的地球自转角速率矢量,ge为ECEF坐标系下的重力加速度矢量,
Figure BDA00023767566500000411
为ECEF坐标系下位置矢量的导数;k1为设计的高度阻尼系数,k2为设计的天向速度阻尼系数。
下面通过仿真数据对本发明的具体实施方式和实施效果做进一步说明。
仿真条件:仿真轨迹的初始地理系位置为[120°E;30°N;0m],初始俯仰、滚转、航向角为[0;0;0]°,纵向速度为50m/s,仿真时间长度为3600s;惯导系统的初始俯仰、滚转和航向误差角为[0.003;-0.003;0.05]°,解算周期为10ms;陀螺零偏误差为0.01°/h,随机游走噪声为
Figure BDA00023767566500000412
加速度计零偏误差为50μg,随机噪声为
Figure BDA00023767566500000413
外部辅助高度噪声均方差为10m/s;二阶阻尼系数设计为k1=0.16,k2=0.01。
图2显示了仿真轨迹中天向速度和高度的变化曲线,在1000s和2400s处存在高度上升和下降过程。
图3显示了外部辅助高度的误差曲线,除随机噪声外,在第1600s和3000s处叠加了突变误差。
图6为背景技术获得的高度误差和天向速度误差曲线。由于背景技术直接采用外部测量高度,得到的高度误差受噪声和突变误差影响,与图3中的外部辅助高度误差相同;由于背景技术没有阻尼天向速度误差,得到的天向速度误差累积达2m/s。
图4为本发明技术获得的高度误差和天向速度误差曲线。由于采用了等效二阶阻尼网络,高度误差在1.5m以内,天向速度误差在0.1m/s以内,抑制了外部测量高度的噪声和突变影响,提高了天向速度和高度精度。
图5为本发明技术获得的高度和天向速度与经典地理系高度阻尼结果之差。图5中高度误差值10-6m以内,天向速度误差值在1.5×10-7m/s以内。实施效果表明,本发明技术能够获得高精度的天向速度和高度信息,与经典地理坐标系的高度阻尼效果一致。

Claims (1)

1.一种地心地固坐标系下惯导系统高度通道的二阶阻尼方法,其特征在于包括以下步骤:
(a)将ECEF编排解算的位置坐标pe=[xe ye ze]T转换至地理坐标系得到pg=[λ L h]T
λ=atan2(ye,xe) (1)
Figure FDA0002376756640000011
Figure FDA0002376756640000012
式中xe、ye、ze为ECEF坐标系下惯导解算的三维位置坐标;λ、L、h为转换获得的经度、纬度和高度;上标T表示向量转置;e1为地球第一偏心率;Re和Rp为地球半长轴和半短轴;RN为当地卯酉圈半径;地心纬度θ=atan2(zeRe,RRp),赤道面半径
Figure FDA0002376756640000013
(b)计算惯性解算高度与外部测量高度之差,并转换至ECEF坐标系
Figure FDA0002376756640000014
式中δhe为ECEF坐标系下的高度误差,hr为外部辅助高度;
(c)借鉴经典的地理坐标系高度通道阻尼方法,设计ECEF编排下的二阶高度阻尼网络,其速度、位置微分方程为:
Figure FDA0002376756640000015
Figure FDA0002376756640000016
式中,ve为ECEF坐标系下的速度,
Figure FDA0002376756640000017
为其导数;
Figure FDA0002376756640000018
为ECEF编排下解算的姿态矩阵,fb为机体系比力信息,
Figure FDA0002376756640000019
为ECEF坐标系下的地球自转角速率矢量,ge为ECEF坐标系下的重力加速度矢量,
Figure FDA00023767566400000110
为ECEF坐标系下位置矢量的导数;k1为设计的高度阻尼系数,k2为天设计的向速度阻尼系数。
CN202010068837.5A 2020-01-21 2020-01-21 地心地固坐标系下惯导系统高度通道的二阶阻尼方法 Active CN111238473B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010068837.5A CN111238473B (zh) 2020-01-21 2020-01-21 地心地固坐标系下惯导系统高度通道的二阶阻尼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010068837.5A CN111238473B (zh) 2020-01-21 2020-01-21 地心地固坐标系下惯导系统高度通道的二阶阻尼方法

Publications (2)

Publication Number Publication Date
CN111238473A true CN111238473A (zh) 2020-06-05
CN111238473B CN111238473B (zh) 2022-11-22

Family

ID=70864179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010068837.5A Active CN111238473B (zh) 2020-01-21 2020-01-21 地心地固坐标系下惯导系统高度通道的二阶阻尼方法

Country Status (1)

Country Link
CN (1) CN111238473B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650232B1 (en) * 2005-09-22 2010-01-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Trajectory specification for high capacity air traffic control
CN102997915A (zh) * 2011-09-15 2013-03-27 北京自动化控制设备研究所 一种闭环正向滤波结合反向平滑的pos后处理方法
CN105865446A (zh) * 2016-05-25 2016-08-17 南京航空航天大学 基于大气辅助的惯性高度通道阻尼卡尔曼滤波方法
CN106289246A (zh) * 2016-07-25 2017-01-04 北京航空航天大学 一种基于位置和姿态测量系统的柔性杆臂测量方法
CN109029454A (zh) * 2018-07-13 2018-12-18 哈尔滨工程大学 一种基于卡尔曼滤波的横坐标系捷联惯导系统阻尼算法
CN109269526A (zh) * 2018-07-16 2019-01-25 哈尔滨工程大学 基于阻尼网络的旋转式格网惯导水平阻尼方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650232B1 (en) * 2005-09-22 2010-01-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Trajectory specification for high capacity air traffic control
CN102997915A (zh) * 2011-09-15 2013-03-27 北京自动化控制设备研究所 一种闭环正向滤波结合反向平滑的pos后处理方法
CN105865446A (zh) * 2016-05-25 2016-08-17 南京航空航天大学 基于大气辅助的惯性高度通道阻尼卡尔曼滤波方法
CN106289246A (zh) * 2016-07-25 2017-01-04 北京航空航天大学 一种基于位置和姿态测量系统的柔性杆臂测量方法
CN109029454A (zh) * 2018-07-13 2018-12-18 哈尔滨工程大学 一种基于卡尔曼滤波的横坐标系捷联惯导系统阻尼算法
CN109269526A (zh) * 2018-07-16 2019-01-25 哈尔滨工程大学 基于阻尼网络的旋转式格网惯导水平阻尼方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. C. FENG ET. AL: "Advantages of ECEF-frame based global navigation mechanization for INS/GNSS integrated navigation system", 《2018 25TH SAINT PETERSBURG INTERNATIONAL CONFERENCE ON INTEGRATED NAVIGATION SYSTEMS (ICINS)》, 31 December 2018 (2018-12-31), pages 1 - 3 *
丁磊香等: "GNSS+SINS组合导航地固系高度阻尼算法", 《测绘通报》, no. 11, 31 December 2016 (2016-12-31), pages 12 - 14 *

Also Published As

Publication number Publication date
CN111238473B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN110487301B (zh) 一种雷达辅助机载捷联惯性导航系统初始对准方法
CN101788296B (zh) 一种sins/cns深组合导航系统及其实现方法
Chatfield Fundamentals of high accuracy inertial navigation
CN113311436B (zh) 一种移动平台上激光测风雷达运动姿态测风订正方法
CN101825467B (zh) 捷联惯性导航系统与天文导航系统实现组合导航的方法
CN106767787A (zh) 一种紧耦合gnss/ins组合导航装置
CN111380518B (zh) 一种引入径向速度的sins/usbl紧组合导航定位方法
CN101246012B (zh) 一种基于鲁棒耗散滤波的组合导航方法
CN103076026B (zh) 一种捷联惯导系统中确定多普勒计程仪测速误差的方法
Yao et al. Transverse Navigation under the Ellipsoidal Earth Model and its Performance in both Polar and Non-polar areas
CN102169184A (zh) 组合导航系统中测量双天线gps安装失准角的方法和装置
RU2318188C1 (ru) Способ автономной навигации и ориентации космических аппаратов
CN102519485A (zh) 一种引入陀螺信息的二位置捷联惯性导航系统初始对准方法
CN111552003A (zh) 基于球卫星编队的小行星引力场全自主测量系统及方法
CN111722295B (zh) 一种水下捷联式重力测量数据处理方法
CN112713922A (zh) 一种多波束通讯卫星的可见性快速预报算法
CN103955005B (zh) 一种火箭橇轨道重力实时测量方法
CN111207773A (zh) 一种用于仿生偏振光导航的姿态无约束优化求解方法
CN111060140B (zh) 一种地球椭球模型下的极区惯性导航误差获得方法
CN112229421A (zh) 基于李群最优估计的捷联惯性导航晃动基座粗对准方法
Peshekhonov et al. State-of-the-art strapdown airborne gravimeters: Analysis of the development
CN111238473B (zh) 地心地固坐标系下惯导系统高度通道的二阶阻尼方法
CN103256932A (zh) 一种替换结合外推的着陆导航方法
CN113551669B (zh) 基于短基线的组合导航定位方法及装置
CN110110347B (zh) 一种基于点质量法的航空重力矢量向下延拓方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant