CN111222214A - 一种改进的强跟踪滤波方法 - Google Patents

一种改进的强跟踪滤波方法 Download PDF

Info

Publication number
CN111222214A
CN111222214A CN201811323476.3A CN201811323476A CN111222214A CN 111222214 A CN111222214 A CN 111222214A CN 201811323476 A CN201811323476 A CN 201811323476A CN 111222214 A CN111222214 A CN 111222214A
Authority
CN
China
Prior art keywords
state
noise
substituting
stf
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811323476.3A
Other languages
English (en)
Inventor
杨宏韬
李秀兰
孟欣鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN201811323476.3A priority Critical patent/CN111222214A/zh
Publication of CN111222214A publication Critical patent/CN111222214A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

本发明提供了一种改进的强跟踪滤波(Strong Tracking Filter,STF)方法,在消除相关噪声的同时,通过系统模型的恒等变换推导出解耦滤波(Decoupling Filter,DF)。DF的实现可以转化为计算高斯加权积分,通过一阶线性化近似法来得出新的EKF算法而实现的。在扩展正交性准则(Extended Orthogonality Principle,EOP)的意义下,推导出渐消因子的自适应调整公式,并引入渐消因子到新的EKF算法中,使EKF实时调整增益矩阵。这就产生了带有随机时滞量测和噪声相关的强跟踪滤波(STF/RDMCN)算法的最终形式。

Description

一种改进的强跟踪滤波方法
技术领域
本发明主要涉及目标跟踪领域,尤其涉及一种改进的强跟踪滤波方法。
背景技术
强跟踪滤波是一种被应用于各个领域的自适应滤波算法,强跟踪算法的核心思想是:当滤波器产生状态估计误差时,系统输出的残差序列的均值与幅值也会随之放生变化,这时采用时变的渐消因子实时调整状态预测误差协方差矩阵,进而实时调整滤波方程中的增益矩阵以强迫残差序列满足正交性准则(使得残差序列处处保持相互正交),最终实现滤波器保持对系统实际状态的跟踪。尽管强跟踪滤波及其相关改进算法取得了相当多的理论和实践研究成果,但需要指出的是,目前滤波算法在推导或计算过程中都没有同时考虑过程噪声和量测噪声相关以及量测值具有随机时滞情况,因为它们在处理噪声相关和随机时滞量测下非线性系统的滤波问题缺乏有效的理论支撑;在实际工程中,必然存在噪声相关和量测值随机时滞的情况。因此,研究噪声相关和量测随机时滞条件下的强跟踪滤波算法具有重要的理论价值和现实意义。
发明内容
发明目的:针对现有的强跟踪滤波算法无法同时解决一步随机时滞量测和过程噪声与量测噪声相关条件下的非线性系统滤波问题,本发明提供了一种改进的强跟踪滤波方法。
技术方案:为解决上述技术问题,本发明提供了一种改进的一步随机时滞量测扩展卡尔曼滤波方法。
步骤1:建立状态和量测模型,所述状态和量测模型包括带有噪声相关和一步随机时滞量测的非线性系统模型、正定矩阵构造的伪过程噪声模型、带有噪声相关和一步随机时滞量测的非线性系统的恒等状态空间模型:
其中,所述带有噪声相关和一步随机时滞量测的非线性系统模型的建立过程如下:
步骤1.1:
Figure RE-GDA0001908369690000011
其中{xk;k≥0}表示n×1维状态向量,{zk;k≥1}表示m×1维实际量测向量,{yk;k≥1} 表示m×1维可用量测向量,fk(·)和hk(·)是能够无限连续可微分的非线性函数,{wk;k≥0}和{vk;k≥1}是满足协方差矩阵
Figure RE-GDA0001908369690000012
Figure RE-GDA0001908369690000013
的相关零均值高斯白噪声序列,δkl表示Kronecker函数,初始状态x0独立于{wk;k≥0} 和{vk;k≥1},表示高斯随机向量满足
Figure RE-GDA0001908369690000014
Figure RE-GDA0001908369690000015
k;k>1}表示可以取值0-1互不相关伯努利随机变量序列
Figure RE-GDA0001908369690000021
其中,pk表示k时刻时滞概率。
所述定矩阵构造的伪过程噪声模型建立过程如下:
步骤1.2:为了解耦过程噪声和量测噪声的相关性,引入了一个正定矩阵。
Figure RE-GDA0001908369690000022
其中,I表示单位矩阵,Rk和Sk分别表示量测噪声vk的协方差和过程噪声 wk的互协方差。因此,我们得到
Figure RE-GDA0001908369690000023
其中,
Figure RE-GDA0001908369690000024
是伪过程噪声满足
Figure RE-GDA0001908369690000025
Figure RE-GDA0001908369690000026
伪过程噪声和量测噪声是互不相关的,因为
Figure RE-GDA0001908369690000027
所述带有噪声相关和一步随机时滞量测的非线性系统的恒等状态空间模型建立过程如下:
步骤1.3:将等式
Figure RE-GDA0001908369690000028
带入(1)中的表达式xk+1,得到
Figure RE-GDA0001908369690000029
定义
Figure RE-GDA00019083696900000210
Fk(xk)=fk(xk)+Jkvk,然后,(1)中的离散非线性动态系统被转换成以下形式:
Figure RE-GDA00019083696900000211
zk=hk(xk)+vk,k≥1, (4)
Figure RE-GDA00019083696900000212
其中x0,
Figure RE-GDA00019083696900000213
{vk;k≥1}和{γk;k>1}都是相互独立的。
步骤2:由于恒等状态空间模型中所示的非线性系统模型满足过程噪声和量测噪声是互不相关的,因此给出了DF的框架。其次,在此框架的基础上,提出了一种新的基于一阶线性逼近的EKF算法。所述DF的框架的建立包括状态预测和状态更新。
所述DF的框架的建立过程如下:
步骤2.1:继续考虑(3)-(5)中所示的非线性系统模型。将(4)代入(5)中,我们得到
yk+1=(1-γk+1)[hk+1(xk+1)+vk+1]+γk+1[hk(xk)+vk]. (6)
根据等式(6),我们推导DP的框架时需要获得MMSE的前两个时刻 p(xk+1|Yk+1)和p(vk+1|Yk+1)。因此,需要定义一个扩展状态向量,如下所示:
Figure RE-GDA0001908369690000031
其中MMSE的
Figure RE-GDA0001908369690000032
的前两个时刻,如下所示:
Figure RE-GDA0001908369690000033
在(11)中,
Figure RE-GDA0001908369690000034
Figure RE-GDA0001908369690000035
分别是扩展状态k+1时刻的状态和量测噪声的滤波估计和协方差,
Figure RE-GDA0001908369690000036
是k+1时刻的状态噪声和量测噪声的互协方差。vk+1和yk以及xk+1相互独立,扩展状态和协方差分别是
Figure RE-GDA0001908369690000037
定义均值、协方差和互协方差为
Figure RE-GDA0001908369690000038
其中
Figure RE-GDA0001908369690000039
是(5)中的是可用量测集。
所述状态预测过程如下:
步骤2.1.1:将(3)代入(10)中,
Figure RE-GDA00019083696900000310
和Pk+1|k的表示为
Figure RE-GDA00019083696900000311
Figure RE-GDA00019083696900000312
在已知
Figure RE-GDA00019083696900000313
考虑
Figure RE-GDA00019083696900000314
是独立于vk和Yk的,我们得到
Figure RE-GDA00019083696900000315
Figure RE-GDA00019083696900000316
将(13)-(14)代入到(9),得到扩展状态的预测估计
Figure RE-GDA0001908369690000041
所述状态更新过程如下:
步骤2.1.2:已知
Figure RE-GDA0001908369690000042
Figure RE-GDA0001908369690000043
Figure RE-GDA0001908369690000044
vk,γk与Yk互相独立,我们得到
Figure RE-GDA0001908369690000045
Figure RE-GDA0001908369690000046
Figure RE-GDA0001908369690000048
Figure RE-GDA0001908369690000049
Figure RE-GDA00019083696900000410
其中Kk是扩展状态的扩展矩阵,且
Figure RE-GDA00019083696900000411
Figure RE-GDA00019083696900000412
Figure RE-GDA00019083696900000413
Figure RE-GDA00019083696900000414
Figure RE-GDA00019083696900000415
Figure RE-GDA00019083696900000416
Figure RE-GDA00019083696900000417
所述一种新的基于一阶线性逼近的EKF算法实现过程如下所示:
步骤2.2:在(11)-(12)和(15)-(20)中,实现DF的关键是计算(13)-(14)和(21)-(26)中的高斯加权积分。由于fk(·)和hk(·)的非线性,上述积分的计算过程是无法完成的。因此,需要数值近似估计,例如一阶线性化估计。在这里,我们使用带有基于一阶线性化的一步随机时滞量测的EKF来实现DF。
给定滤波估计
Figure RE-GDA0001908369690000051
Figure RE-GDA0001908369690000052
将fk(xk)和hk(xk)线性化,得到
Figure RE-GDA0001908369690000053
Figure RE-GDA0001908369690000054
其中
Figure RE-GDA0001908369690000055
等式(13)-(14)的近似如下所示:
Figure RE-GDA0001908369690000056
Figure RE-GDA0001908369690000057
进一步,将(30)-(31)代入(9)得到预测估计
Figure RE-GDA0001908369690000058
给定预测估计
Figure RE-GDA0001908369690000059
关于
Figure RE-GDA00019083696900000510
线性化hk+1(xk+1)得到
Figure RE-GDA00019083696900000511
其中
Figure RE-GDA00019083696900000512
近似如下:
Figure RE-GDA00019083696900000513
Figure RE-GDA00019083696900000514
Figure RE-GDA00019083696900000515
Figure RE-GDA00019083696900000516
Figure RE-GDA00019083696900000517
Figure RE-GDA00019083696900000518
将(33)-(38)代入(15)-(20),可以计算增强状态的滤波估计
Figure RE-GDA00019083696900000519
步骤3:标准强跟踪滤波(Strong Tracking Filter,STF)特别适用于这些情况下的非线性状态估计,即模型不确定性,噪声相关和随机时滞量测。然而,上述STF不能直接应用于(1)中所示的非线性系统中,这是因为基于正交性准则选择的残差对是根据没有随机时滞量测结果来计算的。因此,给出了在(1)中的非线性系统中应用的EOP。所述基于EOP的STF模型的建立包括渐消因子的引入与计算和随机时滞量测和噪声相关的STF模型的建立。具体步骤如下所示:
Figure RE-GDA00019083696900000520
Figure RE-GDA0001908369690000061
等式(39)是所提出的EKF的性能指标。等式(40)意味着根据(6)和(18)计算的是相互正交的任意选择的残差对。
所述渐消因子的引入与计算过程如下:
步骤3.1:当系统模型准确时,基于给定的可用量测值
Figure RE-GDA0001908369690000062
所提出的 EKF提供了对增广状态的次优估计。然而,当模型不确定时,EKF的估计性能将会很差甚至发散。基本问题是,(18)中所示的增益矩阵不能适应可用测量和预测测量之间残差的变化。为了克服这个问题并使得所提出的EKF具有STF的优良特性,自然的想法是将EOP与所提出的EKF结合以将次优退化因子代入到增广状态的滤波估计
Figure RE-GDA0001908369690000063
中来导出STF/RDMCN。修改后的滤波估计
Figure RE-GDA0001908369690000064
如下:
Figure RE-GDA0001908369690000065
其中λk+1k+1≥1)表示次优退化因子。
将(41)代入(31)中,我们得知状态的预测估计Pk+1|k也同样被相同的次优退化因子改变了。等式(34),(36)-(38)和(17),我们发现STF/RDMCN可以利用时变的渐消因子来破坏的历史状态的影响,并且实时调整增广状态的增益矩阵,以提高滤波的跟踪性能。
然后,下一步的工作是根据EOP确定渐消因子λk+1
根据(6),(18),(29),(32),(33)和(35),我们得到
Figure RE-GDA0001908369690000066
其中
Figure RE-GDA0001908369690000067
用(28)减去(30)得到
Figure RE-GDA0001908369690000068
将(43)代入(42)得到
Figure RE-GDA0001908369690000069
使用相似的推导过程,我们得到
Figure RE-GDA00019083696900000610
将(45)代入(40)得到
Figure RE-GDA0001908369690000071
考虑x0
Figure RE-GDA00019083696900000714
{vk;k≥1},{γk;k>1}和Yk是相互独立的并结合等式(2),等式(46)被简化为以下形式,即
Figure RE-GDA0001908369690000072
其中
Figure RE-GDA0001908369690000073
根据(15),(8)和(9),我们得到
Figure RE-GDA0001908369690000074
将(49)代入(47)中的
Figure RE-GDA0001908369690000075
Figure RE-GDA0001908369690000076
我们得到
Figure RE-GDA0001908369690000077
基于(43),(45)并使用(46)中的相似简化过程,
Figure RE-GDA0001908369690000078
Figure RE-GDA0001908369690000079
简化成
Figure RE-GDA00019083696900000710
其中
Figure RE-GDA00019083696900000711
将(51)代入(47),重新整理(47)得到
Figure RE-GDA00019083696900000712
其中
Figure RE-GDA00019083696900000713
根据(47)和(53),我们可以通过使用迭代方法来获得
Figure RE-GDA0001908369690000081
Figure RE-GDA0001908369690000082
其中
Figure RE-GDA0001908369690000083
Figure RE-GDA0001908369690000084
Figure RE-GDA0001908369690000085
当i=1,得到公式(55)的形式,
Figure RE-GDA0001908369690000086
当j=1时利用(49),(10)中
Figure RE-GDA0001908369690000087
以及
Figure RE-GDA0001908369690000088
的表达式,我们得到公式(59),即
Figure RE-GDA0001908369690000089
其中
Figure RE-GDA00019083696900000810
是残差的协方差。
将(17)代入(60),得到
Figure RE-GDA00019083696900000811
根据(61),如果选择(41)中的适当的渐消因子λk+1能保证
Figure RE-GDA00019083696900000812
然后满足EOP。将(19),(34)和(36)代入(62),重新整理(62)得到
Figure RE-GDA00019083696900000813
将(31)和(41)代入(63),整理(63)得到
Figure RE-GDA0001908369690000091
为了获取渐消因子λk+1,公式(64)两边引入跟踪后得到:
Figure RE-GDA0001908369690000092
定义:
Figure RE-GDA0001908369690000093
Figure RE-GDA0001908369690000094
因此,等式(67)简化为 tr[λk+1Mk+1]=tr[Nk+1]. (68)
然后,渐消因子λk+1表达式如下
Figure RE-GDA0001908369690000097
尽管如此,公式(67)中,残差
Figure RE-GDA0001908369690000095
的协方差未知,这可以通过以下方法决定,
Figure RE-GDA0001908369690000096
其中ρ(0<ρ≤1)是一个遗忘因子,通常选择ρ=0.95。当λk+1≥1,次优退化因子λk+1才能起作用,因此λk+1可以通过以下方式计算:
Figure RE-GDA0001908369690000101
所述随机时滞量测和噪声相关的STF模型的建立过程如下:
步骤3.2现在,我们用一阶线性化方法去估计(13)-(14)和(21)-(26)中的积分部分,得到一个新的STF。我们将得到的STF/RDMCN应用到非线性系统模型(1)中,过程如下:
(1)初始化(k=0)
Figure RE-GDA0001908369690000102
(2)当k=1
第1步:渐消因子的引入与计算
Figure RE-GDA0001908369690000103
M1和N1计算如下
Figure RE-GDA0001908369690000104
其中V1 0可以通过(70)计算,将M1和N1代入(71)得到λ1。然后,将λ1代入 (41)得到
Figure RE-GDA0001908369690000105
第2步:状态预测
P1|0可以通过计算
Figure RE-GDA0001908369690000106
得到。预测估计
Figure RE-GDA0001908369690000107
可以通过将
Figure RE-GDA0001908369690000108
和P1|0代入(9)中计算得到。
第3步:状态更新
Figure RE-GDA0001908369690000109
Figure RE-GDA00019083696900001010
Figure RE-GDA00019083696900001011
计算如下:
滤波估计
Figure RE-GDA00019083696900001012
可以通过将
Figure RE-GDA00019083696900001013
和(74)代入(15)-(17)计算得到。
(3)当k>1
第1步:渐消因子的引入与计算
假定在时刻k,滤波估计
Figure RE-GDA00019083696900001014
和残差协方差
Figure RE-GDA00019083696900001015
均已知。在k+1时刻,
Figure RE-GDA00019083696900001016
Figure RE-GDA00019083696900001017
Mk+1和Nk+1能通过(30),(18),(70),(66)和(67)分别计算得到。将Mk+1和 Nk+1代入(71)得到λk+1。然后,引入λk+1到(41)得到
Figure RE-GDA00019083696900001018
第2步:状态预测
Pk+1|k通过下式计算得到:
Figure RE-GDA0001908369690000111
预测估计
Figure RE-GDA0001908369690000112
可以通过将
Figure RE-GDA0001908369690000113
和Pk+1|k代入到(9)中计算得到。
第3步:状态更新
Figure RE-GDA0001908369690000114
Figure RE-GDA0001908369690000115
可以通过(34)和(37)计算得到。
Figure RE-GDA0001908369690000116
Figure RE-GDA0001908369690000117
可以通过下式计算得到
Figure RE-GDA0001908369690000118
一旦获得新的量测值yk+1,将
Figure RE-GDA0001908369690000119
和(76)代入(15)-(20) 计算在k+1时刻的滤波估计
Figure RE-GDA00019083696900001110
本发明公开了一种改进的强跟踪滤波方法,在消除噪声的相关性的同时,基于恒等模型变换推导出解耦滤波,进而在扩展正交准则的意义下,推导出渐消因子的自适应调整公式,并将其引入到新的EKF算法中,进行实时在线调整增益矩阵。从而有效地降低状态估计误差,获得优于现有STF的估计精度。
有益效果:本发明相对现有技术有以下优点:
1)采用恒等模型变换方法解耦非线性系统中过程噪声和量测噪声的相关性。
2)基于扩展正交性准则,导出噪声相关和量测值存在一步随机时滞情况下解耦STF算法的递推式。
附图说明
图1为本发明所提出的STF/RDMCN和STF/RDM作比较。仿真参数为pk=0.2和Sk=0。两种滤波的RMSEk。
图2为本发明所提出的STF/RDMCN和STF/RDM在Sk=0时RMSEk的均值表。
图3为本发明所提出的STF/RDMCN、STF/RDM和现有的EKF作比较。仿真参数为pk=0.5,Sk=0.5。三种滤波的RMSEk。
图4为本发明所提出的STF/RDMCN、STF/RDM和现有的EKF在Sk=0.5时RMSEk 的均值表。
图5为本发明所提出的STF/RDMCN、STF/RDM和现有的EKF作比较。仿真参数为pk=0.5,Sk=0.5。三种滤波的RMSEk的均值。
图6为本发明所提出的STF/RDMCN、STF/RDM和现有的EKF作比较。仿真参数为pk=0.1,0.2,...,0.9和Sk=0.5。三种滤波的RMSEk的均值。
图7为本发明所提出的STF/RDMCN、STF/RDM和现有的EKF作比较。仿真参数为pk=0.5和Sk=0.1,0.2,...,0.9。三种滤波的RMSEk的均值。图8为本发明的系统流程图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
步骤1.1:离散时间非线性系统为
Figure RE-GDA00019083696900001111
其中{xk;k≥0}表示n×1维状态向量,{zk;k≥1}表示m×1维实际量测向量,{yk;k≥1} 表示m×1维可用量测向量,fk(·)和hk(·)是能够无限连续可微分的非线性函数,{wk;k≥0}和{vk;k≥1}是满足协方差矩阵
Figure RE-GDA0001908369690000121
Figure RE-GDA0001908369690000122
的相关零均值高斯白噪声序列,δkl表示Kronecker函数,初始状态x0独立于{wk;k≥0} 和{vk;k≥1},表示高斯随机向量满足
Figure RE-GDA0001908369690000123
Figure RE-GDA0001908369690000124
k;k>1}表示可以取值 0-1互不相关伯努利随机变量序列
Figure RE-GDA0001908369690000125
其中,pk表示k时刻时滞概率。
步骤1.2:为了解耦过程噪声和量测噪声的相关性,引入了一个正定矩阵。
Figure RE-GDA0001908369690000126
I表示单位矩阵,Rk和Sk分别表示量测噪声vk的协方差和过程噪声wk的互协方差。因此,我们得到
Figure RE-GDA0001908369690000127
其中
Figure RE-GDA0001908369690000128
是伪过程噪声满足
Figure RE-GDA0001908369690000129
Figure RE-GDA00019083696900001210
伪过程噪声和量测噪声是互不相关的,因为
Figure RE-GDA00019083696900001211
步骤1.3:将等式
Figure RE-GDA00019083696900001212
带入(1)中的表达式xk+1,得到
Figure RE-GDA00019083696900001213
定义
Figure RE-GDA00019083696900001214
Fk(xk)=fk(xk)+Jkvk,然后,(1)中的离散非线性动态系统被转换成以下形式
Figure RE-GDA00019083696900001215
zk=hk(xk)+vk,k≥1, (4)
Figure RE-GDA00019083696900001216
其中x0,
Figure RE-GDA00019083696900001217
{vk;k≥1}和{γk;k>1}都是相互独立的。
步骤2:由于恒等状态空间模型中所示的非线性系统模型满足过程噪声和量测噪声是互不相关的,因此给出了DF的框架。其次,在此框架的基础上,提出了一种新的基于一阶线性逼近的EKF算法。
步骤2.1:继续考虑(3)-(5)中所示的非线性系统模型。将(4)代入(5)中,我们得到
yk+1=(1-γk+1)[hk+1(xk+1)+vk+1]+γk+1[hk(xk)+vk]. (6)
根据等式(6),我们推导DP的框架时需要获得MMSE的前两个时刻 p(xk+1|Yk+1)和p(vk+1|Yk+1)。因此,需要定义一个扩展状态向量,如下所示:
Figure RE-GDA0001908369690000131
其中MMSE的
Figure RE-GDA0001908369690000132
的前两个时刻,如下所示:
Figure RE-GDA0001908369690000133
在(11)中,
Figure RE-GDA0001908369690000134
Figure RE-GDA0001908369690000135
分别是扩展状态k+1时刻的状态和量测噪声的滤波估计和协方差,
Figure RE-GDA0001908369690000136
是k+1时刻的状态噪声和量测噪声的互协方差。vk+1和yk以及xk+1相互独立,扩展状态和协方差分别是
Figure RE-GDA0001908369690000137
定义均值、协方差和互协方差为
Figure RE-GDA0001908369690000138
其中
Figure RE-GDA0001908369690000139
是(5)中的是可用量测集。
步骤2.1.1:将(3)代入(10)中,
Figure RE-GDA00019083696900001310
和Pk+1|k的表示为
Figure RE-GDA00019083696900001311
Figure RE-GDA00019083696900001312
在已知
Figure RE-GDA00019083696900001313
考虑
Figure RE-GDA00019083696900001314
是独立于vk和Yk的,我们得到
Figure RE-GDA00019083696900001315
Figure RE-GDA00019083696900001316
将(13)-(14)代入到(9),得到扩展状态的预测估计
Figure RE-GDA0001908369690000141
步骤2.1.2:已知
Figure RE-GDA0001908369690000142
Figure RE-GDA0001908369690000143
Figure RE-GDA0001908369690000144
vk,γk与Yk互相独立,我们得到
Figure RE-GDA0001908369690000145
Figure RE-GDA0001908369690000146
Figure RE-GDA0001908369690000147
Figure RE-GDA0001908369690000148
Figure RE-GDA0001908369690000149
Figure RE-GDA00019083696900001410
其中Kk是扩展状态的扩展矩阵,且
Figure RE-GDA00019083696900001411
Figure RE-GDA00019083696900001412
Figure RE-GDA00019083696900001413
Figure RE-GDA00019083696900001414
Figure RE-GDA00019083696900001415
Figure RE-GDA00019083696900001416
Figure RE-GDA00019083696900001417
步骤2.2:在(11)-(12)和(15)-(20)中,实现DF的关键是计算(13)-(14)和 (21)-(26)中的高斯加权积分。由于fk(·)和hk(·)的非线性,上述积分的计算过程是无法完成的。因此,需要数值近似估计,例如一阶线性化估计。在这里,我们使用带有基于一阶线性化的一步随机时滞量测的EKF来实现DF。
给定滤波估计
Figure RE-GDA0001908369690000151
Figure RE-GDA0001908369690000152
将fk(xk)和hk(xk)线性化,得到
Figure RE-GDA0001908369690000153
Figure RE-GDA0001908369690000154
其中
Figure RE-GDA0001908369690000155
等式(13)-(14)的近似如下所示:
Figure RE-GDA0001908369690000156
Figure RE-GDA0001908369690000157
进一步,将(30)-(31)代入(9)得到预测估计
Figure RE-GDA0001908369690000158
给定预测估计
Figure RE-GDA0001908369690000159
关于
Figure RE-GDA00019083696900001510
线性化hk+1(xk+1)得到
Figure RE-GDA00019083696900001511
其中
Figure RE-GDA00019083696900001512
近似如下:
Figure RE-GDA00019083696900001513
Figure RE-GDA00019083696900001514
Figure RE-GDA00019083696900001515
Figure RE-GDA00019083696900001516
Figure RE-GDA00019083696900001517
Figure RE-GDA00019083696900001518
将(33)-(38)代入(15)-(20),可以计算增强状态的滤波估计
Figure RE-GDA00019083696900001519
步骤3:标准强跟踪滤波(Strong Tracking Filter,STF)特别适用于这些情况下的非线性状态估计,即模型不确定性,噪声相关和随机时滞量测。然而,上述STF不能直接应用于(1)中所示的非线性系统中,这是因为基于正交性准则选择的残差对是根据没有随机时滞量测结果来计算的。因此,给出了在(1)中的非线性系统中应用的EOP。
Figure RE-GDA00019083696900001520
Figure RE-GDA00019083696900001521
等式(39)是所提出的EKF的性能指标。等式(40)意味着根据(6)和(18)计算的是相互正交的任意选择的残差对。
步骤3.1:当系统模型准确时,基于给定的可用量测值
Figure RE-GDA0001908369690000161
所提出的EKF提供了对增广状态的次优估计。然而,当模型不确定时,EKF的估计性能将会很差甚至发散。基本问题是,(18)中所示的增益矩阵不能适应可用测量和预测测量之间残差的变化。为了克服这个问题并使得所提出的EKF具有STF的优良特性,自然的想法是将EOP与所提出的EKF结合以将次优退化因子代入到增广状态的滤波估计
Figure RE-GDA0001908369690000162
中来导出STF/RDMCN。修改后的滤波估计
Figure RE-GDA0001908369690000163
如下:
Figure RE-GDA0001908369690000164
其中λk+1k+1≥1)表示次优退化因子。
将(41)代入(31)中,我们得知状态的预测估计Pk+1|k也同样被相同的次优退化因子改变了。等式(34),(36)-(38)和(17),我们发现STF/RDMCN可以利用时变的渐消因子来破坏的历史状态的影响,并且实时调整增广状态的增益矩阵,以提高滤波的跟踪性能。
根据(6),(18),(29),(32),(33)和(35),我们得到
Figure RE-GDA0001908369690000165
其中
Figure RE-GDA0001908369690000166
用(28)减去(30)得到
Figure RE-GDA0001908369690000167
将(43)代入(42)得到
Figure RE-GDA0001908369690000168
使用相似的推导过程,我们得到
Figure RE-GDA0001908369690000169
将(45)代入(40)得到
Figure RE-GDA0001908369690000171
考虑x0
Figure RE-GDA0001908369690000172
{vk;k≥1},{γk;k>1}和Yk是相互独立的并结合等式(2),等式(46)被简化为以下形式,即
Figure RE-GDA0001908369690000173
其中
Figure RE-GDA0001908369690000174
根据(15),(8)和(9),我们得到
Figure RE-GDA0001908369690000175
将(49)代入(47)中的
Figure RE-GDA0001908369690000176
Figure RE-GDA0001908369690000177
我们得到
Figure RE-GDA0001908369690000178
基于(43),(45)并使用(46)中的相似简化过程,
Figure RE-GDA0001908369690000179
Figure RE-GDA00019083696900001710
简化成
Figure RE-GDA00019083696900001711
其中
Figure RE-GDA00019083696900001712
将(51)代入(47),重新整理(47)得到
Figure RE-GDA0001908369690000181
其中
Figure RE-GDA0001908369690000182
根据(47)和(53),我们可以通过使用迭代方法来获得
Figure RE-GDA0001908369690000183
Figure RE-GDA0001908369690000184
其中
Figure RE-GDA0001908369690000185
Figure RE-GDA0001908369690000186
Figure RE-GDA0001908369690000187
当i=1,得到公式(55)的形式,
Figure RE-GDA0001908369690000188
当j=1时利用(49),(10)中
Figure RE-GDA0001908369690000189
以及
Figure RE-GDA00019083696900001810
的表达式,我们得到公式(59),即
Figure RE-GDA00019083696900001811
其中
Figure RE-GDA00019083696900001812
是残差的协方差。
将(17)代入(60),得到
Figure RE-GDA00019083696900001813
根据(61),如果选择(41)中的适当的渐消因子λk+1能保证
Figure RE-GDA0001908369690000191
然后满足EOP。将(19),(34)和(36)代入(62),重新整理(62)得到
Figure RE-GDA0001908369690000192
将(31)和(41)代入(63),整理(63)得到
Figure RE-GDA0001908369690000193
为了获取渐消因子λk+1,公式(64)两边引入跟踪后得到:
Figure RE-GDA0001908369690000194
定义:
Figure RE-GDA0001908369690000195
Figure RE-GDA0001908369690000196
因此,等式(67)简化为
tr[λk+1Mk+1]=tr[Nk+1]. (68)
然后,渐消因子λk+1表达式如下
Figure RE-GDA0001908369690000201
尽管如此,公式(67)中,残差
Figure RE-GDA0001908369690000202
的协方差未知,这可以通过以下方法决定,
Figure RE-GDA0001908369690000203
其中ρ(0<ρ≤1)是一个遗忘因子,通常选择ρ=0.95。当λk+1≥1,次优退化因子λk+1才能起作用,因此λk+1可以通过以下方式计算:
Figure RE-GDA0001908369690000204
步骤3.2现在,我们用一阶线性化方法去估计(13)-(14)和(21)-(26)中的积分部分,得到一个新的STF。我们将得到的STF/RDMCN应用到非线性系统模型(1)中,过程如下:
1)初始化(k=0)
Figure RE-GDA0001908369690000205
2)当k=1
第1步:渐消因子的引入与计算
Figure RE-GDA0001908369690000206
M1和N1计算如下
Figure RE-GDA0001908369690000207
其中V1 0可以通过(70)计算,将M1和N1代入(71)得到λ1。然后,将λ1代入 (41)得到
Figure RE-GDA0001908369690000208
第2步:状态预测
P10可以通过计算
Figure RE-GDA0001908369690000209
得到。预测估计
Figure RE-GDA00019083696900002010
可以通过将
Figure RE-GDA00019083696900002011
和P10代入(9)中计算得到。
第3步:状态更新
Figure RE-GDA0001908369690000211
Figure RE-GDA0001908369690000212
Figure RE-GDA0001908369690000213
计算如下:
滤波估计
Figure RE-GDA0001908369690000214
可以通过将
Figure RE-GDA0001908369690000215
和(74)代入(15)-(17)计算得到。
3)当k>1
第1步:渐消因子的引入与计算
假定在时刻k,滤波估计
Figure RE-GDA0001908369690000216
和残差协方差
Figure RE-GDA0001908369690000217
均已知。在k+1时刻,
Figure RE-GDA0001908369690000218
Figure RE-GDA0001908369690000219
Mk+1和Nk+1能通过(30),(18),(70),(66)和(67)分别计算得到。将Mk+1和 Nk+1代入(71)得到λk+1。然后,引入λk+1到(41)得到
Figure RE-GDA00019083696900002110
第2步:状态预测
Pk+1|k通过下式计算得到:
Figure RE-GDA00019083696900002111
预测估计
Figure RE-GDA00019083696900002112
可以通过将
Figure RE-GDA00019083696900002113
和Pk+1|k代入到(9)中计算得到。
第3步:状态更新
Figure RE-GDA00019083696900002114
Figure RE-GDA00019083696900002115
可以通过(34)和(37)计算得到。
Figure RE-GDA00019083696900002116
Figure RE-GDA00019083696900002117
可以通过下式计算得到
Figure RE-GDA00019083696900002118
一旦获得新的量测值yk+1,将
Figure RE-GDA00019083696900002119
和(76)代入(15)-(20)计算在k+1时刻的滤波估计
Figure RE-GDA00019083696900002120
以下叙述均针对实际工作中的情况。
1)条件及参数设置
所提出的STF/RDMCN和STF/RDM作比较。仿真参数为pk=0.2和Sk=0。
2)仿真结果分析
所提出的STF/RDMCN的估计效果与STF/RDM一样。原因是Sk=0意味着wk与vk不相关,且所提出的STF/RDMCN可以降解为STF/RDM。也就是说,无论噪声相关与否,所提出的STF/RDMCN都可以解决这两种情况的滤波问题。因此,STF/RDM具有更广泛的应用。所提出的STF/RDMCN和STF/RDM在Sk=0时 RMSEk的均值由图1图2展示。
1)参数设置
本发明所提出的STF/RDMCN、STF/RDM和现有的EKF作比较。仿真参数为 pk=0.5,Sk=0.5。
2)仿真结果分析
在估计精度方面STF/RDMCN和STF/RDM比现有的EKF更好,这是由于STF/RDMCN和STF/RDM通过渐消因子自适应增加,可以及时发现残差的增加,提高估计精度,而现有的EKF不适应残差的增加。而且,RMSEk的均值和STF/RDMCN的渐消因子均值比STF/RDM的小。对比STF/RDM,和所提出的STF/RDMCN,可以通过较少调整渐消因子来反映残差的变化。这意味着不像STF/RDM,所提出的STF/RDMCN可以通过较小的渐消因子削弱累积估计误差的影响,以保证更好的跟踪精度。结果由图3,图4和图5展示。
1)参数设置
本发明所提出的STF/RDMCN、STF/RDM和现有的EKF作比较。仿真参数为 pk=0.1,0.2,...,0.9和Sk=0.5。三种滤波的RMSEk的均值。
2)仿真结果分析
随着p值增加,现有的EKF的均值增加,所提出的STF/RDMCN和 STF/RDM减少,所提出的STF/RDMCN的均值比STF/RDM和现有的EKF的都小。这个数据表明,在时滞概率p中选择较大值的前提下,所提出的STF/RDMCN 比其他两种滤波,具有更好的滤波效果。结果由图6展示。
1)参数设置
本发明所提出的STF/RDMCN、STF/RDM和现有的EKF作比较。仿真参数为 pk=0.5和Sk=0.1,0.2,...,0.9。
2)仿真结果分析
现有的EKF的均值是最差的,意味着所提出的STF/RDMCN和STF/RDM 具有更好的跟踪精度。进一步说明,无论相关参数Sk是否有大范围的变换,所提出的STF/RDMCN的效果都更好。结果由图7展示。
图8为本发明的系统流程图。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种改进的强跟踪滤波方法,其特征在于包括下述步骤:
步骤1:建立状态和量测模型,所述状态和量测模型包括带有噪声相关和一步随机时滞量测的非线性系统模型、正定矩阵构造的伪过程噪声模型、带有噪声相关和一步随机时滞量测的非线性系统的恒等状态空间模型:
其中,所述建立带有噪声相关和一步随机时滞量测的非线性系统模型过程如下:
步骤1.1:考虑离散时间非线性随机系统
Figure RE-FDA0001908369680000011
其中{xk;k≥0}表示n×1维状态向量,{zk;k≥1}表示m×1维实际量测向量,{yk;k≥1}表示m×1维可用量测向量,fk(·)和hk(·)是能够无限连续可微分的非线性函数,{wk;k≥0}和{vk;k≥1}是满足协方差矩阵
Figure RE-FDA0001908369680000012
Figure RE-FDA0001908369680000013
的相关零均值高斯白噪声序列,δkl表示Kronecker函数,初始状态x0独立于{wk;k≥0}和{vk;k≥1},表示高斯随机向量满足
Figure RE-FDA0001908369680000014
Figure RE-FDA0001908369680000015
k;k>1}表示可以取值0-1互不相关伯努利随机变量序列
Figure RE-FDA0001908369680000016
其中,pk表示k时刻时滞概率,
所述定矩阵构造的伪过程噪声模型建立过程如下:
步骤1.2:为了解耦过程噪声和量测噪声的相关性,引入了一个正定矩阵,
Figure RE-FDA0001908369680000017
I表示单位矩阵,Rk和Sk分别表示量测噪声vk的协方差和过程噪声wk的互协方差,因此,我们得到
Figure RE-FDA0001908369680000018
其中
Figure RE-FDA0001908369680000019
是伪过程噪声满足
Figure RE-FDA00019083696800000110
Figure RE-FDA00019083696800000111
伪过程噪声和量测噪声是互不相关的,因为
Figure RE-FDA00019083696800000112
所述带有噪声相关和一步随机时滞量测的非线性系统的恒等状态空间模型建立过程如下:
步骤1.3:将等式
Figure RE-FDA0001908369680000021
带入(1)中的表达式xk+1,得到
Figure RE-FDA0001908369680000022
定义
Figure RE-FDA0001908369680000023
Fk(xk)=fk(xk)+Jkvk,然后,(1)中的离散非线性动态系统被转换成以下形式
Figure RE-FDA0001908369680000024
zk=hk(xk)+vk,k≥1, (4)
Figure RE-FDA0001908369680000025
其中x0,
Figure RE-FDA0001908369680000026
{vk;k≥1}和{γk;k>1}都是相互独立的,
步骤2:由于恒等状态空间模型中所示的非线性系统模型满足过程噪声和量测噪声是互不相关的,因此给出了DF的框架,其次,在此框架的基础上,提出了一种新的基于一阶线性逼近的EKF算法,所述DF的框架的建立包括状态预测和状态更新,
所述DF的框架的建立过程如下:
步骤2.1:继续考虑(3)-(5)中所示的非线性系统模型,将(4)代入(5)中,我们得到
yk+1=(1-γk+1)[hk+1(xk+1)+vk+1]+γk+1[hk(xk)+vk]. (6)
根据等式(6),我们推导DP的框架时需要获得MMSE的前两个时刻p(xk+1|Yk+1)和p(vk+1|Yk+1),因此,需要定义一个扩展状态向量,如下所示:
Figure RE-FDA0001908369680000027
其中MMSE的
Figure RE-FDA0001908369680000028
的前两个时刻,如下所示:
Figure RE-FDA0001908369680000029
在(11)中,
Figure RE-FDA00019083696800000210
Figure RE-FDA00019083696800000211
分别是扩展状态k+1时刻的状态和量测噪声的滤波估计和协方差,
Figure RE-FDA00019083696800000212
是k+1时刻的状态噪声和量测噪声的互协方差,vk+1和yk以及xk+1相互独立,扩展状态和协方差分别是
Figure RE-FDA00019083696800000213
定义均值、协方差和互协方差为
Figure RE-FDA0001908369680000031
其中
Figure RE-FDA0001908369680000032
是(5)中的是可用量测集,
所述状态预测过程如下:
步骤2.1.1:将(3)代入(10)中,
Figure RE-FDA0001908369680000033
和Pk+1|k的表示为
Figure RE-FDA0001908369680000034
Figure RE-FDA0001908369680000035
在已知
Figure RE-FDA0001908369680000036
考虑
Figure RE-FDA0001908369680000037
是独立于vk和Yk的,我们得到
Figure RE-FDA0001908369680000038
Figure RE-FDA0001908369680000039
将(13)-(14)代入到(9),得到扩展状态的预测估计
Figure RE-FDA00019083696800000310
所述状态更新过程如下:
步骤2.1.2:已知
Figure RE-FDA00019083696800000311
Figure RE-FDA00019083696800000312
Figure RE-FDA00019083696800000313
vk,γk与Yk互相独立,我们得到
Figure RE-FDA00019083696800000314
Figure RE-FDA00019083696800000315
Figure RE-FDA00019083696800000316
Figure RE-FDA00019083696800000317
Figure RE-FDA00019083696800000318
Figure RE-FDA0001908369680000041
其中Kk是扩展状态的扩展矩阵,且
Figure RE-FDA0001908369680000042
Figure RE-FDA0001908369680000043
Figure RE-FDA0001908369680000044
Figure RE-FDA0001908369680000045
Figure RE-FDA0001908369680000046
Figure RE-FDA0001908369680000047
Figure RE-FDA0001908369680000048
所述一种新的基于一阶线性逼近的EKF算法实现过程如下所示:
步骤2.2:在(11)-(12)和(15)-(20)中,实现DF的关键是计算(13)-(14)和(21)-(26)中的高斯加权积分,由于fk(·)和hk(·)的非线性,上述积分的计算过程是无法完成的,因此,需要数值近似估计,例如一阶线性化估计,在这里,我们使用带有基于一阶线性化的一步随机时滞量测的EKF来实现DF,
给定滤波估计
Figure RE-FDA0001908369680000049
Figure RE-FDA00019083696800000410
将fk(xk)和hk(xk)线性化,得到
Figure RE-FDA00019083696800000411
Figure RE-FDA00019083696800000412
其中
Figure RE-FDA00019083696800000413
等式(13)-(14)的近似如下所示:
Figure RE-FDA00019083696800000414
Figure RE-FDA00019083696800000415
进一步,将(30)-(31)代入(9)得到预测估计
Figure RE-FDA00019083696800000416
给定预测估计
Figure RE-FDA00019083696800000417
关于
Figure RE-FDA00019083696800000418
线性化hk+1(xk+1)得到
Figure RE-FDA0001908369680000051
其中
Figure RE-FDA0001908369680000052
(21)-(26)近似如下:
Figure RE-FDA0001908369680000053
Figure RE-FDA0001908369680000054
Figure RE-FDA0001908369680000055
Figure RE-FDA0001908369680000056
Figure RE-FDA0001908369680000057
Figure RE-FDA0001908369680000058
将(33)-(38)代入(15)-(20),可以计算增强状态的滤波估计
Figure RE-FDA0001908369680000059
步骤3:标准强跟踪滤波(Strong Tracking Filter,STF)特别适用于这些情况下的非线性状态估计,即模型不确定性,噪声相关和随机时滞量测,然而,上述STF不能直接应用于(1)中所示的非线性系统中,这是因为基于正交性准则选择的残差对是根据没有随机时滞量测结果来计算的,因此,给出了在(1)中的非线性系统中应用的EOP,所述基于EOP的STF模型的建立包括渐消因子的引入与计算和随机时滞量测和噪声相关的STF模型的建立,具体步骤如下所示:
Figure RE-FDA00019083696800000510
Figure RE-FDA00019083696800000511
等式(39)是所提出的EKF的性能指标,等式(40)意味着根据(6)和(18)计算的是相互正交的任意选择的残差对,
所述渐消因子的引入与计算过程如下:
步骤3.1:当系统模型准确时,基于给定的可用量测值
Figure RE-FDA00019083696800000512
所提出的EKF提供了对增广状态的次优估计,然而,当模型不确定时,EKF的估计性能将会很差甚至发散,基本问题是,(18)中所示的增益矩阵不能适应可用测量和预测测量之间残差的变化,为了克服这个问题并使得所提出的EKF具有STF的优良特性,自然的想法是将EOP与所提出的EKF结合以将次优退化因子代入到增广状态的滤波估计
Figure RE-FDA00019083696800000513
中来导出STF/RDMCN,修改后的滤波估计
Figure RE-FDA00019083696800000514
如下:
Figure RE-FDA00019083696800000515
其中λk+1k+1≥1)表示次优退化因子,
将(41)代入(31)中,我们得知状态的预测估计Pk+1|k也同样被相同的次优退化因子改变了,等式(34),(36)-(38)和(17),我们发现STF/RDMCN可以利用时变的渐消因子来破坏的历史状态的影响,并且实时调整增广状态的增益矩阵,以提高滤波的跟踪性能,
然后,下一步的工作是根据EOP确定次优衰落因子λk+1
根据(6),(18),(29),(32),(33)和(35),我们得到
Figure RE-FDA0001908369680000061
其中
Figure RE-FDA0001908369680000062
用(28)减去(30)得到
Figure RE-FDA0001908369680000063
将(43)代入(42)得到
Figure RE-FDA0001908369680000064
使用相似的推导过程,我们得到
Figure RE-FDA0001908369680000065
将(45)代入(40)得到
Figure RE-FDA0001908369680000066
考虑x0
Figure RE-FDA0001908369680000067
{vk;k≥1},{γk;k>1}和Yk是相互独立的并结合等式(2),等式(46)被简化为以下形式,即
Figure RE-FDA0001908369680000068
其中
Figure RE-FDA0001908369680000071
根据(15),(8)和(9),我们得到
Figure RE-FDA0001908369680000072
将(49)代入(47)中的
Figure RE-FDA0001908369680000073
Figure RE-FDA0001908369680000074
我们得到
Figure RE-FDA0001908369680000075
基于(43),(45)并使用(46)中的相似简化过程,
Figure RE-FDA0001908369680000076
Figure RE-FDA0001908369680000077
简化成
Figure RE-FDA0001908369680000078
其中
Figure RE-FDA0001908369680000079
将(51)代入(47),重新整理(47)得到
Figure RE-FDA00019083696800000710
其中
Figure RE-FDA00019083696800000711
根据(47)和(53),我们可以通过使用迭代方法来获得
Figure RE-FDA00019083696800000712
Figure RE-FDA00019083696800000713
其中
Figure RE-FDA0001908369680000081
Figure RE-FDA0001908369680000082
Figure RE-FDA0001908369680000083
当i=1,得到公式(55)的形式,
Figure RE-FDA0001908369680000084
当j=1时利用(49),(10)中
Figure RE-FDA0001908369680000085
以及
Figure RE-FDA0001908369680000086
的表达式,我们得到公式(59),即
Figure RE-FDA0001908369680000087
其中
Figure RE-FDA0001908369680000088
是残差的协方差,
将(17)代入(60),得到
Figure RE-FDA0001908369680000089
根据(61),如果选择(41)中的适当的渐消因子λk+1能保证
Figure RE-FDA00019083696800000810
然后满足EOP,将(19),(34)和(36)代入(62),重新整理(62)得到
Figure RE-FDA00019083696800000811
将(31)和(41)代入(63),整理(63)得到
Figure RE-FDA0001908369680000091
为了获取渐消因子λk+1,公式(64)两边引入跟踪后得到:
Figure RE-FDA0001908369680000092
定义:
Figure RE-FDA0001908369680000093
Figure RE-FDA0001908369680000094
因此,等式(67)简化为
tr[λk+1Mk+1]=tr[Nk+1]. (68)
然后,渐消因子λk+1表达式如下
Figure RE-FDA0001908369680000095
尽管如此,公式(67)中,残差
Figure RE-FDA0001908369680000096
的协方差未知,这可以通过以下方法决定,
Figure RE-FDA0001908369680000101
其中ρ(0<ρ≤1)是一个遗忘因子,通常选择ρ=0.95,当λk+1≥1,次优退化因子λk+1才能起作用,因此λk+1可以通过以下方式计算:
Figure RE-FDA0001908369680000102
所述随机时滞量测和噪声相关的STF模型的建立过程如下:
步骤3.2现在,我们用一阶线性化方法去估计(13)-(14)和(21)-(26)中的积分部分,得到一个新的STF,我们将得到的STF/RDMCN应用到非线性系统模型中,过程如下:
1)初始化(k=0)
Figure RE-FDA0001908369680000103
2)当k=1
第1步:渐消因子的引入与计算
Figure RE-FDA0001908369680000104
M1和N1计算如下
Figure RE-FDA0001908369680000105
其中V1 0可以通过(70)计算,将M1和N1代入(71)得到λ1,然后,将λ1代入(41)得到
Figure RE-FDA0001908369680000106
第2步:状态预测
P1|0可以通过计算
Figure RE-FDA0001908369680000107
得到,预测估计
Figure RE-FDA0001908369680000108
可以通过将
Figure RE-FDA0001908369680000109
和P1|0代入(9)中计算得到,
第3步:状态更新
Figure RE-FDA00019083696800001010
Figure RE-FDA00019083696800001011
Figure RE-FDA00019083696800001012
计算如下:
滤波估计
Figure RE-FDA00019083696800001013
可以通过将
Figure RE-FDA00019083696800001014
和(74)代入(15)-(17)计算得到,
3)当k>1
第1步:渐消因子的引入与计算
假定在时刻k,滤波估计
Figure RE-FDA0001908369680000111
和残差协方差
Figure RE-FDA0001908369680000112
均已知,在k+1时刻,
Figure RE-FDA0001908369680000113
Figure RE-FDA0001908369680000114
Mk+1和Nk+1能通过(30),(18),(70),(66)和(67)分别计算得到,将Mk+1和Nk+1代入(71)得到λk+1,然后,引入λk+1到(41)得到
Figure RE-FDA0001908369680000115
第2步:状态预测
Pk+1|k通过下式计算得到:
Figure RE-FDA0001908369680000116
预测估计
Figure RE-FDA0001908369680000117
可以通过将
Figure RE-FDA0001908369680000118
和Pk+1|k代入到(9)中计算得到,
第3步:状态更新
Figure RE-FDA0001908369680000119
Figure RE-FDA00019083696800001110
可以通过(34)和(37)计算得到,
Figure RE-FDA00019083696800001111
Figure RE-FDA00019083696800001112
可以通过下式计算得到
Figure RE-FDA00019083696800001113
一旦获得新的量测值yk+1,将
Figure RE-FDA00019083696800001114
和(76)代入(15)-(20)计算在k+1时刻的滤波估计
Figure RE-FDA00019083696800001115
CN201811323476.3A 2018-11-08 2018-11-08 一种改进的强跟踪滤波方法 Pending CN111222214A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811323476.3A CN111222214A (zh) 2018-11-08 2018-11-08 一种改进的强跟踪滤波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811323476.3A CN111222214A (zh) 2018-11-08 2018-11-08 一种改进的强跟踪滤波方法

Publications (1)

Publication Number Publication Date
CN111222214A true CN111222214A (zh) 2020-06-02

Family

ID=70805358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811323476.3A Pending CN111222214A (zh) 2018-11-08 2018-11-08 一种改进的强跟踪滤波方法

Country Status (1)

Country Link
CN (1) CN111222214A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653410A (zh) * 2020-12-15 2021-04-13 中国地质大学(武汉) 噪声相关和量测一步随机延时系统高斯滤波器的设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777426A (zh) * 2015-04-17 2015-07-15 河海大学 一种基于无迹变换强跟踪的发电机动态状态估计方法
CN105356860A (zh) * 2015-07-01 2016-02-24 西北工业大学 改进的强跟踪平方根容积卡尔曼滤波方法
US20160105667A1 (en) * 2014-10-11 2016-04-14 Superd Co., Ltd. Method and apparatus for object tracking and 3d display based thereon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160105667A1 (en) * 2014-10-11 2016-04-14 Superd Co., Ltd. Method and apparatus for object tracking and 3d display based thereon
CN104777426A (zh) * 2015-04-17 2015-07-15 河海大学 一种基于无迹变换强跟踪的发电机动态状态估计方法
CN105356860A (zh) * 2015-07-01 2016-02-24 西北工业大学 改进的强跟踪平方根容积卡尔曼滤波方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGTAO YANG等: ""WStrong Tracking Filter for Nonlinear Systems with Randomly Delayed Measurements and Correlated Noises"", 《MATHEMATICAL PROBLEMS IN ENGINEERING》, 7 February 2018 (2018-02-07) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653410A (zh) * 2020-12-15 2021-04-13 中国地质大学(武汉) 噪声相关和量测一步随机延时系统高斯滤波器的设计方法

Similar Documents

Publication Publication Date Title
CN109508510B (zh) 一种基于改进的卡尔曼滤波的铷原子钟参数估计算法
CN108512528B (zh) 一种cim函数下的比例控制和归一化lmp滤波方法
CN107947761A (zh) 基于最小均方四阶的变阈值比例更新自适应滤波算法
CN111222214A (zh) 一种改进的强跟踪滤波方法
CN113467236B (zh) 一种对误差信号进行时滞补偿的方法
CN110855269A (zh) 一种自适应滤波的系数更新方法
CN117896468A (zh) 一种用于电话通信的偏差补偿回声消除方法及系统
CN110048694A (zh) 基于变元步长的随机傅里叶特征核最小均方算法
Wigren Loop‐shaping feedback and feedforward control for networked systems with saturation and delay
Choi et al. Online state–space modeling using recurrent multilayer perceptrons with unscented kalman filter
CN112230552B (zh) 针对离散时间多智能体博弈的抗干扰控制方法
CN1310186C (zh) 一种神经网络均衡器的优化训练方法
Sturm et al. Force reconstruction using an adaptive algorithm in time domain
Apley et al. Cautious control of industrial process variability with uncertain input and disturbance model parameters
Gao et al. Spline Adaptive Filtering Algorithm-based Generalized Maximum Correntropy and its Application to Nonlinear Active Noise Control
Rehr et al. On the bias of adaptive First-Order recursive smoothing
Hübscher et al. A model for the behavior of the least mean kurtosis (LMK) adaptive algorithm with Gaussian inputs
Zhu Estimation of nonlinear ARX models
Ahmed et al. Dynamic observers—a neural net approach
Wei et al. Variable tap-length LMS algorithm with variable tap-length adaptation step size
CN114172490B (zh) 一种基于Ekblom范数的鲁棒自适应噪声消除方法
CN113724680B (zh) 一种基于最大相关熵准则的主动噪声控制算法
Shamsi et al. A Flexible Approach to Interference Cancellation in Distributed Sensor Networks
Grimble et al. Nonlinear Estimation Methods: Polynomial Systems Approach
Gentsch et al. Real-time estimation of parameter maps

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination