CN111209701B - 一种轨道列车车体强度仿真方法及装置 - Google Patents

一种轨道列车车体强度仿真方法及装置 Download PDF

Info

Publication number
CN111209701B
CN111209701B CN202010002196.3A CN202010002196A CN111209701B CN 111209701 B CN111209701 B CN 111209701B CN 202010002196 A CN202010002196 A CN 202010002196A CN 111209701 B CN111209701 B CN 111209701B
Authority
CN
China
Prior art keywords
train body
contact
model
relation
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010002196.3A
Other languages
English (en)
Other versions
CN111209701A (zh
Inventor
赵子豪
李宁
王晖
刘元君
王晓军
王宗正
田凯
马丽英
王伟华
李春超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Qingdao Sifang Co Ltd
Original Assignee
CRRC Qingdao Sifang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Qingdao Sifang Co Ltd filed Critical CRRC Qingdao Sifang Co Ltd
Priority to CN202010002196.3A priority Critical patent/CN111209701B/zh
Publication of CN111209701A publication Critical patent/CN111209701A/zh
Application granted granted Critical
Publication of CN111209701B publication Critical patent/CN111209701B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明实施例提供一种轨道列车车体强度仿真方法及装置,方法包括:基于轨道列车车体几何模型,建立轨道列车车体基础模型;根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型;对所述非线性全接触模型施加约束和载荷后进行强度仿真。本发明实施例根据车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型,用于轨道列车车体强度仿真,模拟轨道列车车体各部件之间的接触关系和摩擦关系,完全模拟车体在施加约束和载荷后的内力传导过程,从而提高了仿真计算的精度。

Description

一种轨道列车车体强度仿真方法及装置
技术领域
本发明涉及车体强度仿真技术领域,尤其涉及一种轨道列车车体强度仿真方法及装置。
背景技术
轨道列车车体强度直接影响行车安全。轨道列车车体有限元模型仿真是设计阶段设计方案验证的重要手段。准确的轨道列车车体有限元模型能够对设计方案进行危险性预测。同时,准确的仿真结果可用于进行轨道列车车体的减重优化,提升轨道列车车体结构设计的经济性指标。
然而,目前轨道列车车体使用线性建模方法,很难准确预测车体的变形和应力水平,仿真精度低。
因此,如何搭建非线性模型以提高仿真精度成为亟待解决的技术问题。
发明内容
本发明实施例提供一种轨道列车车体强度仿真方法,用以解决如何搭建仿真精度高的非线性模型这一技术问题。
第一方面,本发明实施例提供一种轨道列车车体强度仿真方法,包括:
基于轨道列车车体几何模型,建立轨道列车车体基础模型;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型;
对所述非线性全接触模型施加约束和载荷后进行强度仿真。
可选地,所述对所述非线性全接触模型施加约束和载荷后进行强度仿真,包括:
计算施加约束和载荷后的非线性全接触模型的应力变化,得到轨道列车车体的应力结果;
根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求。
可选地,所述根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求,包括:
当所述应力结果大于材料的屈服强度时,确定所述轨道列车车体的强度满足所述预设强度要求;
当所述应力结果小于或等于所述材料的屈服强度时,确定所述轨道列车车体的强度不满足所述预设强度要求。
可选地,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型,具体包括:
对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型。
可选地,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型,具体包括:
根据焊接图建立所述轨道列车车体基础模型的焊点单元和焊缝单元;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型。
可选地,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型,具体包括:
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件、所述焊点单元和焊缝单元及所述轨道列车车体基础模型的参数,建立所述非线性全接触模型。
可选地,所述轨道列车车体基础模型的参数包括板壳单元、焊点单元和焊缝单元的材料属性和厚度以及载荷、工况、求解软件类型和计算结果存储位置。
第二方面,本发明实施例提供一种轨道列车车体强度仿真装置,包括:基础模型建立模块、非线性全接触模型建立模块和强度仿真模块;
所述基础模型建立模块,用于基于轨道列车车体几何模型,建立轨道列车车体基础模型;
所述非线性全接触模型建立模块,用于根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立所述非线性全接触模型;
所述强度仿真模块,用于对所述非线性全接触模型施加约束和载荷后进行强度仿真。
可选地,所述强度仿真模块,具体用于:计算施加约束和载荷后的非线性全接触模型的应力变化,得到轨道列车车体的应力结果;根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求。
可选地,所述根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求,包括:
当所述应力结果大于材料的屈服强度时,确定所述轨道列车车体的强度满足所述预设强度要求;
当所述应力结果小于或等于所述材料的屈服强度时,确定所述轨道列车车体的强度不满足所述预设强度要求。
可选地,所述非线性全接触模型建立模块,具体用于:
对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型。
可选地,所述非线性全接触模型建立模块,还具体用于:
根据焊接图建立所述轨道列车车体基础模型的焊点单元和焊缝单元;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型。
可选地,所述非线性全接触模型建立模块,还具体用于:
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件、所述焊点单元和焊缝单元及所述轨道列车车体基础模型的参数,建立所述非线性全接触模型。
可选地,所述轨道列车车体基础模型的参数包括板壳单元、焊点单元和焊缝单元的材料属性和厚度以及载荷、工况、求解软件类型和计算结果存储位置。
第三方面,本发明实施例提供一种电子设备,包括:
至少一个处理器;以及
与所述处理器通信连接的至少一个存储器,其中:
所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行上述方法。
第四方面,本发明实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法的步骤。
本发明实施例根据车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型,用于轨道列车车体强度仿真,模拟轨道列车车体各部件之间的接触关系和摩擦关系,完全模拟车体在施加约束和载荷后的内力传导过程,从而提高了仿真计算的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明一实施例提供的一种轨道列车车体强度仿真方法的流程示意图;
图2示出了本发明一实施例提供的一种轨道列车车体强度仿真装置的结构示意图;
图3为本发明一实施例提供的电子设备的逻辑框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
轨道列车车体采用薄壁筒形整体承载结构,中间车主要由底架、侧墙、车顶和端墙焊接而成。底架采用无中梁结构,由牵引梁、枕梁、缓冲梁、边梁、横梁、波纹地板等组成。车顶主要包括边梁、弯梁、波纹顶板、外罩板等组成。侧墙主要由侧墙上边梁、侧墙外板、门立柱、窗立柱、横梁和连接板等组成。端墙主要由端角柱、端弯梁、门立柱、横梁、外端板等组成。
现有技术中,常规的车体结构有限元模型为线性结构,忽略了各个结构件之间的接触关系。仿真时各个结构件之间的穿透对仿真计算精度影响较大。因此,本发明在充分考虑各个结构件之间的接触传力,完全模拟车体实际传力方式的情况下,建立了非线性全接触模型,提高了车体强度仿真计算精度。
以下是对一种轨道列车车体强度仿真方法的详细说明。
图1为本发明一实施例提供的一种轨道列车车体强度仿真方法的流程示意图,包括:
S11,基于轨道列车车体几何模型,建立轨道列车车体基础模型。
其中,所述轨道列车车体几何模型是由设计人员设计的模型。
对所述轨道列车车体几何模型进行中面抽取,得到面模型。需要说明的是,若面与面之间连接不好,则需要对所述面模型进行修改优化,并且删除所述面模型中的小的圆角和小孔。然后,基于所述面模型进行网格划分,得到所述轨道列车车体基础模型。
S12,根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型。
其中,所述接触关系指的是结构件之间的绑定关系和/或滑动关系;需要说明的是,所述滑动关系包括带摩擦滑动和不带摩擦滑动。
所述摩擦关系指的是结构件之间的摩擦系数。
所述轨道列车车体基础模型各个结构件之间存在所述接触关系和所述摩擦关系。与传统的接触建模方法不同,本发明实施例无需构建接触单元,可直接模拟各个结构件之间的所述接触关系和所述摩擦关系。基于所述轨道列车车体基础模型各个结构件之间的所述接触关系和所述摩擦关系建立所述非线性全接触模型。也就是说,所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系是建立所述非线性全接触模型的依据。建立的非线性全接触模型可以兼顾各个结构件之间的所述接触关系和所述摩擦关系,能更好地模拟实验。
S13,对所述非线性全接触模型施加约束和载荷后进行强度仿真。
其中,在本发明实施例中,进行强度仿真之前,先对所述非线性全接触模型施加约束和载荷。然后对轨道列车车体进行强度仿真。
本发明实施例根据车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型,用于轨道列车车体强度仿真,模拟轨道列车车体各部件之间的接触关系,完全模拟车体在施加约束和载荷后的内力传导过程,从而提高了仿真计算的精度。
进一步地,在上述方法实施例的基础上,所述对所述非线性全接触模型施加约束和载荷后进行强度仿真,包括:
计算施加约束和载荷后的非线性全接触模型的应力变化,得到轨道列车车体的应力结果;
根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求。
在本发明实施例中,对所述非线性全接触模型施加约束和载荷后进行强度仿真。具体而言,首先,计算施加约束和载荷后的非线性全接触模型的应力变化,得到所述轨道列车车体的应力结果;然后,根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求。
其中,所述预设强度要求是大于材料的屈服强度。
本发明实施例计算施加约束和载荷后的非线性全接触模型的应力变化,完全模拟车体在施加约束和载荷后的内力传导过程,从而提高了仿真计算的精度。
进一步地,在上述方法实施例的基础上,所述根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求,包括:
当所述应力结果大于材料的屈服强度时,确定所述轨道列车车体的强度满足所述预设强度要求;
当所述应力结果小于或等于所述材料的屈服强度时,确定所述轨道列车车体的强度不满足所述预设强度要求。
在本发明实施例中,通过比较所述应力结果和所述材料的屈服强度的大小,确定所述轨道列车车体的强度是否满足所述预设强度要求。具体而言,当所述应力结果大于材料的屈服强度时,确定所述轨道列车车体的强度满足所述预设强度要求;当所述应力结果小于或等于所述材料的屈服强度时,确定所述轨道列车车体的强度不满足所述预设强度要求。
本发明实施例通过比较所述应力结果和所述材料的屈服强度的大小,确定所述轨道列车车体的强度是否满足所述预设强度要求,以用于行车安全判断。
进一步地,在上述方法实施例的基础上,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型,具体包括:
对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型。
在本发明实施例中,针对诸如最大垂直载荷工况、拉伸载荷工况、压缩载荷工况、抬车工况以及三点支撑工况等不同工况,对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件;根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型。也就是说,对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件也是建立所述非线性全接触模型的依据。
需要说明的是,所述施加边界条件至少包括对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加约束,如,固定所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项。
在此还需要说明的是,在本发明实施例中,还可以对地板、车体端墙、车钩安装座中的至少一项施加载荷。
本发明实施例对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件是建立所述非线性全接触模型的依据。根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,进行准确建模,保证了建立的非线性全接触模型的准确性。
进一步地,在上述方法实施例的基础上,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型,具体包括:
根据焊接图建立所述轨道列车车体基础模型的焊点单元和焊缝单元;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型。
在本发明实施例中,根据焊接图中焊缝的位置和形状对点焊结构及焊缝结构进行准确建模,即根据焊接图建立所述轨道列车车体基础模型的焊点单元和焊缝单元。
需要说明的是,在本发明实施例中,除所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件是建立所述非线性全接触模型的依据之外,所述焊点单元和所述焊缝单元也是建立所述非线性全接触模型的依据。因此,在本发明实施例中,根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型。
本发明实施例根据焊接图中焊缝的位置和形状对点焊结构及焊缝结构进行准确建模,保证了建立的非线性全接触模型的准确性。
进一步地,在上述方法实施例的基础上,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型,具体包括:
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件、所述焊点单元和焊缝单元及所述轨道列车车体基础模型的参数,建立所述非线性全接触模型。
在本发明实施例中,除所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件、所述焊点单元和焊缝单元是建立非线性全接触模型的依据之外,所述轨道列车车体基础模型的参数,也是建立所述非线性全接触模型的依据。因此,在本发明实施例中,根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件、所述焊点单元和焊缝单元及所述轨道列车车体基础模型的参数,建立所述非线性全接触模型。
需要说明的是,在本发明实施例中,在建立所述非线性全接触模型之前,根据车体隐式求解要求,设置初始步长和迭代次数等控制参数。将所述控制参数集成,不同模型可快速导入和调用这些控制参数,避免人为因素造成的模型错误。
本发明实施例通过隐式求解之间的参数控制,实现非线性全接触模型的快速收敛,在保证计算精度的前提下减少计算时间。
进一步地,在上述方法实施例的基础上,所述轨道列车车体基础模型的参数包括板壳单元、焊点单元和焊缝单元的材料属性和厚度以及载荷、工况、求解软件类型和计算结果存储位置。
在本发明实施例中,所述轨道列车车体基础模型的参数包括板壳单元、焊点单元和焊缝单元的材料属性和厚度以及载荷、工况、求解软件类型和计算结果存储位置。
本发明实施例根据所述轨道列车车体基础模型的参数进行准确建模,保证了建立的非线性全接触模型的准确性。
在此需要说明的是,建立好非线性全接触模型后,使用宏命令自动调用求解器,自动批量配置计算内存,进行多种工况的批量计算。
以上是对一种轨道列车车体强度仿真方法的详细说明。接下来是对本发明实施例提供的一种轨道列车车体强度仿真装置的详细说明。
图2为本发明一实施例提供的一种轨道列车车体强度仿真装置的结构示意图,包括:基础模型建立模块21、非线性全接触模型建立模块22和强度仿真模块23;
所述基础模型建立模块21,用于基于轨道列车车体几何模型,建立轨道列车车体基础模型;
所述非线性全接触模型建立模块22,用于根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立所述非线性全接触模型;
所述强度仿真模块23,用于对所述非线性全接触模型施加约束和载荷后进行强度仿真。
进一步地,在上述装置实施例的基础上,所述强度仿真模块23,具体用于:计算施加约束和载荷后的非线性全接触模型的应力变化,得到轨道列车车体的应力结果;根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求。
进一步地,在上述装置实施例的基础上,所述根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求,包括:
当所述应力结果大于材料的屈服强度时,确定所述轨道列车车体的强度满足所述预设强度要求;
当所述应力结果小于或等于所述材料的屈服强度时,确定所述轨道列车车体的强度不满足所述预设强度要求。
进一步地,在上述装置实施例的基础上,所述非线性全接触模型建立模块,具体用于:
对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型。
进一步地,在上述装置实施例的基础上,所述非线性全接触模型建立模块,还具体用于:
根据焊接图建立所述轨道列车车体基础模型的焊点单元和焊缝单元;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型。
进一步地,在上述装置实施例的基础上,所述非线性全接触模型建立模块,还具体用于:
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件、所述焊点单元和焊缝单元及所述轨道列车车体基础模型的参数,建立所述非线性全接触模型。
进一步地,在上述装置实施例的基础上,所述轨道列车车体基础模型的参数包括板壳单元、焊点单元和焊缝单元的材料属性和厚度以及载荷、工况、求解软件类型和计算结果存储位置。
图3为本发明一实施例提供的电子设备的逻辑框图;所述电子设备,包括:处理器(processor)31、存储器(memory)32和总线33;
其中,所述处理器31和存储器32通过所述总线33完成相互间的通信;所述处理器31用于调用所述存储器32中的程序指令,以执行上述方法实施例提供的轨道列车车体强度仿真方法,例如包括:基于轨道列车车体几何模型,建立轨道列车车体基础模型;根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型;对所述非线性全接触模型施加约束和载荷后进行强度仿真。
本发明一实施例还提出一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机程序,该计算机程序被处理器执行时实现了执行上述各实施例提供的轨道列车车体强度仿真方法,例如包括:基于轨道列车车体几何模型,建立轨道列车车体基础模型;根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型;对所述非线性全接触模型施加约束和载荷后进行强度仿真。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

1.一种轨道列车车体强度仿真方法,其特征在于,包括:
基于轨道列车车体几何模型,建立轨道列车车体基础模型;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型;
对所述非线性全接触模型施加约束和载荷后进行强度仿真;
计算施加约束和载荷后的非线性全接触模型的应力变化,得到轨道列车车体的应力结果;
根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求;
其中,所述接触关系是指结构件之间的绑定关系和/或滑动关系;
所述摩擦关系是指结构件之间的摩擦系数。
2.根据权利要求1所述的轨道列车车体强度仿真方法,其特征在于,所述根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求,包括:
当所述应力结果大于材料的屈服强度时,确定所述轨道列车车体的强度满足所述预设强度要求;
当所述应力结果小于或等于所述材料的屈服强度时,确定所述轨道列车车体的强度不满足所述预设强度要求。
3.根据权利要求1所述的轨道列车车体强度仿真方法,其特征在于,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立非线性全接触模型,具体包括:
对所述轨道列车车体基础模型的空簧支座、车钩、防爬器中的至少一项施加边界条件;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型。
4.根据权利要求3所述的轨道列车车体强度仿真方法,其特征在于,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系及施加的所述边界条件,建立所述非线性全接触模型,具体包括:
根据焊接图建立所述轨道列车车体基础模型的焊点单元和焊缝单元;
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型。
5.根据权利要求4所述的轨道列车车体强度仿真方法,其特征在于,所述根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件及所述焊点单元和焊缝单元,建立所述非线性全接触模型,具体包括:
根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系、施加的所述边界条件、所述焊点单元和焊缝单元及所述轨道列车车体基础模型的参数,建立所述非线性全接触模型。
6.根据权利要5所述的轨道列车车体强度仿真方法,其特征在于,所述轨道列车车体基础模型的参数包括板壳单元、焊点单元和焊缝单元的材料属性和厚度以及载荷、工况、求解软件类型和计算结果存储位置。
7.一种轨道列车车体强度仿真装置,其特征在于,包括:基础模型建立模块、非线性全接触模型建立模块和强度仿真模块;
所述基础模型建立模块,用于基于轨道列车车体几何模型,建立轨道列车车体基础模型;
所述非线性全接触模型建立模块,用于根据所述轨道列车车体基础模型的各个结构件之间的接触关系和摩擦关系,建立所述非线性全接触模型;
所述强度仿真模块,用于对所述非线性全接触模型施加约束和载荷后进行强度仿真;计算施加约束和载荷后的非线性全接触模型的应力变化,得到轨道列车车体的应力结果;根据所述应力结果,确定所述轨道列车车体的强度是否满足预设强度要求;
其中,所述接触关系是指结构件之间的绑定关系和/或滑动关系;
所述摩擦关系是指结构件之间的摩擦系数。
8.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-6中任一项所述的轨道列车车体强度仿真方法的步骤。
9.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1-6中任一项所述的轨道列车车体强度仿真方法的步骤。
CN202010002196.3A 2020-01-02 2020-01-02 一种轨道列车车体强度仿真方法及装置 Active CN111209701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010002196.3A CN111209701B (zh) 2020-01-02 2020-01-02 一种轨道列车车体强度仿真方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010002196.3A CN111209701B (zh) 2020-01-02 2020-01-02 一种轨道列车车体强度仿真方法及装置

Publications (2)

Publication Number Publication Date
CN111209701A CN111209701A (zh) 2020-05-29
CN111209701B true CN111209701B (zh) 2023-09-12

Family

ID=70788602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010002196.3A Active CN111209701B (zh) 2020-01-02 2020-01-02 一种轨道列车车体强度仿真方法及装置

Country Status (1)

Country Link
CN (1) CN111209701B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257318B (zh) * 2020-10-23 2024-04-09 中车株洲电力机车有限公司 带电池小车电源柜强度计算方法、系统、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046912A1 (de) * 2004-09-28 2006-03-30 Daimlerchrysler Ag Verfahren zur Simulation der Lebensdauer bei einem Verkehrsmittel
CN102306214A (zh) * 2011-07-26 2012-01-04 南京航空航天大学 基于样条曲线的轨道车辆整车碰撞仿真分析方法
WO2013091549A1 (zh) * 2011-12-20 2013-06-27 长春轨道客车股份有限公司 列车能量分配快速分析方法
CN105224758A (zh) * 2015-10-13 2016-01-06 河海大学 一种用于设计计算的有砟轨道高速铁路有限元建模分析方法
CN107657112A (zh) * 2017-09-25 2018-02-02 大连交通大学 一种轨道列车多级能量吸收的耐冲击优化设计方法
CN108664707A (zh) * 2018-04-17 2018-10-16 西南交通大学 一种基于有限元模拟的车轮-轨道接触循环加-卸载仿真分析方法
CN109033668A (zh) * 2018-08-08 2018-12-18 中车长春轨道客车股份有限公司 基于asme标准车体准静态分析设计优化方法
CN110188442A (zh) * 2019-05-23 2019-08-30 南京金蓝智慧城市规划设计有限公司 高铁无砟轨道路基基础耦合动力有限元仿真分析方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046912A1 (de) * 2004-09-28 2006-03-30 Daimlerchrysler Ag Verfahren zur Simulation der Lebensdauer bei einem Verkehrsmittel
CN102306214A (zh) * 2011-07-26 2012-01-04 南京航空航天大学 基于样条曲线的轨道车辆整车碰撞仿真分析方法
WO2013091549A1 (zh) * 2011-12-20 2013-06-27 长春轨道客车股份有限公司 列车能量分配快速分析方法
CN105224758A (zh) * 2015-10-13 2016-01-06 河海大学 一种用于设计计算的有砟轨道高速铁路有限元建模分析方法
CN107657112A (zh) * 2017-09-25 2018-02-02 大连交通大学 一种轨道列车多级能量吸收的耐冲击优化设计方法
CN108664707A (zh) * 2018-04-17 2018-10-16 西南交通大学 一种基于有限元模拟的车轮-轨道接触循环加-卸载仿真分析方法
CN109033668A (zh) * 2018-08-08 2018-12-18 中车长春轨道客车股份有限公司 基于asme标准车体准静态分析设计优化方法
CN110188442A (zh) * 2019-05-23 2019-08-30 南京金蓝智慧城市规划设计有限公司 高铁无砟轨道路基基础耦合动力有限元仿真分析方法

Also Published As

Publication number Publication date
CN111209701A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN104765908B (zh) 高速动车组车体局部结构失稳有限元仿真装置及其方法
CN105718633B (zh) 一种底盘件的载荷分析方法
CN108595898A (zh) 基于汽车碰撞仿真的有限元建模方法和系统
CN111209701B (zh) 一种轨道列车车体强度仿真方法及装置
CN111209697B (zh) 一种基于拓扑优化车身顶棚结构的分析方法及系统
CN113221230B (zh) 一种悬索桥加劲梁下缘开口量的计算方法
EP3413030A1 (en) Breakage prediction method and device, program, and recording medium
CN111188272A (zh) 一种多胎架组装钢箱梁施工辅助装置及其施工方法
CN110377966A (zh) 卡车车门压溃强度仿真方法
CN107202701A (zh) 铁路货车车体加速疲劳试验的试验方法
CN114065346A (zh) 一种爆炸场景下钢结构建筑倒塌评估预测方法
CN107862165B (zh) 一种用于钢筋混凝土厂房安全评估的多层次数值模拟方法
CN116992547A (zh) 一种三维建筑建模方法及系统
CN114323602B (zh) 一种风机叶片静力测试方法及系统
CN109284553A (zh) 基于cae分析的集雨罩与前挡风玻璃摩擦异响风险评估方法
CN110728080A (zh) 焊接有限元模型构建方法及校核方法
CN113361038A (zh) 变流器轻量化方法、系统、服务器及计算机可读存储介质
CN116861702B (zh) 一种大型钢屋盖多支承体系水平力控制分析方法
CN114088430B (zh) 一种轨道车辆压溃测试方法、装置、设备及存储介质
Vazzano An innovative moment resisting steel connection: optimal design formulations, practical applications and experimental tests
CN212659218U (zh) 一种验证汽车门洞空间台架机构
CN113553668B (zh) 电气柜体正向设计优化方法
CN117889771B (zh) 曲线组合箱梁桥的梁格杆系模型系统
CN117272689B (zh) 一种架桥机架梁侧翻风险评估方法、系统及存储介质
CN117569586A (zh) 一种不规则多曲三角锥焊接球网架施工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant