CN111224569A - 一种低全桥比例子模块混合型mmc及其直流故障处理策略 - Google Patents

一种低全桥比例子模块混合型mmc及其直流故障处理策略 Download PDF

Info

Publication number
CN111224569A
CN111224569A CN202010123850.6A CN202010123850A CN111224569A CN 111224569 A CN111224569 A CN 111224569A CN 202010123850 A CN202010123850 A CN 202010123850A CN 111224569 A CN111224569 A CN 111224569A
Authority
CN
China
Prior art keywords
mmc
direct current
current
bridge
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010123850.6A
Other languages
English (en)
Other versions
CN111224569B (zh
Inventor
徐政
徐雨哲
张哲任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010123850.6A priority Critical patent/CN111224569B/zh
Publication of CN111224569A publication Critical patent/CN111224569A/zh
Priority to PCT/CN2020/124293 priority patent/WO2021164304A1/zh
Priority to US17/312,809 priority patent/US20240030715A1/en
Application granted granted Critical
Publication of CN111224569B publication Critical patent/CN111224569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • H02H3/066Reconnection being a consequence of eliminating the fault which caused disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

本发明公开了一种低全桥比例子模块混合型MMC及其直流故障处理策略,该混合型MMC通过在直流故障处理过程中在换流器交流侧人为制造三相相间短路,阻止交流侧能量进入直流系统,大大降低了处理直流故障所需要的全桥子模块比例,且与高全桥比例的子模块混合型MMC拥有相同的直流故障处理速度,故障处理过程中人为制造的三相相间短路故障持续时间不超过30ms,不会对交流系统产生较大影响。本发明MMC相比已有的子模块混合型MMC,在使用更少的全桥子模块情况下同样能够处理直流故障,能够减少所需的电力电子器件数量,大大降低了建设架空线高压柔性直流输电系统的成本,在工程中具有非常强的参考意义与使用价值。

Description

一种低全桥比例子模块混合型MMC及其直流故障处理策略
技术领域
本发明属于电力电子技术领域,具体涉及一种低全桥比例子模块混合型MMC及其直流故障处理策略。
背景技术
随着电力电子技术的蓬勃发展,基于模块化多电平换流器(modular multilevelconverter,MMC)的高压直流输电(high voltage direct current,HVDC)技术正受到越来越多的关注。和其他电压源型换流器拓扑相比,模块化多电平换流器具有显著优势,由于采用基本运行单元级联的形式,该拓扑避免了大量开关器件直接串联,不存在一致触发等问题;该拓扑可在保证经济性的同时输出高品质电压波形,因此近年来被迅速应用到新能源并网、海上风电送出等场合。
采用架空线输电线路的MMC-HVDC面临的主要问题是如何处理直流线路故障,目前可行的直流故障处理方案主要分为两种:1.使用直流断路器;2.使用具有直流故障自清除能力的子模块(如全桥子模块、钳位双子模块或其他变型子模块)。第一种方式采用基于半桥子模块的模块化多电平换流器加直流断路器方案,这种构网方式适用于端数任意多的直流电网;第二种构网方式采用具有直流故障自清除能力的MMC,例如采用基于全桥子模块的MMC,但无需直流断路器,这种构网方式适用于端数小于10的小规模直流电网。采用半桥子模块MMC加直流断路器的构网方式时,直流线路故障期间通常要求换流站继续运行,不能闭锁,故障线路由直流断路器快速切除,其故障处理原则与交流电网类似。采用无直流断路器的构网方式时,直流线路故障期间网内相关换流器闭锁,闭锁后10ms左右故障电流到零并稳定于零值,再通过隔离开关隔离故障线路,然后相关换流器解锁重新恢复送电,从故障开始到恢复送电的时间一般在20ms左右,通常对交流电网的冲击在可以承受的范围之内。
当采用半桥子模块MMC加直流断路器的方式来构成直流电网时,直流断路器就成为直流电网的关键性元件。目前高压直流断路器构造方案主要集中于3种类型,分别是基于常规开关的传统机械型断路器、基于纯电力电子器件的固态断路器和基于二者结合的混合型断路器;虽然目前已开发出技术上可行的高压直流断路器,但其成本高昂,体积巨大,难以像交流断路器那样在电网中广泛使用。
而当采用具有直流故障自清除能力的MMC来构成直流电网时,以全桥子模块为例,与相同容量和电压等级的半桥子模块MMC相比,全桥MMC使用的电力电子器件个数几乎为其两倍,不仅增加投资成本,而且引入了更多的运行损耗。
因此有文献提出了由半桥子模块和全桥子模块共同构成的子模块混合型MMC换流站,不仅拥有直流故障处理的能力,同时相比全桥MMC一定程度上减少了电力电子器件个数和运行损耗。然而为了满足直流故障处理速度的需求,通常要求子模块混合型中的全桥子模块数量占所有子模块的50%以上,而在现有实际工程中甚至达到了75%,这大大减弱了子模块混合型MMC相对于全桥MMC的优势,增加了建造成本和运行损耗。
发明内容
鉴于上述,本发明提出了一种低全桥比例子模块混合型MMC及其直流故障处理策略,该混合型MMC所需全桥子模块比例较低,且与高全桥比例的子模块混合型MMC拥有相同的直流故障处理速度,大大降低了建设架空线高压柔性直流输电系统的成本,在工程中具有非常强的参考意义与使用价值。
一种低全桥比例子模块混合型MMC,为三相六桥臂结构,每相包含上下两个桥臂,每个桥臂由N个子模块以及一个桥臂电抗器串联构成,这N个子模块包括了N1个半桥子模块和N2个全桥子模块即N=N1+N2;A相上下桥臂的连接点与B相上下桥臂的连接点通过交流断路器BR1相连,B相上下桥臂的连接点与C相上下桥臂的连接点通过交流断路器BR2相连,N、N1、N2均为大于1的自然数。
进一步地,每个桥臂中全桥子模块的数量N2为10%N至N(优选为小于等于20%N)。
进一步地,所述MMC直流侧的高压端依次通过平波电抗器以及超高速机械开关与直流线路相连接。
上述低全桥比例子模块混合型MMC的直流故障处理策略,包括如下步骤:
(1)正常运行过程中,使MMC的交流断路器BR1和BR2保持开断状态,超高速机械开关保持闭合状态,同时监测MMC每个桥臂的桥臂电流;
(2)直流故障发生后,若MMC所在换流站首先检测到桥臂电流超过阈值,立刻闭锁MMC所有子模块,同时闭合交流断路器BR1和BR2并向超高速机械开关发出开断信号,进而向MMC所连的另一端换流站发出闭锁指令;
(3)另一端换流站接收到闭锁指令或检测到自身MMC桥臂电流超过阈值,同样立刻闭锁MMC所有子模块,闭合交流断路器BR1和BR2并向超高速机械开关发出开断信号;
(4)两端换流站闭锁后经过一定时长t3,故障线路两端的超高速机械开关在流经电流降低到0之后完成开断,实现故障线路的物理隔离,与此同时两端换流站向各自MMC的交流断路器BR1和BR2发出开断信号;
(5)经过一定时间长t4后,两端MMC的交流断路器BR1和BR2恢复到开断状态,至此直流故障处理完成。
进一步地,所述步骤(2)和步骤(3)中当以下关系式成立则判定MMC桥臂电流超过阈值;
max(Ipa,Ina,Ipb,Inb,Ipc,Inc)>2Irate
其中:Ipa为MMC的A相上桥臂电流,Ina为MMC的A相下桥臂电流,Ipb为MMC的B相上桥臂电流,Inb为MMC的B相下桥臂电流,Ipc为MMC的C相上桥臂电流,Inc为MMC的C相下桥臂电流,Irate为子模块内IGBT的额定电流。
进一步地,所述步骤(5)在完成直流故障处理后需进行重合闸操作,具体实现方式如下:
对于暂时性直流故障,经过一定的去游离时间后,向故障线路两端的超高速机械开关发出闭合信号,同时向两端MMC发出解除闭锁的指令,使系统恢复到稳态运行状态;
对于永久性直流故障,经过一定的去游离时间后,向故障线路两端的超高速机械开关发出闭合信号,同时向两端MMC发出解除闭锁的指令;由于是永久性直流故障,若经过一定时间再次检测到某一端换流站MMC桥臂电流超过阈值,则重新根据步骤(2)~(5)进行直流故障处理。
进一步地,当MMC中的全桥子模块闭锁后,子模块电容反向接入直流故障线路,与平波电抗器、桥臂电抗器和直流线路共同构成一个LC振荡回路,使直流故障电流在子模块闭锁后的t3时间内降低至0,最终使得超高速机械开关完成开断。
进一步地,在故障处理的t3+t4时间段内,通过闭合交流断路器BR1和BR2在MMC阀侧主动制造三相相间短路,阻止交流系统电流流入直流系统,加快故障电流振荡至0的过程,t3+t4的总时长不超过30ms。
与现有技术相比,本发明具有以下有益技术效果:
1.本发明提出的低全桥比例子模块混合型MMC,相比已有的子模块混合型MMC,在使用更少的全桥子模块情况下同样能够处理直流故障,能够减少所需的电力电子器件数量,大大降低了换流站的建设成本。
2.本发明提出的低全桥比例子模块混合型MMC,相比已有的子模块混合型MMC,运行损耗大大降低。
附图说明
图1为本发明低全桥比例子模块混合型MMC的拓扑结构示意图。
图2为本发明具体实施方式中所采用的测试系统结构示意图。
图3为本发明故障处理过程中流经超高速机械开关的电流波形示意图。
图4为本发明故障处理过程中MMC1的直流电压波形示意图。
图5为本发明故障处理过程中MMC1的直流电流波形示意图。
图6为本发明故障处理过程中MMC1的有功功率波形示意图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
如图1所示,本发明低全桥比例子模块混合型MMC为三相六桥臂结构,包含三个相单元,每个相单元包含上下两个桥臂,每个桥臂由N个子模块以及一个桥臂电抗器L0串联构成,其中包括NH个半桥子模块和NF个全桥子模块;A相和B相上下桥臂连接处通过交流断路器BR1相连接,B相和C相上下桥臂连接处通过交流断路器BR2相连接;换流器直流侧出口处通过一个平波电抗器Ldc和一个超高速机械开关K与直流线路相连接;每个桥臂中全桥子模块数量NF占所有子模块数量N的20%。
对于上述混合型MMC,其直流故障处理策略的步骤如下:
(1)正常运行过程中,BR1和BR2保持断开状态,K保持闭合状态;同时,监测每个桥臂的桥臂电流,分别为A相上桥臂电流Ipa、A相下桥臂电流Ina、B相上桥臂电流Ipb、B相下桥臂电流Inb、C相上桥臂电流Ipc、C相下桥臂电流Inc
(2)直流故障发生后,经过t1时间后某换流站首先检测到各桥臂电流满足下述关系式,立刻闭锁所有子模块,闭合交流开关BR1和BR2,向K发出开断信号,同时向其它换流站发出闭锁命令。
max(Ipa,Ina,Ipb,Inb,Ipc,Inc)>2Irate
其中:Irate为所用子模块内IGBT的额定直流电流。
(3)其它换流站接收到闭锁信号或检测到自身桥臂电流超过限值后,同样对所有子模块发出闭锁命令并闭合交流开关BR1和BR2,从第一个换流站闭锁到直流网络内所有换流站完成闭锁经过t2时间。
(4)所有换流站闭锁后经过t3时间,故障线路两侧超高速机械开关K在流经电流降低到0之后完成开断,实现故障线路的物理隔离,同时向BR1和BR2发出开断信号。
全桥子模块闭锁后,子模块电容反向接入直流故障回路,与平波电抗器、桥臂电抗和直流线路共同构成一个LC振荡回路,使直流故障电流在闭锁后t3时间内振荡至零,最终使得超高速机械开关K能够开断故障。
(5)经过t4时间(最长为半个周期,即10ms),BR1和BR2恢复到开断状态,至此直流故障处理完成;故障处理期间即t3+t4时间段内,通过闭合BR1和BR2在换流站阀侧主动制造三相相间短路,阻止交流系统电流流入直流系统,加快了故障电流振荡至0的过程,其中t3+t4总时长不超过30ms。
当故障处理完成后需进行重合闸操作,具体实现方式如下:
对于暂时性直流故障,经过t5的去游离时间后,向超高速机械开关K发出闭合信号,向两侧MMC发出接触闭锁的指令,最终系统恢复到稳态运行状态。
对于永久性直流故障,经过t5的去游离时间后,向超高速机械开关K发出闭合信号,向两侧MMC发出接触闭锁的指令;由于故障为永久性故障,经过t6时间将再次检测到某个换流站桥臂电流值超过阈值,重新按照上述步骤对故障进行处理。
在图2所示的两端直流输电测试系统直流故障处理过程具体实施,两侧换流站均采用本发明所提出的低全桥比例子模块混合型MMC,具体参数如表1所示:
表1
Figure BDA0002393825970000061
仿真场景:稳态运行状态下,MMC1控制直流电压,MMC2控制传输功率,MMC1向MMC2传输1500MW有功功率;在1.5s时,直流线路中点发生暂时性接地短路故障,故障持续时间0.1s。
(1)经过t1=2ms后,MMC1检测到桥臂电流超过阈值6kA,立刻闭锁所有子模块,闭合交流开关BR1和BR2,向线路两侧机械开关K发出开断信号,同时向MMC2发出闭锁命令。
(2)经过t2=1ms后,MMC2收到闭锁命令,闭锁所有子模块并闭合交流开关BR1和BR2,此时所有换流站完成闭锁。
(3)经过t3=11ms后,流经线路两侧机械开关K的故障电流均降低到0,两侧开关完成开断,故障线路被隔离,同时向两侧换流站发出开断BR1和BR2的信号。
(4)经过t4=9ms后,两侧换流站的BR1和BR2均恢复到开断状态,至此直流故障处理完成。
上述过程总共花费23ms,在1.522s时故障线路被顺利隔离,其中两侧换流站BR1和BR2闭合持续时间为10ms,对交流系统产生冲击较小,该过程中流过线路两侧机械开关K的电流波形如图3所示。
故障处理结束后,等待t5=300ms的去游离时间,向超高速机械开关K发出闭合信号,向两侧MMC发出接触闭锁的指令,最终系统恢复到稳态运行状态。从故障发生到恢复到稳态运行状态过程中,MMC1的直流电压波形如图4所示,直流电流波形如图5所示,向MMC2传输有功功率波形如图6所示。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

1.一种低全桥比例子模块混合型MMC,为三相六桥臂结构,每相包含上下两个桥臂,其特征在于:每个桥臂由N个子模块以及一个桥臂电抗器串联构成,这N个子模块包括了N1个半桥子模块和N2个全桥子模块即N=N1+N2;A相上下桥臂的连接点与B相上下桥臂的连接点通过交流断路器BR1相连,B相上下桥臂的连接点与C相上下桥臂的连接点通过交流断路器BR2相连,N、N1、N2均为大于1的自然数。
2.根据权利要求1所述的低全桥比例子模块混合型MMC,其特征在于:每个桥臂中全桥子模块的数量N2为10%N至N。
3.根据权利要求1所述的低全桥比例子模块混合型MMC,其特征在于:所述MMC直流侧的高压端依次通过平波电抗器以及超高速机械开关与直流线路相连接。
4.如权利要求3所述MMC的直流故障处理策略,包括如下步骤:
(1)正常运行过程中,使MMC的交流断路器BR1和BR2保持开断状态,超高速机械开关保持闭合状态,同时监测MMC每个桥臂的桥臂电流;
(2)直流故障发生后,若MMC所在换流站首先检测到桥臂电流超过阈值,立刻闭锁MMC所有子模块,同时闭合交流断路器BR1和BR2并向超高速机械开关发出开断信号,进而向MMC所连的另一端换流站发出闭锁指令;
(3)另一端换流站接收到闭锁指令或检测到自身MMC桥臂电流超过阈值,同样立刻闭锁MMC所有子模块,闭合交流断路器BR1和BR2并向超高速机械开关发出开断信号;
(4)两端换流站闭锁后经过一定时长t3,故障线路两端的超高速机械开关在流经电流降低到0之后完成开断,实现故障线路的物理隔离,与此同时两端换流站向各自MMC的交流断路器BR1和BR2发出开断信号;
(5)经过一定时间长t4后,两端MMC的交流断路器BR1和BR2恢复到开断状态,至此直流故障处理完成。
5.根据权利要求4所述的直流故障处理策略,其特征在于:所述步骤(2)和步骤(3)中当以下关系式成立则判定MMC桥臂电流超过阈值;
max(Ipa,Ina,Ipb,Inb,Ipc,Inc)>2Irate
其中:Ipa为MMC的A相上桥臂电流,Ina为MMC的A相下桥臂电流,Ipb为MMC的B相上桥臂电流,Inb为MMC的B相下桥臂电流,Ipc为MMC的C相上桥臂电流,Inc为MMC的C相下桥臂电流,Irate为子模块内IGBT的额定电流。
6.根据权利要求4所述的直流故障处理策略,其特征在于:所述步骤(5)在完成直流故障处理后需进行重合闸操作,具体实现方式如下:
对于暂时性直流故障,经过一定的去游离时间后,向故障线路两端的超高速机械开关发出闭合信号,同时向两端MMC发出解除闭锁的指令,使系统恢复到稳态运行状态;
对于永久性直流故障,经过一定的去游离时间后,向故障线路两端的超高速机械开关发出闭合信号,同时向两端MMC发出解除闭锁的指令;由于是永久性直流故障,若经过一定时间再次检测到某一端换流站MMC桥臂电流超过阈值,则重新根据步骤(2)~(5)进行直流故障处理。
7.根据权利要求4所述的直流故障处理策略,其特征在于:当MMC中的全桥子模块闭锁后,子模块电容反向接入直流故障线路,与平波电抗器、桥臂电抗器和直流线路共同构成一个LC振荡回路,使直流故障电流在子模块闭锁后的t3时间内降低至0,最终使得超高速机械开关完成开断。
8.根据权利要求4所述的直流故障处理策略,其特征在于:在故障处理的t3+t4时间段内,通过闭合交流断路器BR1和BR2在MMC阀侧主动制造三相相间短路,阻止交流系统电流流入直流系统,加快故障电流振荡至0的过程,t3+t4的总时长不超过30ms。
CN202010123850.6A 2020-02-20 2020-02-20 一种低全桥比例子模块混合型mmc及其直流故障处理策略 Active CN111224569B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010123850.6A CN111224569B (zh) 2020-02-20 2020-02-20 一种低全桥比例子模块混合型mmc及其直流故障处理策略
PCT/CN2020/124293 WO2021164304A1 (zh) 2020-02-20 2020-10-28 一种低全桥比例子模块混合型mmc及直流故障处理方法
US17/312,809 US20240030715A1 (en) 2020-02-20 2020-10-28 Submodule hybrid mmc with low full-bridge ratio and dc fault processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010123850.6A CN111224569B (zh) 2020-02-20 2020-02-20 一种低全桥比例子模块混合型mmc及其直流故障处理策略

Publications (2)

Publication Number Publication Date
CN111224569A true CN111224569A (zh) 2020-06-02
CN111224569B CN111224569B (zh) 2021-01-26

Family

ID=70827228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010123850.6A Active CN111224569B (zh) 2020-02-20 2020-02-20 一种低全桥比例子模块混合型mmc及其直流故障处理策略

Country Status (3)

Country Link
US (1) US20240030715A1 (zh)
CN (1) CN111224569B (zh)
WO (1) WO2021164304A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021164304A1 (zh) * 2020-02-20 2021-08-26 浙江大学 一种低全桥比例子模块混合型mmc及直流故障处理方法
CN113422528A (zh) * 2021-07-08 2021-09-21 东北林业大学 一种适用于混合型模块化多电平换流器的直流故障穿越装置及其控制方法
CN113991662A (zh) * 2021-11-10 2022-01-28 燕山大学 基于lcc-mmc的能量路由系统及直流故障保护方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308640B (zh) * 2022-08-17 2023-06-27 东南大学 一种基于数据挖掘的mmc子模块开路故障定位方法
CN115421002B (zh) * 2022-09-05 2024-03-08 中国电力科学研究院有限公司 低压直流配电网短路故障选线方法、系统、设备及介质
CN116742683B (zh) * 2023-08-10 2023-10-20 长江三峡集团实业发展(北京)有限公司 一种兼具构网功能与直流电压稳定能力的换流阀控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977954A (zh) * 2016-05-16 2016-09-28 国家电网公司 一种柔性直流电网的断路器混合配置方法及装置
CN110011282A (zh) * 2019-01-24 2019-07-12 华中科技大学 一种直流短路故障性质判断方法及直流系统重合闸方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701145B (zh) * 2014-01-02 2015-07-08 浙江大学 一种基于混杂式mmc的混合型直流输电系统
US9800171B2 (en) * 2014-02-14 2017-10-24 Mitsubishi Electric Corporation Protection system for DC power transmission system, AC-DC converter, and method of interrupting DC power transmission system
US9806633B2 (en) * 2015-02-06 2017-10-31 Indian Institute Of Technology Bombay Modular multilevel current source and voltage source converters to increase number of output current levels and output voltage levels
KR101857570B1 (ko) * 2015-12-30 2018-05-15 주식회사 효성 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법
CN105790238B (zh) * 2016-04-27 2019-02-15 南方电网科学研究院有限责任公司 一种双极mmc-hvdc输电系统及阀侧单相接地故障的保护方法
CN109217265B (zh) * 2018-08-24 2019-10-11 东北电力大学 一种电流转移型多电平换流器拓扑的清除直流故障方法
CN109617439B (zh) * 2018-12-28 2020-01-03 东南大学 一种具有直流短路故障电流阻断能力的mmc拓扑
CN111049407B (zh) * 2020-01-03 2021-03-02 东南大学 具有断流能力的混联型模块化多电平变换器及其控制方法
CN111224569B (zh) * 2020-02-20 2021-01-26 浙江大学 一种低全桥比例子模块混合型mmc及其直流故障处理策略
EP4187735A1 (en) * 2020-05-21 2023-05-31 Mitsubishi Electric Corporation Power conversion system
US10910824B1 (en) * 2020-07-22 2021-02-02 North China Electric Power University Active control-based protection system and method for flexible direct current system of photovoltaic plant
US20230268845A1 (en) * 2022-02-23 2023-08-24 Ge Energy Power Conversion Technology Limited Hybrid modular multilevel converter (hmmc) based on a neutral point clamped (npc) topology

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977954A (zh) * 2016-05-16 2016-09-28 国家电网公司 一种柔性直流电网的断路器混合配置方法及装置
CN110011282A (zh) * 2019-01-24 2019-07-12 华中科技大学 一种直流短路故障性质判断方法及直流系统重合闸方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓帅荣等,: "基于混合型MMC全桥子模块比例的直流侧故障隔离电压研究", 《高电压技术》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021164304A1 (zh) * 2020-02-20 2021-08-26 浙江大学 一种低全桥比例子模块混合型mmc及直流故障处理方法
CN113422528A (zh) * 2021-07-08 2021-09-21 东北林业大学 一种适用于混合型模块化多电平换流器的直流故障穿越装置及其控制方法
CN113991662A (zh) * 2021-11-10 2022-01-28 燕山大学 基于lcc-mmc的能量路由系统及直流故障保护方法
CN113991662B (zh) * 2021-11-10 2023-12-01 燕山大学 基于lcc-mmc的能量路由系统及直流故障保护方法

Also Published As

Publication number Publication date
US20240030715A1 (en) 2024-01-25
WO2021164304A1 (zh) 2021-08-26
CN111224569B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN111224569B (zh) 一种低全桥比例子模块混合型mmc及其直流故障处理策略
CN107069679B (zh) 一种对称双极mmc直流侧单极接地故障穿越和恢复方法
CN111327216B (zh) 一种电阻型子模块混合mmc及其直流故障处理策略
WO2017031991A1 (zh) 一种具有直流故障穿越能力的串联混合型双极直流输电系统
CN104868748B (zh) 一种换流器模块单元、换流器、直流输电系统及控制方法
CN106655237B (zh) 多端柔性高压直流输电系统直流单极接地的故障穿越方法
CN110011282B (zh) 一种直流短路故障性质判断方法及直流系统重合闸方法
CN109256951B (zh) 一种直流电压变换装置及其控制方法
CN107565590A (zh) 适用于风电外送的混合高压直流输电系统
CN109659967B (zh) 含有电阻型超导限流器和直流断路器的换流站及其直流故障处理策略
WO2021218227A1 (zh) 一种模块化电容换相换流器和方法
CN109980613B (zh) 基于改进型半桥子模块的直流配电系统故障恢复方法
CN111740395A (zh) 电感耦合型高压直流限流断路器拓扑结构
CN113394760B (zh) 一种基于电容换流的预限流型高压直流故障限流器及方法
CN111769530A (zh) 大规模风电接入的柔性直流输电故障电流协同抑制方法
CN110768233A (zh) 适用于直流电网且具备潮流控制功能的组合式高压直流断路器及其控制方法
Xu et al. Protection coordination of meshed MMC-MTDC transmission systems under DC faults
CN112152250A (zh) 考虑桥臂电流抑制的柔性直流故障电流联合限制方法
CN110970880B (zh) 含rl型超导限流器和直流断路器的换流站及其直流故障处理策略
CN114552625B (zh) 一种mmc-mtdc系统直流短路故障的混合穿越方法
CN116317661A (zh) 一种am-mmc的交流启动控制方法及控制系统
CN216355991U (zh) 模块化多电平换流器mmc的改进拓扑结构及换流站
WO2021047460A1 (zh) 电压源换流器单元及在线投入方法以及电压源换流阀
CN110165641B (zh) 柔性直流输电系统中直流断路器的重合方法
CN107968413A (zh) 一种具备故障限流能力的统一潮流控制器结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant