CN111235513B - 一种磁性不锈钢屑芯复合钢的制备方法 - Google Patents

一种磁性不锈钢屑芯复合钢的制备方法 Download PDF

Info

Publication number
CN111235513B
CN111235513B CN202010164183.6A CN202010164183A CN111235513B CN 111235513 B CN111235513 B CN 111235513B CN 202010164183 A CN202010164183 A CN 202010164183A CN 111235513 B CN111235513 B CN 111235513B
Authority
CN
China
Prior art keywords
stainless steel
magnetic
core composite
scrap
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010164183.6A
Other languages
English (en)
Other versions
CN111235513A (zh
Inventor
任忠凯
郭雄伟
武张静
张斌
王涛
梁煜
黄庆学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010164183.6A priority Critical patent/CN111235513B/zh
Publication of CN111235513A publication Critical patent/CN111235513A/zh
Application granted granted Critical
Publication of CN111235513B publication Critical patent/CN111235513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供一种磁性不锈钢屑芯复合钢的制备方法,包括以下步骤:S1、进行不锈钢管预加工;S2、对回收的废弃不锈钢屑进行预加工;S3、不锈钢屑表面喷涂磁性粉末;S4、将准备好的原料制备成合格的待轧坯料;S5、对坯料进行加热,然后在脉冲电流辅助下进行轧制;S6、将轧后的复合板进行后处理,最终制备出合格的磁性不锈钢屑芯复合钢。本发明通过在不锈钢屑内部均匀喷涂磁性颗粒材料,并在轧制过程中施加脉冲电流,利用多能场联合激励作用有效实现了小压下、低温度下复合板的制备,获得板型好、耐腐蚀、强度高、磁性好的不锈钢屑芯复合钢。

Description

一种磁性不锈钢屑芯复合钢的制备方法
技术领域
本发明涉及一种钢材的制备方法,尤其是涉及一种磁性不锈钢屑芯复合钢的制备方法。
背景技术
金属屑是机加工过程中不可忽视的副产品,对一个企业的生产具有重大影响。铁屑作为最主要的金属屑之一,每年都有大量的废弃铁屑产生,这些铁屑占据了大量空间,运输储存难度大,并且铁屑表面含有大量油污,污染环境,存在很大的安全隐患。传统的回收方法是先将铁屑表面的油污清洗掉,然后用于投炉熔化、压块成型、粉末冶金或者是生产化工原料、化学试剂等。常见回收方法还有采用机加工碳钢屑与不锈钢管作为原料,然后通过直接热轧来制备复合板,从而获得不锈钢/碳钢屑复合钢产品,制备的钢材磁性很弱甚至无磁性。而传统磁钢一般是由几种硬的强金属,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金,但是传统磁钢可塑性差,受压容易断裂。
磁性材料是生产、生活、国防科学技术中广泛使用的材料。如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。此外,磁性材料在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。不锈钢是一种无磁性钢,而碳钢是一种磁性很弱的钢,因此通过传统方法加工所得的钢材产品在磁性材料领域使用受到极大限制。
近年以来,清华大学的唐国翌教授提出了电致塑性轧制技术,利用脉冲电流的热效应与非热效应的耦合作用,达到降低变形抗力,提高金属塑性变形能力的目的。同时电流存在的尖端效应,流经间隙时会产生大量热核,促进位错等缺陷的移动,减小应力集中等。
鉴于电致塑性效应降低变形抗力,电流尖端效应形成大量热核及传统铁屑回收制备产品使用受限,因此将脉冲电流应用于制备磁性不不锈钢屑芯复合钢的过程中,能够有效降低轧制力、轧制过程形成热核促进再结晶减少残余应力,最终生产出耐腐蚀、强度高、残余应力低、磁性好的磁性不锈钢屑芯复合钢,相对于传统的磁性钢材,本方法制备的磁性不锈钢屑芯复合钢拥有更高的强度与优异的塑性变形能力。
发明内容
本发明提供一种磁性不锈钢屑芯复合钢的制备方法,不仅解决不锈钢屑回收的问题,同时获得具有磁性不锈钢屑芯复合钢。
为实现上述目的,本发明提供了如下方案:
S1、进行不锈钢管预加工;
S2、对回收的废弃不锈钢屑进行预加工;
S3、将步骤S2中不锈钢屑表面均匀喷涂磁性材料微颗粒;
S4、将步骤S3制备好的不锈钢屑填充到经步骤S1加工后的不锈钢管中,形成坯料;
S5、将步骤S4制备的坯料进行加热,然后在脉冲电流辅助下进行轧制;
S6、将轧制完成的复合钢进行后处理。
优选的,步骤S1中不锈钢管内壁进行打磨后经高压清洗然后烘干;步骤S2中不锈钢屑采用酸洗去除表面氧化层并烘干。
优选的,步骤S3中不锈钢屑表面喷涂的磁性材料微颗粒为Fe、Go、Ni、γ-Fe2O3、Fe3O4或AlNiCo等中的一种,采用Ar气或N2气为工作气体防止高温下材料氧化;步骤S3中采用等离子喷涂方式,等离子喷涂时采用的喷涂电流为300A~550A、保护气体流量为1L~3L/min、送粉率为27g~50g/min。
优选的,在步骤S4中压实不锈钢管内的不锈钢屑,不锈钢屑压实之后的相对密度为50%~80%,不锈钢屑压实后对不锈钢管进行密封并抽真空。
优选的,步骤S5中采用电磁感应加热装置进行加热,加热至800~1200℃。
优选的,步骤S5的轧制采用平辊轧制,脉冲电流大小0<I≤600A,频率0<f≤2000Hz,占空比10%~80%,波形选用方波、矩形波、正弦波,轧制压下率不小于40%,轧制速度为0.1m/s~20m/s;
优选的,步骤S6进行退火处理,退火处理后进行平整、矫直、探伤,退火方式为脉冲电流退火,脉冲电流大小0<I≤600A,频率0<f≤2000Hz,占空比0~100%,退火时间为2~8min,波形选用方波、矩形波、正弦波。
优选的,步骤S1中不锈钢管为圆形或多边形。
优选的,步骤S2不锈钢切屑厚度不大于1mm,宽度为1~2mm之间,长度不大于5mm,呈卷曲状。
一种磁性不锈钢屑芯复合钢,其特征在于:利用权利要求1-9任意一项所述的制备方法制备而成。
本发明公开了以下技术效果:
本发明采用颗粒状磁粉喷涂到不锈钢屑表面,一方面有利于抑制不锈钢屑的氧化、增加不锈钢屑的致密度,另一方面颗粒状有利于形成局部强应力,促进挤压和轧制过程中新鲜金属的流出。加热方式采用电磁感应加热:由于普通的不锈钢磁性很弱,用电磁感应加热升温比较慢;添加了磁粉之后电磁感应加热效果会改善,而且由于晶粒的生长取向取决于材料变形程度与轧后的回复,因此电磁感应不会对磁粉晶粒在加热后的生长方向产生影响。
磁性材料在机械加工时,材料内部发生塑性变形,晶格滑移,晶面平整性发生破坏,产生残余应力,严重弱化磁性材料磁性,已有研究表明,增大晶粒、减小晶界,可以使磁性材料矫顽力减小,磁滞损失降低,磁性能提高。在施加脉冲电流后,由于尖端效应,磁性颗粒附近会产生更高的温度,破碎材料晶粒再结晶并长大,晶界占比提高,不仅消除了残余应力所导致的磁性降低而且增大了晶粒使磁性进一步提高,通过此方法能够制备强度高塑性好的磁性不锈钢。
对废弃不锈钢屑进行回收利用,减少环境污染,提高了资源利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所述磁性不锈钢屑芯复合钢制备方法工艺流程图。
其中:(a)图为不锈钢屑喷涂磁性材料示意图,(b)图为喷涂后表层有磁性颗粒的不锈钢屑截面示意图,(c)图为不锈钢屑压实、组坯示意图,(d)图为轧制过程图;
图2是本发明的脉冲电流辅助轧制详细示意图,图中:
压力机压头1;喷涂镍粉磁性材料微颗粒的不锈钢屑2;不锈钢管3;抽真空管4;示波器5;脉冲电源6;电刷7。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参考图1-2所示,本发明提供一种磁性不锈钢屑芯复合钢的制备方法,包括以下步骤:
S1、进行不锈钢管3预加工;
S2、对回收的废弃不锈钢屑进行预加工;
S3、将步骤S2中不锈钢屑的表面均匀喷涂磁性材料微颗粒;
S4、将步骤S3制备的不锈钢屑填充到经步骤S1加工后的不锈钢管3中,形成坯料;
S5、将步骤S4制备的坯料进行加热,然后在脉冲电流辅助下进行轧制;
S6、将轧制完成的复合钢进行后处理。
进一步优化,不锈钢管3为圆形或多边形,优选为方形,厚度2mm,优先选用304不锈钢。
进一步优化,不锈钢屑选用厚度小于1mm,宽度在1至2mm之间,长度均小于5mm,呈卷曲状。
进一步优化,对不锈钢管3内壁使用钢丝直径0.5mm的钢丝刷进行打磨经高压清洗后烘干备用,不锈钢屑采用酸洗去除表面氧化层并烘干备用。
进一步优化,磁性材料优选为镍粉磁性材料微颗粒,对处理好的不锈钢屑进行均匀喷涂,喷涂电流为300A~550A,优选为350A、保护气体N2气流量为1L~3L/min,优选为2L/min、送粉率为27g~50g/min,优选为35g/min。
进一步优化,将处理好的不锈钢管3其中一端封焊,将表面均匀喷涂镍粉磁性材料微颗粒的不锈钢屑2通过不锈钢管3未封焊的一端填充,然后将压力机压头1深入不锈钢管3内将不锈钢屑压实至相对密度为50%~80%,优选为80%,然后进行封焊,并通过抽真空管4进行抽真空,之后封焊管口,形成坯料。
进一步优化,将制备的坯料放入加热炉中真空加热至800℃~1000℃,优选为1000℃,加热方式采用电磁加热,炉内保温30min后取出,打开脉冲电源6开关,然后在400A、500HZ、50%占空比大小的脉冲电流辅助下进行三道次轧制,并且第一、二道次轧制后回炉保温10min。每道次压下率分别为40%、40%、50%,总的压下率为82%,轧件初始厚度为20mm,最终厚度为3.6mm,轧制过程中通过示波器5对脉冲电流波形与大小进行实时监测,轧制过程中电流通过电刷7流经坯料形成通路。
进一步优化,将精轧后的复合钢在500A、800HZ、50%占空比的脉冲电流下退火5min,并进行平整、矫直、探伤,所得复合钢材剪切强度达到242.8~262.4MPA,达到使用要求。
一种磁性不锈钢屑芯复合钢,利用上述的制备方法制备而成。
本申请在通电轧制过程中,由于尚未结合的不锈钢屑之间有大量间隙,间隙越尖,曲率越大,面电荷密度越高,其附近场强越大,利用产生的尖端效应,有效促进不锈钢屑之间以及不锈钢屑与不锈钢管间的元素扩散。同时,加载脉冲电流后产生的定向移动电子通过有缺陷的晶格点阵时,原子的振动频率和能量增加,导致缺陷处晶格点阵温度更高,相当于材料中形成了数量众多、尺寸微小的“热核”,这会促进位错等缺陷的移动,减小应力集中,同时温度升高后,原子的扩散能力提高,“热核”处由于热膨胀对微孔洞、微裂纹施加压应力,使其闭合填充,达到治愈的效果,从而减少复合材料内部的微缺陷。磁性材料在机械加工时,材料内部发生塑性变形,晶格滑移,晶面平整性发生破坏,产生残余应力,严重弱化磁性材料磁性,已有研究表明,增大晶粒、减小晶界,可以使磁性材料矫顽力减小,磁滞损失降低,磁性能提高。在施加脉冲电流后,由于尖端效应,磁性颗粒附近会产生更高的温度,破碎材料晶粒再结晶并长大,晶界占比提高,不仅消除了残余应力所导致的磁性降低而且增大了晶粒使磁性进一步提高。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种磁性不锈钢屑芯复合钢的制备方法,其特征在于,包括如下步骤:
S1、进行不锈钢管预加工;
S2、对回收的废弃不锈钢屑进行预加工;
S3、将步骤S2中不锈钢屑表面均匀喷涂磁性材料微颗粒,其中,不锈钢屑表面喷涂的所述磁性材料微颗粒为Fe、Co、Ni、γ-Fe2O3、Fe3O4或AlNiCo等中的一种,采用Ar气或N2气为工作气体防止高温下材料氧化;采用等离子喷涂方式,等离子喷涂时采用的喷涂电流为300A~550A、保护气体流量为1L~3L/min、送粉率为27g~50g/min;
S4、将步骤S3制备好的不锈钢屑填充到经步骤S1加工后的不锈钢管中,所述不锈钢屑压实之后的相对密度为50%~80%,然后对所述不锈钢管进行密封并抽真空,形成坯料;
S5、将步骤S4制备的坯料进行加热,然后在脉冲电流辅助下进行轧制,轧制压下率不小于40%,轧制速度为0.1m/s~20m/s;
S6、将轧制完成的复合钢进行后处理。
2.根据权利要求1所述的一种磁性不锈钢屑芯复合钢的制备方法,其特征在于:步骤S1中不锈钢管内壁进行打磨后经高压清洗然后烘干;步骤S2中不锈钢屑采用酸洗去除表面氧化层并烘干。
3.根据权利要求1所述的一种磁性不锈钢屑芯复合钢的制备方法,其特征在于:步骤S5中采用电磁感应加热装置进行加热,加热至800~1200℃。
4.根据权利要求1所述的磁性不锈钢屑芯复合钢的制备方法,其特征在于:步骤S5的轧制采用平辊轧制,脉冲电流大小0<I≤600A,频率0<f≤2000Hz,占空比10%~80%,波形选用方波、矩形波、正弦波。
5.根据权利要求1所述的一种磁性不锈钢屑芯复合钢的制备方法,其特征在于:步骤S6进行退火处理,退火处理后进行平整、矫直、探伤,退火方式为脉冲电流退火,脉冲电流大小0<I≤600A,频率0<f≤2000Hz,占空比0~100%,退火时间为2~8min,波形选用方波、矩形波、正弦波。
6.根据权利要求1所述的一种磁性不锈钢屑芯复合钢的制备方法,其特征在于:步骤S1中不锈钢管为圆形或多边形。
7.根据权利要求1所述的一种磁性不锈钢屑芯复合钢的制备方法,其特征在于:步骤S2不锈钢切屑厚度不大于1mm,宽度为1~2mm之间,长度不大于5mm,呈卷曲状。
8.一种磁性不锈钢屑芯复合钢,其特征在于:利用权利要求1-7任意一项所述的制备方法制备而成。
CN202010164183.6A 2020-03-11 2020-03-11 一种磁性不锈钢屑芯复合钢的制备方法 Active CN111235513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010164183.6A CN111235513B (zh) 2020-03-11 2020-03-11 一种磁性不锈钢屑芯复合钢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010164183.6A CN111235513B (zh) 2020-03-11 2020-03-11 一种磁性不锈钢屑芯复合钢的制备方法

Publications (2)

Publication Number Publication Date
CN111235513A CN111235513A (zh) 2020-06-05
CN111235513B true CN111235513B (zh) 2022-04-05

Family

ID=70878572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010164183.6A Active CN111235513B (zh) 2020-03-11 2020-03-11 一种磁性不锈钢屑芯复合钢的制备方法

Country Status (1)

Country Link
CN (1) CN111235513B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2607321A (en) * 2021-06-02 2022-12-07 Rolls Royce Plc Method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172620A (zh) * 2011-02-09 2011-09-07 清华大学深圳研究生院 电致塑性与温塑性结合轧制难加工金属材料的方法及系统
CN104889677A (zh) * 2015-04-30 2015-09-09 燕山大学 一种不锈钢/碳钢切屑芯复合型钢的制备方法
CN108746629A (zh) * 2018-06-25 2018-11-06 长春中科昊融新材料研究有限公司 一种金属注射成型不锈钢废弃喂料回收再利用的方法
CN110788136A (zh) * 2019-10-10 2020-02-14 太原理工大学 一种脉冲电流辅助热轧制备钛钢复合板的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172620A (zh) * 2011-02-09 2011-09-07 清华大学深圳研究生院 电致塑性与温塑性结合轧制难加工金属材料的方法及系统
CN104889677A (zh) * 2015-04-30 2015-09-09 燕山大学 一种不锈钢/碳钢切屑芯复合型钢的制备方法
CN108746629A (zh) * 2018-06-25 2018-11-06 长春中科昊融新材料研究有限公司 一种金属注射成型不锈钢废弃喂料回收再利用的方法
CN110788136A (zh) * 2019-10-10 2020-02-14 太原理工大学 一种脉冲电流辅助热轧制备钛钢复合板的方法

Also Published As

Publication number Publication date
CN111235513A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN108326516B (zh) 一种钛钢复合板的制备方法
CN110788136A (zh) 一种脉冲电流辅助热轧制备钛钢复合板的方法
CN102211270B (zh) 高精度钛或钛合金管制备工艺
CN102581556B (zh) 一种电磁阀静铁芯加工工艺
CN101590495B (zh) 一种颗粒增强铝基钢背复合板材的制备方法
CN108122654B (zh) 一种晶界扩散重稀土钕铁硼磁材及其制备方法
CN103692166B (zh) 一种特厚合金钢板的制备方法
CN111235513B (zh) 一种磁性不锈钢屑芯复合钢的制备方法
CN103962409B (zh) 一种铜线的制造方法
CN107674946A (zh) 一种刀具用马氏体不锈钢冷轧带钢的退火工艺
CN106283084B (zh) 一种复合管用耐蚀合金uns n08825冷轧钢带制造方法
CN109604615B (zh) 低成本制备烧结钕铁硼永磁体的方法
CN106086418B (zh) 一种烧结钕铁硼废旧器件性能恢复的方法
CN112030077A (zh) 一种含锰高强低密度钢及其制备方法和应用
CN102851542A (zh) 一种用于制作刀具的钛合金及制备方法
CN102764961B (zh) 一种利用连铸板坯制造150-400mm厚碳素结构钢板的工艺
CN106834950A (zh) 一种殷钢冷镦丝的生产方法
CN105405633B (zh) 一种变压器铁芯的制造工艺
CN105032974A (zh) 锆及锆合金带卷的生产方法
CN103008978A (zh) 一种钛板坯的制备方法
CN102921731A (zh) 一种钛合金薄板的温轧加工方法
CN101633010A (zh) 一种大规格镍板的制造方法
CN104624643A (zh) 钛板的冷轧工艺
JP6492793B2 (ja) 鋼材および土中埋設用鋼構造物ならびに鋼材の製造方法
CN109266818A (zh) 一种无缝管光亮退火装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Ren Zhongkai

Inventor after: Guo Xiongwei

Inventor after: Wu Zhangjing

Inventor after: Zhang Bin

Inventor after: Wang Tao

Inventor after: Liang Yu

Inventor after: Huang Qingxue

Inventor before: Ren Zhongkai

Inventor before: Wu Zhangjing

Inventor before: Guo Xiongwei

Inventor before: Zhang Bin

Inventor before: Wang Tao

Inventor before: Liang Yu

Inventor before: Huang Qingxue

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant