CN111209665B - 基于工况分析法的热电联产机组热量燃用成本确定方法 - Google Patents

基于工况分析法的热电联产机组热量燃用成本确定方法 Download PDF

Info

Publication number
CN111209665B
CN111209665B CN202010007494.1A CN202010007494A CN111209665B CN 111209665 B CN111209665 B CN 111209665B CN 202010007494 A CN202010007494 A CN 202010007494A CN 111209665 B CN111209665 B CN 111209665B
Authority
CN
China
Prior art keywords
heat
cogeneration unit
eta
coal
working condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010007494.1A
Other languages
English (en)
Other versions
CN111209665A (zh
Inventor
刘永林
余小兵
马汀山
刘学亮
杨利
王东晔
王妍
居文平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Xian Xire Energy Saving Technology Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Xian Xire Energy Saving Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd, Xian Xire Energy Saving Technology Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202010007494.1A priority Critical patent/CN111209665B/zh
Publication of CN111209665A publication Critical patent/CN111209665A/zh
Application granted granted Critical
Publication of CN111209665B publication Critical patent/CN111209665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

本发明公开了一种基于工况分析法的热电联产机组热量燃用成本确定方法,包括以下步骤:以等量热量消耗的煤量扣除与纯凝状态相比发电的节煤量作为热电联产机组的耗煤量,得热电联产机组热量标煤耗bGJ,该方法能够较为准确的确定热电联产机组的热量燃用成本。

Description

基于工况分析法的热电联产机组热量燃用成本确定方法
技术领域
本发明涉及一种热电联产机组热量燃用成本确定方法,具体涉及一种基于工况分析法的热电联产机组热量燃用成本确定方法。
背景技术
在当前全球大力推进节能减排,建设可持续发展,节约环保型社会的背景下,热电联产作为一项重要技术措施。然而,对供热成本核算中存在一定的问题和矛盾,主要集中在热电联产机组热量燃用成本确定的分析上,燃用成本的高低直接决定供热加热,是热电企业、供热部门和用户最为关心的问题之一,高低直接影响各方的经济利益。因此,研究制定统一的热电联产机组供热热量燃用成本的计算方法,对于促进热电联产健康发展具有重要的意义。
世界各国都将热电联产作为节约能源、改善环境的重要举措,积极地鼓励、支持不同型式、不同容量的热电联产,从技术、政策等多层面给予帮助。丹麦,建立合理的热电联产——电力定价规则,与燃料成本挂钩,浮动供热价格;日本、英国、美国、德国、欧美等国家地区,对于热电联产机组负荷调度方面优先,同时从政策层面给予补贴和减税等措施。
在国内,供热成本测算技术的研发应用还处于起步阶段,随着热电联产机组大规模使用,合理的给出供热成本已成为各方关注的问题,因此从技术层面对供热成本测算技术进行研究已成为当务之急。目前,国内外对热电联产成本所采用的几种分摊方法有:好处归热法、好处归电法、折衷分配法、焓降法等。
机组在实际运行中由于各种扰动的影响,其中,负荷、运行参数(包括主蒸汽温度、主蒸汽压力、再热温度、再热压损、排汽压力)、热力设备的性能参数以及煤质参数等因素都会偏离机组设计工况,造成变工况运行。由于这些因素变化时都会影响机组的主蒸汽流量,从而产生耦合作用,并影响其热经济指标,一般表现为热耗率、煤耗率升高,效率降低,从而影响机组的经济性,集中体现在过程参数变化引起的各抽汽点位置热电转换效率的变化。热力系统运行工况发生变化时,其主蒸汽流量、各级抽汽压力和抽汽系数都会相应地发生变化,从而引起各级加热器给水参数也相应变化。对于供热机组,同样也存在工况(边界条件,如外界调度负荷,环境温度、循环水温度等因素)变化的问题,由此将导致抽汽量大小的变化,汽轮机运行状态变化,因此现有的成本确定方法均不能较为准确的进行热电联产机组热量燃用成本。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种基于工况分析法的热电联产机组热量燃用成本确定方法,该方法能够较为准确的确定热电联产机组的热量燃用成本。
为达到上述目的,本发明所述的基于工况分析法的热电联产机组热量燃用成本确定方法包括以下步骤:
以等量热量消耗的煤量扣除与纯凝状态相比发电的节煤量作为热电联产机组的耗煤量,得热电联产机组热量标煤耗bGJ为:
Figure BDA0002355824030000031
其中,ηb为锅炉效率,ηp为管道效率,b为热电联产机组纯凝发电煤耗,α为供热比,β为热电比,ηi为机组纯凝状态循环效率,ηr为抽汽点热电转换效率;
将式(1)简化为:
bGJ=f(ηb,b,α,ηir)    (2)
再根据计算得到的热电联产机组热量标煤耗bGJ计算热电联产机组热量燃用成本。
ηb通过实际测定得到,ηr、b及ηi通过变工况计算分析得到。
本发明具有以下有益效果:
本发明所述的基于工况分析法的热电联产机组热量燃用成本确定方法在具体操作时,对于热电联产机组,不仅有热的产出,还有热的消耗,因此本发明以等量热量消耗的煤量扣除与纯凝状态相比发电的节煤量作为热电联产机组的耗煤量,使得计算结果更加的符合实际,继而较为准确的确定热电联产机组的热量燃用成本。
具体实施方式
下面结合实施例对本发明做进一步详细描述:
本发明所述的基于工况分析法的热电联产机组热量燃用成本确定方法包括以下步骤:
热电联产机组供热煤耗,若按照热量法,就是指等量的热量需要消耗多少煤量,然而对于热电联产机组讲,不仅有热的产出,还有热的消耗,因此以等量热量消耗的煤量扣除与纯凝状态相比发电的节煤量作为热电联产机组的耗煤量,得热电联产机组热量标煤耗bGJ为:
Figure BDA0002355824030000041
其中,ηb为锅炉效率,ηp为管道效率,b为热电联产机组纯凝发电煤耗,α为供热比,β为热电比,ηi为机组纯凝状态循环效率,ηr为抽汽点热电转换效率;
由此可见,热电联产机组热量煤耗是一个关于热电联产机组锅炉效率、纯凝状态下发电煤耗、供热比(热电比与供热比是关联的)、以及抽汽点热电转换效率相关的量,因此可以将式(1)简化为:
bGJ=f(ηb,b,α,ηir)   (2)
再根据计算得到的热电联产机组热量标煤耗bGJ计算热电联产机组热量燃用成本。
ηb与热电联产机组锅炉形式以及燃烧煤种、实际运行状态有关的数据,需要进行实际测定给出;
热电联产机组纯凝煤耗b及ηi是具体机组参数、负荷直接相关的数据,可以通过变工况计算分析得到;
ηr为热电联产机组供出热量位置相关的参数,位置不同时,热电转换效率也不一样,与此同时与机组负荷也有一定关联,需进行变工分析计算;
供热比α是与供热量直接相关的参数,对热电联产机组煤耗也有直接影响。

Claims (2)

1.一种基于工况分析法的热电联产机组热量燃用成本确定方法,其特征在于,包括以下步骤:
以等量热量消耗的煤量扣除与纯凝状态相比发电的节煤量作为热电联产机组的耗煤量,得热电联产机组热量标煤耗bGJ为:
Figure FDA0002355824020000011
其中,ηb为锅炉效率,ηp为管道效率,b为热电联产机组纯凝发电煤耗,α为供热比,β为热电比,ηi为机组纯凝状态循环效率,ηr为抽汽点热电转换效率;
将式(1)简化为:
bGJ=f(ηb,b,α,ηir)    (2)
再根据计算得到的热电联产机组热量标煤耗bGJ计算热电联产机组热量燃用成本。
2.根据权利要求1所述的基于工况分析法的热电联产机组热量燃用成本确定方法,其特征在于,ηb通过实际测定得到,ηr、b及ηi通过变工况计算分析得到。
CN202010007494.1A 2020-01-04 2020-01-04 基于工况分析法的热电联产机组热量燃用成本确定方法 Active CN111209665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010007494.1A CN111209665B (zh) 2020-01-04 2020-01-04 基于工况分析法的热电联产机组热量燃用成本确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010007494.1A CN111209665B (zh) 2020-01-04 2020-01-04 基于工况分析法的热电联产机组热量燃用成本确定方法

Publications (2)

Publication Number Publication Date
CN111209665A CN111209665A (zh) 2020-05-29
CN111209665B true CN111209665B (zh) 2023-05-02

Family

ID=70786656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010007494.1A Active CN111209665B (zh) 2020-01-04 2020-01-04 基于工况分析法的热电联产机组热量燃用成本确定方法

Country Status (1)

Country Link
CN (1) CN111209665B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112069443B (zh) * 2020-08-04 2023-10-20 国网山东省电力公司电力科学研究院 热电联产机组供热替代的燃煤压减量计算方法及系统
CN112069442B (zh) * 2020-08-04 2023-09-12 国网山东省电力公司电力科学研究院 基于热电联产机组供热替代的燃煤压减量计算方法及系统
CN112819288B (zh) * 2021-01-08 2023-04-07 西安热工研究院有限公司 一种计算热电联产机组供热煤耗和供电煤耗的方法
CN113032715A (zh) * 2021-03-22 2021-06-25 西安热工研究院有限公司 一种燃煤热电联产机组抽汽供热耗煤的在线测定方法
CN113112315B (zh) * 2021-06-15 2021-10-15 国能信控互联技术有限公司 一种电力调频交易辅助决策方法及系统
CN113434804B (zh) * 2021-06-23 2023-01-13 天津华能杨柳青热电有限责任公司 一种基于发电煤耗不变的供热煤耗计算方法
CN113703406B (zh) * 2021-08-27 2022-10-11 西安热工研究院有限公司 采用低温多效技术的燃煤水电联产机组运行优化方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666508A (zh) * 2009-09-24 2010-03-10 华北电力大学(保定) 一种热电联产机组供热和发电燃料成本的分摊计算方法
WO2013060083A1 (zh) * 2011-10-23 2013-05-02 西安交通大学 抽凝式热电联产与纯凝汽火电联合调度系统与方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666508A (zh) * 2009-09-24 2010-03-10 华北电力大学(保定) 一种热电联产机组供热和发电燃料成本的分摊计算方法
WO2013060083A1 (zh) * 2011-10-23 2013-05-02 西安交通大学 抽凝式热电联产与纯凝汽火电联合调度系统与方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘斌 ; .制盐企业热电站生产指标浅析.中国井矿盐.2011,(04),全文. *

Also Published As

Publication number Publication date
CN111209665A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN111209665B (zh) 基于工况分析法的热电联产机组热量燃用成本确定方法
Wang et al. Analysis of inlet air throttling operation method for gas turbine in performance of CCHP system under different operation strategies
CN108510122B (zh) 基于最优双约束条件的综合能源系统优化方法
CN206055742U (zh) 一种基于多热源联合供热的平峰供热系统
CN106786509B (zh) 大规模风电并网下基于多场景模拟的热-电联合调度方法
CN105160159A (zh) 一种多能源技术量化筛选方法
CN111612308B (zh) 一种评价燃煤供热机组煤耗指标的通用计算方法
CN112036747A (zh) 一种园区综合能源系统多需求响应实施模型的评价方法
CN113468732A (zh) 一种抽汽供热机组供热用生产成本的确定系统及方法
CN110309523A (zh) 一种燃气-蒸汽联合循环发电机组能耗指标对标管理体系
Shao et al. Research on the status of water conservation in the thermal power industry in China
CN111898064A (zh) 一种适用于燃气蒸汽联合循环机组的供热比的计算方法
Wang et al. Configuration method for combined heat and power plants with flexible electricity regulation
CN108665180A (zh) 一种燃气蒸汽热电联产机组能耗指标测算方法
CN113091112B (zh) 低背压切缸与压缩式热泵结合的热电解耦系统
CN115271171A (zh) 一种考虑碳-绿证联合交易的跨境综合能源系统协同运行优化方法
CN207470302U (zh) 一种冷热电三联供分布式能源系统
Li et al. Research on the Operation of Electric Boiler Assisting Gas-steam Combined Cycle Unit
CN209053697U (zh) 燃气分布式能源站可稳定燃机负荷的供热供冷平衡结构
Gu et al. Simulation and Evaluation of Distributed Energy System Based on Modelica
Zhao et al. CCHP Capacity Optimization with User Demand Characteristics
Ding et al. Mid-long Term Interprovincial Renewable Energy Consumption Potential and Strategy of Clean Emission in Shanghai’s Power Sector
Qingsheng et al. Study on the mode of power plant circulating water waste heat regenerative thermal system
Feng et al. Research on Homogenization Modeling and Planning Method of Thermoelectric Combined System
Tian et al. Development status and suggestions of natural gas power generation in China under the background of carbon neutralization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant