CN111207678A - 一种非旋转式薄膜厚度及折射率测量方法 - Google Patents

一种非旋转式薄膜厚度及折射率测量方法 Download PDF

Info

Publication number
CN111207678A
CN111207678A CN202010034057.9A CN202010034057A CN111207678A CN 111207678 A CN111207678 A CN 111207678A CN 202010034057 A CN202010034057 A CN 202010034057A CN 111207678 A CN111207678 A CN 111207678A
Authority
CN
China
Prior art keywords
light
component
refractive index
delta
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010034057.9A
Other languages
English (en)
Other versions
CN111207678B (zh
Inventor
雷兵
高超
刘建仓
雷雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202010034057.9A priority Critical patent/CN111207678B/zh
Publication of CN111207678A publication Critical patent/CN111207678A/zh
Application granted granted Critical
Publication of CN111207678B publication Critical patent/CN111207678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N2021/4126Index of thin films

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明属于薄膜检测技术领域,公开了一种非旋转式薄膜厚度及折射率测量方法。本发明利用零级涡旋半波片将被样品反射的光波转化为矢量偏振光场,此矢量偏振光场被检偏器检偏后形成亮暗呈楔形分布的光强图像,采集光强图像并进行图像处理得到亮区方位角以及亮暗对比度,进一步计算出椭偏参数,利用椭偏参数即可反解出薄膜样品的厚度与折射率。该方法操作简单便捷、测量光路中无光学部件的旋转运动,光路稳定性好、测量精度高、速度快,且测量结果对光源的功率和波长变化不敏感。

Description

一种非旋转式薄膜厚度及折射率测量方法
技术领域
本发明属于薄膜检测技术领域,进一步是涉及一种利用矢量偏振光场调制及数字图像处理技术实现介质薄膜厚度和折射率测量的椭偏测量术。
背景技术
随着薄膜制备技术的发展,光学薄膜的应用领域日益广泛,涉及计算机(集成电路)、能源(光伏太阳能电池)、生物医疗(生物薄膜)等多个方面。薄膜的很多物理特性(如反射率和透射率、消光系数、能带结构、薄膜介质的电特性等)都与薄膜的厚度和光学常数有关,因此快速精确地测量出薄膜厚度和光学常数在薄膜的制备、分析与应用中是十分重要的。相比于扫描电子显微镜、透射电子显微镜和原子力显微镜等薄膜检测技术,椭偏测量术表现出来的速度快、精度高、可以同时测得薄膜厚度和折射率等多种参量、样品非破坏性等优点使其备受科研工作者的关注。
按照是否消光,基于椭圆偏振测量术的仪器(椭偏仪)可分为两大类:消光式椭偏仪和光度式椭偏仪。经典的消光式椭偏仪由光源、起偏器、补偿器(或波片)、检偏器和探测器五部分组成,其在操作过程中需要交替旋转起偏器与检偏器来寻找消光位置,通过消光位置处起偏器与检偏器的方位角来确定椭偏参数。早期的消光式椭偏仪需要手动旋转、人工读数,整个过程耗时较长,而且消光位置的搜寻对于光源功率的稳定要求较高,虽然现在已经可以实现消光式椭偏仪测量及读数过程的自动化,缩短了测量时间,但这同时也增加了系统的复杂性且仍然无法克服对光源功率稳定性要求高的缺点。光度式椭偏仪如旋转起偏器型椭偏仪(RPE)、旋转检偏器型椭偏仪(RAE)、旋转补偿器型椭偏仪(RCE)等在测量时需要按照一定频率旋转相应的光学元件,并对探测器接收到的光强信号进行傅里叶分析,解算出傅里叶系数,进一步求解出椭偏参数。光度式椭偏仪不再像消光式椭偏仪那样需要确定起偏器或检偏器的方位角,故耗时较少,但其需要旋转驱动装置、模数转换与数字信号处理系统,测量装置较为复杂,此外因其要对光强信号进行连续检测,所以对光电探测器的灵敏度、线性度、响应时间、偏振无关性(响应程度不受光波偏振状态的影响)等方面要求较高。
综上分析,有必要研究一种能够克服现有椭偏测量方法复杂、对光源功率稳定性和探测器性能要求高、解算过程繁杂等问题,实现薄膜参数高精度检测的椭偏测量方法。
发明内容
本发明的目的在于针对以上不足,提供一种非旋转式薄膜厚度及折射率测量方法。本发明操作简单便捷、测量精度高、测量结果对光源功率和波长变化不敏感。
本发明所提供的一种非旋转式薄膜厚度及折射率测量方法,技术方案是:激光光源发出的光经起偏器后变为线偏振光,线偏振光经待测薄膜反射后一般变为椭圆偏振光,椭圆偏振光经扩束系统扩束后被零级涡旋半波片转化为矢量偏振光场,此矢量偏振光场再经检偏器检偏后形成了亮暗呈楔形分布的光强图像,光强图像被相机采集并被送入计算机进行图像处理。
本发明的详细技术方案为:
一种非旋转式薄膜厚度及折射率测量方法,包括如下步骤:
第一步,将起偏器的方位角设置为45°,计算入射光P、S分量的振幅比与相位差;
入射光P分量与S分量的振幅分别为AiP、AiS,P分量与S分量振幅比为τi,τi的反正切值为Ψi,入射光P分量与S分量相位分别为δiP、δiS,P分量与S分量的相位差为δi,将起偏角设置为45°,计算出入射光的振幅比与相位差分别为:
Figure BDA0002365387710000021
δi=δiPiS=0 (式2)
第二步,采集光强图像I,计算反射光的振幅比与相位差;
采集光强图像I并对其进行图像处理,得到图像亮区中心线的方位角
Figure BDA0002365387710000022
和图像亮暗区域对比度C,对比度C的定义为:
Figure BDA0002365387710000023
反射光P分量与S分量的振幅分别为ArP、ArS,其P分量与S分量振幅比为τr,τr的反正切值为Ψr,反射光P分量与S分量相位分别为δrP、δrS,其P分量与S分量的相位差为δr,反射光的振幅比与相位差由图像处理所得的参量
Figure BDA0002365387710000026
表示为:
Figure BDA0002365387710000024
Figure BDA0002365387710000025
第三步,计算椭偏角参数(Ψ,Δ);
椭偏角参数(Ψ,Δ)的计算方式由(式6)、(式7)给出:
Figure BDA0002365387710000031
Δ=δri=δr (式7)
第四步,反解薄膜厚度与折射率;
利用第三步所得的椭偏角参数(Ψ,Δ)反解得到薄膜的厚度d与薄膜折射率n。
与现有技术相比,本发明具有以下效益:
(1)本发明单次测量即可获得椭偏参数,检测速度快,适用于对实时性要求较高的检测场合。
(2)本发明操作简单便捷,测量过程中没有光学元件的旋转,避免了因机械旋转带来的误差,提高了检测系统的稳定性。
(3)本发明的测量结果对光源功率和波长变化不敏感,避免了光源功率波动和波长漂移带来的测量误差。
附图说明
图1为本发明提供的一种非旋转式薄膜厚度及折射率测量方法的光路示意图;
图2为本发明提供的一种非旋转式薄膜厚度及折射率测量方法的实施流程图;
图3为待测薄膜的光学模型图;
图4为仿真实例1中所采集的亮暗楔形光强图像;
图5为对图4中图像处理得到光强图像的亮区中心线方位角;
图6为仿真实例2中所采集的亮暗楔形光强图像;
图7为对图6中图像处理得到光强图像的亮区中心线方位角。
图中:100—起偏臂,101—激光光源,102—起偏器,200—待测样品,300—检偏臂,301—扩束系统,302—零级涡旋半波片,303—检偏器,304—相机,305—计算机。
具体实施方式
以下将结合说明书附图对本发明做进一步说明:
图1为本发明所提供的一种非旋转式薄膜厚度及折射率测量方法的光路示意图,测量光路由起偏臂100、待测样品200和检偏臂300组成。起偏臂100包括激光光源101、起偏器102。检偏臂300包括扩束系统301、零级涡旋半波片302、检偏器303、相机304和计算机305。待测样品200设置在起偏臂100与检偏臂300之间。激光光源101发出的光经起偏器102后变线偏振光,线偏振光经待测薄膜200反射后一般变为椭圆偏振光,椭圆偏振光经扩束系统301扩束后被零度快轴设置在0°方向的零级涡旋半波片302转化为矢量偏振光场,此矢量偏振光场再经水平方向透光的检偏器303检偏后形成了亮暗呈楔形分布的光强图像,光强图像被相机304采集并被送入计算机305进行图像处理。
图2为本发明提供的一种非旋转式薄膜厚度及折射率测量方法的具体实施流程图。
第一步,将起偏器的方位角设置为45°,计算入射光P、S分量的振幅比与相位差;
入射光P分量与S分量的振幅分别为AiP、AiS,P分量与S分量振幅比为τi,τi的反正切值为Ψi,入射光P分量与S分量相位分别为δiP、δiS,P分量与S分量的相位差为δi,将起偏角设置为45°,计算出入射光的振幅比与相位差分别为:
Figure BDA0002365387710000041
δi=δiPiS=0 (式2)
第二步,采集光强图像I,计算反射光的振幅比与相位差;
采集光强图像I并对其进行图像处理,得到图像亮区中心线的方位角
Figure BDA0002365387710000042
和图像亮暗区域对比度C,对比度C的定义为:
Figure BDA0002365387710000043
反射光P分量与S分量的振幅分别为ArP、ArS,其P分量与S分量振幅比为τr,τr的反正切值为Ψr,反射光P分量与S分量相位分别为δrP、δrS,其P分量与S分量的相位差为δr,反射光的振幅比与相位差由图像处理所得的参量
Figure BDA0002365387710000044
表示为:
Figure BDA0002365387710000045
Figure BDA0002365387710000051
第三步,计算椭偏角参数(Ψ,Δ);
椭偏角参数(Ψ,Δ)的计算方式由(式6)、(式7)给出:
Figure BDA0002365387710000052
Δ=δri=δr (式7)
第四步,反解薄膜厚度与折射率;
利用第三步所得的椭偏角参数(Ψ,Δ)反解得到薄膜的厚度d与薄膜折射率n;
采用本发明的检测方法进行了仿真验证实验,结果表明本发明提供的方法可有效测量介质薄膜厚度及折射率。
对仿真验证实例1具体实施中所采用的测量条件及样品参数说明如下:
(1)所述激光光源采用波长为632.8nm的He-Ne激光器;
(2)入射角选取为70°;
(3)所述待测样品的结构为Air-SiO2-Si,图3为其光学模型图;
(4)SiO2薄膜的厚度为50nm,折射率为1.46,Si基底的复折射率为4.051-0.027i。
经解析,在此测量条件下光波被薄膜反射后,两个椭偏角的理论值分别为:
Figure BDA0002365387710000053
波长为632.8nm的He-Ne激光器发射的光波经起偏角为45°的起偏器后变为线偏振光,此线偏振光P分量与S分量的振幅比τi与相位差δi分别为:
Figure BDA0002365387710000054
线偏振光经待测样品反射后变为椭圆偏振光波,此椭圆偏振光波经过检偏臂后所形成的亮暗呈楔形分布的光强图由相机采集。图4为仿真验证实例1中所采集的光强图像,此光强图像经分析处理得到图像的亮区方位角
Figure BDA0002365387710000055
与图像亮暗区域对比度C为:
Figure BDA0002365387710000061
图5为对图4中图像处理得到光强图像的亮区中心线方位角。
由图像处理所得的光强图像的亮区方位角
Figure BDA0002365387710000062
与图像亮暗区域对比度C可计算出反射光P分量与S分量的振幅比与相位差分别为:
Figure BDA0002365387710000063
进一步可以计算出椭偏参数(Ψ,Δ)
Figure BDA0002365387710000064
利用计算得到的椭偏参数(Ψ,Δ)反解得到薄膜的厚度与折射率分别为:
Figure BDA0002365387710000065
对比椭偏参数(Ψ,Δ)测量值与理论值可知:两个椭偏角参数与理论值的误差分别在0.05°和0.03°以内;对比薄膜厚度、折射率的测量值与理论值可知:薄膜厚度的测量误差在0.3nm以内,薄膜折射率误差在0.003以内,验证了本发明所提供的非旋转式薄膜厚度及折射率测量方法的可行性与精确性。
仿真验证实例2具体实施中所采用的薄膜厚度为210nm,其它测量条件与样品参数与仿真验证实例1保持一致。
经解析,在此测量条件下光波被薄膜反射后,两个椭偏角的理论值分别为:
Figure BDA0002365387710000066
波长为632.8nm的He-Ne激光器发射的光波经起偏角为45°的起偏器后变为线偏振光,此线偏振光P分量与S分量的振幅比τi与相位差δi分别为:
Figure BDA0002365387710000067
线偏振光经待测样品反射后变为椭圆偏振光波,此椭圆偏振光波经过检偏臂后所形成的亮呈暗楔形分布的光强图由相机采集。图6为仿真实例2中所采集的光强图像,此光强图像经图像处理得到光强图像的亮区方位角
Figure BDA0002365387710000071
与图像亮暗区域对比度C为:
Figure BDA0002365387710000072
图7为对图6中图像处理得到光强图像的亮区中心线方位角。
由图像处理所得的光强图像的亮区方位角
Figure BDA0002365387710000073
与图像亮暗区域对比度C可计算出反射光P分量与S分量的振幅比与相位差分别为:
Figure BDA0002365387710000074
进一步可计算出椭偏参数(Ψ,Δ)
Figure BDA0002365387710000075
利用计算得到的椭偏参数(Ψ,Δ)反解得到薄膜的厚度与折射率分别为:
Figure BDA0002365387710000076
对比椭偏参数测量值与理论值可知:两个椭偏角参数与理论值的误差分别在0.03°和0.02°以内;对比薄膜厚度、折射率的测量值与理论值可知:薄膜厚度的测量误差在0.2nm以内,薄膜折射率误差在0.001以内,再次验证了本发明所提供的非旋转式薄膜厚度及折射率测量方法的可行性与精确性。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种非旋转式薄膜厚度及折射率测量方法,其特征在于,包括以下步骤:
第一步,将起偏器的方位角设置为45°,计算入射光P、S分量的振幅比与相位差;
入射光P分量与S分量的振幅分别为AiP、AiS,P分量与S分量振幅比为τi,τi的反正切值为Ψi,入射光P分量与S分量相位分别为δiP、δiS,P分量与S分量的相位差为δi,将起偏角设置为45°,计算出入射光的振幅比与相位差分别为:
Figure FDA0002365387700000011
δi=δiPiS=0 (式2)
第二步,采集光强图像I,计算反射光的振幅比与相位差;
采集光强图像I并对其进行图像处理,得到图像亮区中心线的方位角
Figure FDA0002365387700000017
和图像亮暗区域对比度C,对比度C的定义为:
Figure FDA0002365387700000012
反射光P分量与S分量的振幅分别为ArP、ArS,其P分量与S分量振幅比为τr,τr的反正切值为Ψr,反射光P分量与S分量相位分别为δrP、δrS,其P分量与S分量的相位差为δr,反射光的振幅比与相位差由图像处理所得的参量
Figure FDA0002365387700000013
表示为:
Figure FDA0002365387700000014
Figure FDA0002365387700000015
第三步,计算椭偏角参数(Ψ,Δ);
椭偏角参数(Ψ,Δ)的计算方式由(式6)、(式7)给出:
Figure FDA0002365387700000016
Δ=δri=δr (式7)
第四步,反解薄膜厚度与折射率;
利用第三步所得的椭偏角参数(Ψ,Δ)反解得到薄膜的厚度d与薄膜折射率n。
CN202010034057.9A 2020-01-13 2020-01-13 一种非旋转式薄膜厚度及折射率测量方法 Active CN111207678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010034057.9A CN111207678B (zh) 2020-01-13 2020-01-13 一种非旋转式薄膜厚度及折射率测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010034057.9A CN111207678B (zh) 2020-01-13 2020-01-13 一种非旋转式薄膜厚度及折射率测量方法

Publications (2)

Publication Number Publication Date
CN111207678A true CN111207678A (zh) 2020-05-29
CN111207678B CN111207678B (zh) 2021-06-15

Family

ID=70785275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010034057.9A Active CN111207678B (zh) 2020-01-13 2020-01-13 一种非旋转式薄膜厚度及折射率测量方法

Country Status (1)

Country Link
CN (1) CN111207678B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340818A (zh) * 2021-06-02 2021-09-03 天津大学 一种自洽验证差分光谱仪及测量方法
CN114295555A (zh) * 2021-12-21 2022-04-08 西安应用光学研究所 一种提高椭偏仪测量精度的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029517A1 (en) * 2013-07-25 2015-01-29 Samsung Electronics Co., Ltd. Method for measuring thickness of object
CN104406914A (zh) * 2014-11-26 2015-03-11 中国科学院光电技术研究所 一种使用椭偏仪测量光学薄膜偏振保真度的方法
CN105136679A (zh) * 2015-09-02 2015-12-09 北京航玻新材料技术有限公司 一种基于椭偏仪的光学材料表面质量评估方法及其应用
CN106017338A (zh) * 2016-05-26 2016-10-12 国家纳米科学中心 一种确定薄膜连续性的临界厚度的方法
US20170315044A1 (en) * 2016-05-02 2017-11-02 Kla-Tencor Corporation Porosity Measurement Of Semiconductor Structures
CN108801464A (zh) * 2018-04-13 2018-11-13 中国人民解放军国防科技大学 一种计算光波偏振方向与偏振度的图像处理方法
CN109752321A (zh) * 2019-01-29 2019-05-14 华侨大学 一种抛光碳化硅衬底变质层厚度和光学常数椭偏检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029517A1 (en) * 2013-07-25 2015-01-29 Samsung Electronics Co., Ltd. Method for measuring thickness of object
CN104406914A (zh) * 2014-11-26 2015-03-11 中国科学院光电技术研究所 一种使用椭偏仪测量光学薄膜偏振保真度的方法
CN105136679A (zh) * 2015-09-02 2015-12-09 北京航玻新材料技术有限公司 一种基于椭偏仪的光学材料表面质量评估方法及其应用
US20170315044A1 (en) * 2016-05-02 2017-11-02 Kla-Tencor Corporation Porosity Measurement Of Semiconductor Structures
CN106017338A (zh) * 2016-05-26 2016-10-12 国家纳米科学中心 一种确定薄膜连续性的临界厚度的方法
CN108801464A (zh) * 2018-04-13 2018-11-13 中国人民解放军国防科技大学 一种计算光波偏振方向与偏振度的图像处理方法
CN109752321A (zh) * 2019-01-29 2019-05-14 华侨大学 一种抛光碳化硅衬底变质层厚度和光学常数椭偏检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAO GAO等: ""Novel ellipsometry based on the manipulation of vectorial optical field and digital image processing", 《PROCEEDINGS OF SPIE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340818A (zh) * 2021-06-02 2021-09-03 天津大学 一种自洽验证差分光谱仪及测量方法
CN114295555A (zh) * 2021-12-21 2022-04-08 西安应用光学研究所 一种提高椭偏仪测量精度的方法

Also Published As

Publication number Publication date
CN111207678B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
US11187649B2 (en) Method for conducting optical measurement usingfull Mueller matrix ellipsometer
CN109115690B (zh) 实时偏振敏感的太赫兹时域椭偏仪及光学常数测量方法
CN110411952B (zh) 多偏振通道面阵列探测的椭圆偏振光谱获取系统和方法
CN113777049B (zh) 一种角分辨快照椭偏仪及其测量系统与方法
CN111207678B (zh) 一种非旋转式薄膜厚度及折射率测量方法
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
CN101231238A (zh) 一种用于椭偏测量中的光强调节方法和装置
CN111207677B (zh) 一种介质薄膜厚度及折射率的测量方法
WO2016173399A1 (zh) 宽波段消色差复合波片的定标方法和装置及相应测量系统
CN115060658B (zh) 一种双涡旋波片穆勒矩阵椭偏仪及其测量方法
Taya et al. Thin film characterization using rotating polarizer analyzer ellipsometer with a speed ratio 1: 3
JP2008122405A (ja) 反応解析方法
CN113340818B (zh) 一种自洽验证差分光谱仪及测量方法
CN201004124Y (zh) 一种用于光度测量中的调节装置
CN114264632B (zh) 一种角分辨式散射仪中物镜偏振效应的原位校准方法
US20040233436A1 (en) Self-calibrating beam profile ellipsometer
Naciri et al. Fixed polarizer, rotating-polarizer and fixed analyzer spectroscopic ellipsometer: accurate calibration method, effect of errors and testing
CN114910422A (zh) 一种可变入射角的光谱椭偏仪
CN112903598B (zh) 一种椭偏测量系统中偏振元件方位角的差分光谱定标方法
CN113739919A (zh) 反射式近场光学偏振光谱仪
CN217716312U (zh) 一种基于激光椭偏系统的薄膜厚度测量装置
Gruska et al. UV‐VIS‐IR Ellipsometry (ELL)
Li et al. Research on spectroscopic ellipsometry in China with future challenges
Mansuripur Ellipsometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant