CN111229565A - 一种含磁超疏水表面制备方法 - Google Patents
一种含磁超疏水表面制备方法 Download PDFInfo
- Publication number
- CN111229565A CN111229565A CN201811444600.1A CN201811444600A CN111229565A CN 111229565 A CN111229565 A CN 111229565A CN 201811444600 A CN201811444600 A CN 201811444600A CN 111229565 A CN111229565 A CN 111229565A
- Authority
- CN
- China
- Prior art keywords
- sio
- substrate
- groove structure
- magnetic
- acrylic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/002—Pretreatement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/10—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/52—Two layers
- B05D7/54—No clear coat specified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
- B05D2202/20—Metallic substrate based on light metals
- B05D2202/25—Metallic substrate based on light metals based on Al
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2350/00—Pretreatment of the substrate
- B05D2350/30—Change of the surface
- B05D2350/33—Roughening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2451/00—Type of carrier, type of coating (Multilayers)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2502/00—Acrylic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2506/00—Halogenated polymers
- B05D2506/10—Fluorinated polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2518/00—Other type of polymers
- B05D2518/10—Silicon-containing polymers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Paints Or Removers (AREA)
Abstract
本发明公开了一种含磁超疏水表面制备方法,通过在具有阵列凹槽结构的铝合金基底上,预置丙烯酸树脂底层以覆盖基底表面阵列凹槽结构,在底层表面构建有机/无机复合含磁超疏水涂层Fe3O4@SiO2/聚醚醚酮/全氟癸基三乙氧基硅烷,其中,Fe3O4@SiO2纳米粒子用以提高复合薄膜表面粗糙度,低表面能物质全氟癸基三乙氧基硅烷提供疏水源,丙烯酸树脂由于黏结作用确保Fe3O4@SiO2纳米粒子与基材形成牢固的结合,以期在基材表面获得具有机械稳定性的超疏水表面,该表面具有较好的机械稳定性,耐久性,并且结合了优良的磁性能,可以应用于航空材料,医学,生物药学等领域。
Description
技术领域
本发明属于材料领域,涉及一种含磁超疏水表面制备方法。
背景技术
超顺磁性Fe3O4纳米粒子同时具备磁性粒子和纳米粒子的双重优势,在催化剂、靶向药物载体、生物分离、核磁共振成像、磁热疗等领域具有广阔的应用前景。良好的分散性、化学稳定性及生物相容性是其各种应用的前提和基础. 然而,由于纳米效应、磁引力等作用,磁性Fe3O4纳米粒子极易团聚,导致其无法直接应用。此外,磁性Fe3O4纳米粒子在酸性条件下容易被腐蚀,也大大限制了其应用范围。 因此,分散性与稳定性是磁性Fe3O4纳米粒子应用过程中必须解决的问题。
纳米SiO2具有良好的分散性及抗分解能力,在磁性Fe3O4纳米粒子表面包覆一层SiO2后,能有效地降低粒子的零电点和屏蔽磁引力的相互作用,使粒子具有良好的水溶性、化学稳定性及生物相容性,且SiO2表面存在丰富的羟基,可使复合粒子易于进一步功能化。但是,超疏水涂层与基材之间的结合性能,由于本身制备必须具有的微纳结构,使得结合性能的提升一直是亟待解决的问题。
发明内容
本发明的目的是提供一种含磁超疏水表面的制备方法,制得的含磁超疏水表面具有较好的耐久性,并且具有优良的磁性能。
实现本发明目的的技术解决方案是:含磁超疏水表面制备方法,在具有阵列凹槽结构的铝合金基底上,预置丙烯酸树脂底层以覆盖基底表面阵列凹槽结构,采用两步法在底层表面构建有机/无机复合含磁超疏水涂层Fe3O4@SiO2 /聚醚醚酮( PEEK )/ 全氟癸基三乙氧基硅烷( FAS)。具体步骤如下:
步骤1,对洁净的铝合金基材表面进行激光刻蚀处理,制得具有阵列凹槽结构的基底,激光刻蚀处理设定参数为:凹槽间距100 um,凹槽直径200 um,加工次数20,加工频率30Hz;
步骤2,在具有阵列凹槽结构的基底表面涂覆丙烯酸树脂的无水乙醇溶液,预置光滑黏性底层;
步骤3,将Fe3O4@SiO2复合粒子分散于N,N-二甲基甲酰胺中,并滴加全氟癸基三乙氧基硅烷,搅拌2h,将聚醚醚酮(PEEK)溶入后制得经全氟癸基三乙氧基硅烷改性后的Fe3O4@SiO2复合纳米粒子溶液,在步骤2所述底层上涂覆该改性溶液,干燥,重复涂覆、干燥,制得含磁超疏水表面。
进一步,步骤1中,将铝合金基材表面经180#、400 #、600 #、800#砂纸逐级打磨去除表面锈层和氧化层,砂纸打磨后,超声清洗,吹干后得到洁净的铝合金基材。
进一步,步骤2中,丙烯酸树脂的无水乙醇溶液质量浓度为20%~40%。
进一步,步骤2中,在具有阵列凹槽结构的基底表面涂覆丙烯酸树脂溶液,自然干燥,预置光滑黏性底层。
进一步,步骤3中,制备Fe3O4@SiO2复合纳米粒子时原料Fe3O4与正硅酸四乙酯(TEOS)的物质的量比1:5,Fe3O4@SiO2复合纳米粒子与全氟癸基三乙氧基硅烷的比例为12:5g/ml;聚醚醚酮与Fe3O4@SiO2复合纳米粒子的质量比为2:1。
本发明与现有技术相比,其显著优点为:1)在打磨处理后的铝合金基材上激光刻蚀处理得到具有阵列凹槽结构的基底,该基底可以充分留贮涂膜液;2)将磁性Fe3O4纳米颗粒与SiO2 复合,再将其用FAS改性,不仅具备超疏水性能,还能发挥优异的磁性能。3)丙烯酸树脂为Fe3O4@SiO2磁性超疏水纳米颗粒提供牢固机械支撑,表面具有良好的结合力,耐磨耐久性得以显著提升。
附图说明
图1为实施例1含磁超疏水表面的水滴接触角图。
图2为实施例1打磨后的含磁超疏水表面的水滴接触角图。
图3为实施例1未经处理的Fe3O4纳米粒子磁滞回线图 。
图4为实施例1磁性Fe3O4@SiO2纳米复合粒子的磁滞回线图。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例1
1、将铝合金基材经过180#、400 #、600 #、800#砂纸逐级打磨去除表面锈层和氧化层,砂纸打磨后,置于烧杯中加去离子水超声水洗,无水乙醇洗,吹干。
2、采用激光阵列刻蚀基材,直径200 um,凹槽间距100 um,加工次数20次,加工频率20 Hz。将刻蚀后的基材置于烧杯中加去离子水超声水洗,无水乙醇洗,吹干。
3、在激光刻蚀基材上涂覆丙烯酸树脂漆。
4、将0.2g Fe3O4磁性纳米颗粒分散于30 mL无水乙醇中,加入几滴油酸,超声分散15分钟,往分散后的溶液中分别滴加1mL正硅酸四乙酯和2mL氨水,反应1h后,离心水洗,直至不再浑浊,80℃烘干,研磨后得到Fe3O4@SiO2复合纳米颗粒。
5、振动样品磁强计(VSM)测试后,测得18.8 mg未经处理的Fe3O4纳米粒子和6.8 mg磁性Fe3O4@SiO2纳米复合粒子的磁滞回线,如图3和图4所示。由图4可知复合粒子的比饱和磁化强度σs为73 .5 emu·g -1 ;与改性前的Fe3O4粒子的比饱和磁化强度σs为74.5 emu·g-1 相比, σs无明显降低, 制备的复合粒子具有较强的磁性。
6、将2.4 g Fe3O4@SiO2复合纳米颗粒加入到30mL N,N-二甲基甲酰胺中,并滴加1mL全氟癸基三乙氧基硅烷( FAS),磁力搅拌反应2h后,溶入4.8g聚醚醚酮(PEEK),将溶液涂覆在涂有丙烯酸树脂漆的基材上。60℃干燥4h。
制备得到的铝合金基材表面,水滴静态接触角达到156°,如图1所示。经砂纸打磨后,水滴静态接触角达到152°,如图2 所示。
实施例2
1、将铝合金基材经过180#、400 #、600 #、800#砂纸逐级打磨去除表面锈层和氧化层,砂纸打磨后,置于烧杯中加去离子水超声水洗,无水乙醇洗,吹干。
2、采用激光阵列刻蚀基材,直径200 um,凹槽间距100 um,加工次数30次,加工频率30 Hz。将刻蚀后的基材置于烧杯中加去离子水超声水洗,无水乙醇洗,吹干。
3、在激光刻蚀基材上涂覆丙烯酸树脂漆。
4、将0.3g Fe3O4磁性纳米颗粒分散于30 mL无水乙醇中,加入几滴油酸,超声分散15分钟,往分散后的溶液中分别滴加2mL正硅酸四乙酯和4mL氨水,反应1h后,离心水洗,直至不再浑浊,80℃烘干,研磨后得到Fe3O4@SiO2复合纳米颗粒。
5、振动样品磁强计(VSM)测试后,测得磁性Fe3O4@SiO2纳米复合粒子的比饱和磁化强度σs 为72.8emu·g -1 ;与改性前的Fe3O4粒子的相比, σs无明显降低, 制备的复合粒子具有较强的磁性。
6、将4.8g Fe3O4@SiO2复合纳米颗粒加入到40mL N,N-二甲基甲酰胺中,并滴加2mLFAS,磁力搅拌反应2h后,溶入9.6g聚醚醚酮(PEEK),将溶液涂覆在涂有丙烯酸树脂漆的基材上。60℃干燥4h。
制备得到的铝合金基材表面,水滴静态接触角达到154°。经砂纸打磨后,水滴静态接触角达到151°
实施例3
1、将铝合金基材经过180#、400 #、600 #、800#砂纸逐级打磨去除表面锈层和氧化层,砂纸打磨后,置于烧杯中加去离子水超声水洗,无水乙醇洗,吹干。
2、将0.3g Fe3O4磁性纳米颗粒分散于30 mL无水乙醇中,加入几滴油酸,超声分散15分钟,往分散后的溶液中分别滴加2mL正硅酸四乙酯和4mL氨水,反应1h后,离心水洗,直至不再浑浊,80℃烘干,研磨后得到Fe3O4@SiO2复合纳米颗粒。
3、振动样品磁强计(VSM)测试后,测得磁性Fe3O4@SiO2纳米复合粒子的比饱和磁化强度σs 为72.8emu·g -1 ;与改性前的Fe3O4粒子的相比, σs无明显降低, 制备的复合粒子具有较强的磁性。
4、将4.8g Fe3O4@SiO2复合纳米颗粒加入到40mL N,N-二甲基甲酰胺中,并滴加2mLFAS,磁力搅拌反应2h后,溶入9.6g聚醚醚酮(PEEK),将溶液涂覆在基材上。60℃干燥4h。
制备得到的铝合金基材表面,水滴静态接触角为146°,经砂纸打磨后,水滴静态接触角为101°。
综上实施例对比,在打磨处理后的铝合金基材上激光刻蚀处理得到具有阵列凹槽结构的基底,并且丙烯酸树脂能为Fe3O4@SiO2磁性超疏水纳米颗粒提供牢固结合力。
Claims (9)
1.含磁超疏水表面,其特征在于,通过在具有阵列凹槽结构的铝合金基底上,预置丙烯酸树脂底层以覆盖基底表面阵列凹槽结构,在底层表面构建含磁超疏水涂层Fe3O4@SiO2 /聚醚醚酮/ 全氟癸基三乙氧基硅烷。
2.如权利要求1所述的含磁超疏水表面的制备方法,其特征在于,具体步骤如下:
步骤1,对洁净的铝合金基材表面进行激光刻蚀处理,制得具有阵列凹槽结构的基底;
步骤2,在具有阵列凹槽结构的基底表面涂覆丙烯酸树脂的无水乙醇溶液,预置光滑黏性底层;
步骤3,将Fe3O4@SiO2复合粒子分散于N,N-二甲基甲酰胺中,并滴加全氟癸基三乙氧基硅烷,搅拌均匀,将聚醚醚酮溶入后制得经全氟癸基三乙氧基硅烷改性后的Fe3O4@SiO2复合纳米粒子溶液,在步骤2所述底层上涂覆该改性溶液,干燥,重复涂覆、干燥,制得含磁超疏水表面。
3.如权利要求2所述的方法,其特征在于,步骤1中,将铝合金基材表面经180#、400 #、600 #、800#砂纸逐级打磨去除表面锈层和氧化层,砂纸打磨后,超声清洗,吹干后得到洁净的铝合金基材。
4.如权利要求2所述的方法,其特征在于,步骤1中,激光刻蚀处理设定参数为:凹槽间距100 um,凹槽直径200 um,加工次数20,加工频率30Hz。
5.如权利要求2所述的方法,其特征在于,步骤2中,丙烯酸树脂的无水乙醇溶液质量浓度为20%~40%。
6.如权利要求2所述的方法,其特征在于,步骤2中,在具有阵列凹槽结构的基底表面涂覆丙烯酸树脂溶液,自然干燥,预置光滑黏性底层。
7.如权利要求2所述的方法,其特征在于,步骤3中,制备Fe3O4@SiO2复合纳米粒子时原料Fe3O4与正硅酸四乙酯的物质的量比1:5。
8.如权利要求2所述的方法,其特征在于,步骤3中,Fe3O4@SiO2复合纳米粒子与全氟癸基三乙氧基硅烷的比例为12:5 g/ml。
9.如权利要求2所述的方法,其特征在于,步骤3中,聚醚醚酮与Fe3O4@SiO2复合纳米粒子的质量比为2:1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811444600.1A CN111229565A (zh) | 2018-11-29 | 2018-11-29 | 一种含磁超疏水表面制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811444600.1A CN111229565A (zh) | 2018-11-29 | 2018-11-29 | 一种含磁超疏水表面制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111229565A true CN111229565A (zh) | 2020-06-05 |
Family
ID=70866733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811444600.1A Pending CN111229565A (zh) | 2018-11-29 | 2018-11-29 | 一种含磁超疏水表面制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111229565A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112178361A (zh) * | 2020-10-15 | 2021-01-05 | 福州大学 | 一种用于油气管道中水合物防治的磁响应柔性复合超疏水膜及其制备方法 |
CN113182698A (zh) * | 2021-05-12 | 2021-07-30 | 长沙理工大学 | 一种SiCp/Al复合材料超疏水功能表面的制备方法 |
CN113308599A (zh) * | 2021-04-23 | 2021-08-27 | 江阴市好运来石油机械有限公司 | 一种三棱钻杆及其加工工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102807775A (zh) * | 2012-06-21 | 2012-12-05 | 浙江理工大学 | 防水防油磁性SiO2/Fe3O4复合颗粒及其制备方法和应用 |
CN104694001A (zh) * | 2014-12-12 | 2015-06-10 | 杭州师范大学 | 一种超疏水超顺磁硅树脂复合材料涂层的制备方法 |
CN106423789A (zh) * | 2016-11-01 | 2017-02-22 | 南京理工大学 | 一种耐久性抗冰超疏水涂层及其制备方法 |
CN107022291A (zh) * | 2017-04-21 | 2017-08-08 | 黑龙江凯恩琪新材料科技有限公司 | 一种可喷涂且持久抗结冰的超双疏涂层的制备方法 |
-
2018
- 2018-11-29 CN CN201811444600.1A patent/CN111229565A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102807775A (zh) * | 2012-06-21 | 2012-12-05 | 浙江理工大学 | 防水防油磁性SiO2/Fe3O4复合颗粒及其制备方法和应用 |
CN104694001A (zh) * | 2014-12-12 | 2015-06-10 | 杭州师范大学 | 一种超疏水超顺磁硅树脂复合材料涂层的制备方法 |
CN106423789A (zh) * | 2016-11-01 | 2017-02-22 | 南京理工大学 | 一种耐久性抗冰超疏水涂层及其制备方法 |
CN107022291A (zh) * | 2017-04-21 | 2017-08-08 | 黑龙江凯恩琪新材料科技有限公司 | 一种可喷涂且持久抗结冰的超双疏涂层的制备方法 |
Non-Patent Citations (2)
Title |
---|
丁彤等: "《中国化工产品大全 上》", 31 January 2005, 化学工业出版社 * |
杨理准等: "《公路施工手册 基本作业》", 30 April 1993, 人民交通出版社 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112178361A (zh) * | 2020-10-15 | 2021-01-05 | 福州大学 | 一种用于油气管道中水合物防治的磁响应柔性复合超疏水膜及其制备方法 |
CN113308599A (zh) * | 2021-04-23 | 2021-08-27 | 江阴市好运来石油机械有限公司 | 一种三棱钻杆及其加工工艺 |
CN113308599B (zh) * | 2021-04-23 | 2024-01-09 | 江阴市好运来石油机械有限公司 | 一种三棱钻杆及其加工工艺 |
CN113182698A (zh) * | 2021-05-12 | 2021-07-30 | 长沙理工大学 | 一种SiCp/Al复合材料超疏水功能表面的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111229565A (zh) | 一种含磁超疏水表面制备方法 | |
Durdureanu-Angheluta et al. | Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface | |
Dawn et al. | Origin of magnetization in silica-coated Fe3O4 nanoparticles revealed by soft X-ray magnetic circular dichroism | |
US4280918A (en) | Magnetic particle dispersions | |
De Toro et al. | Remanence plots as a probe of spin disorder in magnetic nanoparticles | |
Ding et al. | Synthesis and magnetic properties of biocompatible hybrid hollow spheres | |
Shen et al. | Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanoparticles | |
Hou et al. | Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: toward 3D spherical magnetite | |
Ma et al. | Superparamagnetic Fe x O y@ SiO2 Core− Shell Nanostructures: Controlled Synthesis and Magnetic Characterization | |
Zhang et al. | Synthesis and characterization of Fe 3 O 4@ SiO 2 magnetic composite nanoparticles by a one-pot process | |
Cordova et al. | Magnetic force microscopy characterization of superparamagnetic iron oxide nanoparticles (SPIONs) | |
Zhai et al. | Synthesis and characterization of nanocomposite Fe3O4/SiO2 core–shell abrasives for high-efficiency ultrasound-assisted magneto-rheological polishing of sapphire | |
Hosseinifar et al. | Synthesis, characterization, and application of partially blocked amine-functionalized magnetic nanoparticles | |
Arami et al. | Highly stable amine functionalized iron oxide nanoparticles designed for magnetic particle imaging (MPI) | |
Shukla et al. | Preparation and characterization of biocompatible and water-dispersible superparamagnetic iron oxide nanoparticles (SPIONs) | |
Hofer et al. | Stable dispersions of azide functionalized ferromagnetic metal nanoparticles | |
US4438156A (en) | Mono-particle magnetic dispersion in organic polymers for magnetic recording | |
Amir et al. | Development of magnetic nanoparticle based nanoabrasives for magnetorheological finishing process and all their variants | |
US8765922B2 (en) | Device and method for separation of Neél- and brown-magnetic particles | |
KR101413958B1 (ko) | 다 작용기를 가지는 자성나노입자 제조방법 | |
Zhai et al. | Investigation on the relationship between apparent viscosity of Fe3O4@ SiO2 abrasive-based magneto-rheological fluid and material removal rate of sapphire in magneto-rheological polishing | |
Duriagina et al. | Identification of Fe3O4 nanoparticles biomedical purpose by magnetometric methods | |
Bakhteeva et al. | Speeding up the magnetic sedimentation of surface-modified iron-based nanoparticles | |
Cao et al. | Investigation into rheological properties of magnetorheological polishing slurry using α-cellulose as an additive agent and its polishing performance | |
KR20080088154A (ko) | 실리카 코팅된 자성 나노입자 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200605 |