CN111196164B - 一种分布式电动汽车制动系统控制方法 - Google Patents

一种分布式电动汽车制动系统控制方法 Download PDF

Info

Publication number
CN111196164B
CN111196164B CN202010072941.1A CN202010072941A CN111196164B CN 111196164 B CN111196164 B CN 111196164B CN 202010072941 A CN202010072941 A CN 202010072941A CN 111196164 B CN111196164 B CN 111196164B
Authority
CN
China
Prior art keywords
vehicle
braking system
regenerative braking
road surface
participation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010072941.1A
Other languages
English (en)
Other versions
CN111196164A (zh
Inventor
郝亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University of Technology
Original Assignee
Liaoning University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University of Technology filed Critical Liaoning University of Technology
Priority to CN202010072941.1A priority Critical patent/CN111196164B/zh
Publication of CN111196164A publication Critical patent/CN111196164A/zh
Application granted granted Critical
Publication of CN111196164B publication Critical patent/CN111196164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种分布式电动汽车制动系统控制方法,包括:步骤一、获取车速v、制动踏板位移h、电池SOC、电池温度Tb及车辆制动强度z,并根据所述车速v、所述制动踏板位移h、所述电池SOC、所述电池温度Tb及所述车辆制动强度z得到车辆再生制动系统的预参与指数R;步骤二、获取路面附着系数μ、路面坡角α及环境温度Th,并且根据所述路面附着系数μ、所述路面坡角α及所述环境温度Th得到路面环境影响校正指数E;步骤三、根据所述车辆再生制动系统预参与指数R和所述路面环境影响校正指数E确定车辆制动系统的工作模式。

Description

一种分布式电动汽车制动系统控制方法
技术领域
本发明属于电动汽车制动控制技术领域,特别涉及一种分布式电动汽车制动系统控制方法。
背景技术
再生制动亦称反馈制动,是一种使用在电动车辆上的制动技术。在制动时把车辆的动能转化及储存起来;而不是变成无用的热。
再生制动在制动工况将电动机切换成发电机运转,利用车的惯性带动电动机转子旋转而产生反转力矩,将一部分的动能或势能转化为电能并加以储存或利用,因此这是一个能量回收的过程。
电动汽车上,再生制动系统与液压制动系统共同作用构成了电液复合制动系统。电液复合制动系统的制动力分配方法直接影响电动汽车回收制动能的性能和制动时的效率,是复合制动系统研究的基础。
发明内容
本发明设计开发了一种分布式电动汽车制动系统控制方法,本发明的目的是针对车辆的不同制动工况和路面环境状况确定分布式电动汽车制动系统的工作模式,能够在保证制动效果的前提下,充分利用回收的能量进行制动,提高能量利用效率。
本发明提供的技术方案为:
一种分布式电动汽车制动系统控制方法,包括:
步骤一、获取车速v、制动踏板位移h、电池SOC、电池温度Tb及车辆制动强度z,并根据所述车速v、所述制动踏板位移h、所述电池SOC、所述电池温度Tb及所述车辆制动强度z得到车辆再生制动系统的预参与指数R;
步骤二、获取路面附着系数μ、路面坡角α及环境温度Th,并且根据所述路面附着系数μ、所述路面坡角α及所述环境温度Th得到路面环境影响校正指数E;
步骤三、根据所述车辆再生制动系统预参与指数R和所述路面环境影响校正指数E确定车辆制动系统的工作模式。
优选的是,在所述步骤一中,所述车辆再生制动系统的预参与指数R为:
Figure BDA0002377748980000021
式中,SOC为电池SOC值;h为制动踏板位移,hmax为制动踏板最大位移;z为车辆制动强度;v为车速,v0为车辆基准车速;Tb为电池温度,Tbmax为车辆再生制动系统启动的电池温度上限。
优选的是,当电池温度Tb>Tbmax或电池SOC>SOCmax时,再生制动系统停止工作;
其中,SOCmax为车辆再生制动系统启动的电池SOC上限值。
优选的是,Tbmax=60~65℃,SOCmax=80%~85%。
优选的是,所述车辆制动强度为:
Figure BDA0002377748980000022
式中,az为车辆制动时的减速度;g为重力加速度。
优选的是,在所述步骤二中,所述路面环境影响校正指数为:
Figure BDA0002377748980000023
式中,μ为路面附着系数;α为路面坡角;Th为环境温度,Th0为基准环境温度。
优选的是,在所述步骤三中,采用模糊控制方法对确定车辆制动系统的工作模式,包括:
分别将所述车辆再生制动系统的预参与指数R,以及所述路面环境影响校正指数E转换为模糊论域中的量化等级;
将所述车辆再生制动系统的预参与指数R与所述路面环境影响校正指数E输入模糊控制模型,所述车辆再生制动系统的预参与指数R分为5个等级,所述路面环境影响校正指数E分为5个等级;
模糊控制模型输出为车辆再生制动系统参与程度,将所述车辆再生制动系统参与程度为5个等级,每个等级分别对应车辆制动系统的5种工作模式。
优选的是,所述车辆再生制动系统的预参与指数R的论域为{0,1},所述路面环境影响校正指数E的论域为{0,1},所述车辆再生制动系统参与程度的论域为{0,1},阈值为0.51。
优选的是,所述车辆再生制动系统的预参与指数R分为5个等级,模糊集为{N,NM,M,ML,L};所述路面环境影响校正指数E分为5个等级,模糊集为{L,LM,M,MH,H};所述车辆再生制动系统参与程度分为5个等级,模糊集为{S,SM,M,MB,B};隶属函数均选用梯形隶属函数。
优选的是,所述模糊控制模型的控制规则为:
如果车辆再生制动系统的预参与指数R对应的模糊等级为“N”,路面环境影响校正指数E对应的模糊等级为“L”,则车辆再生制动系统参与程度对应的模糊等级为“S”,即车辆再生制动系统参与程度低;
如果车辆再生制动系统的预参与指数R对应的模糊等级为“L”,路面环境影响校正指数E对应的模糊等级为“H”,则车辆再生制动系统参与程度对应的模糊等级为“B”,即车辆再生制动系统参与程度高;
如果车辆再生制动系统参与程度为“S或SM”,则车辆再生制动系统参与程度低;如果车辆再生制动系统参与程度为“B或MB”,则车辆再生制动系统参与程度高;如果车辆再生制动系统参与程度为“M”,该车辆再生制动系统参与程度为车辆再生制动系统参与程度阈值,如果车辆再生制动系统的预参与指数R或路面环境影响校正指数E数稍有变化,则会形成车辆再生制动系统参与程度高和车辆再生制动系统参与程度低的切换。
本发明的有益效果是:
本发明提供的分布式电动汽车制动系统控制方法,针对车辆的不同制动工况和路面环境状况确定分布式电动汽车制动系统的工作模式,能够在保证制动效果的前提下,充分利用回收的能量进行制动,提高能量利用效率。
附图说明
图1为本发明所述的车辆再生制动系统的预参与指数R的隶属函数图。
图2为本发明所述的路面环境影响校正指数E的隶属函数图。
图3为本发明所述的车辆再生制动系统参与程度RC的隶属函数图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供了一种分布式电动汽车制动系统控制方法,包括如下步骤:
步骤一、通过车速传感器获取车速v、通过制动踏板位置传感器制动踏板位移h、通过车辆电池管理系统获取电池SOC和电池温度Tb,以及获取车辆制动强度,并根据所述车速v、所述制动踏板位移h、所述电池SOC、所述电池温度Tb及所述车辆制动强度z得到车辆再生制动系统的预参与指数R;车辆再生制动系统的预参与指数R代表根据车辆的运行工况得到的再生制动系统理论上参与制动过程的程度,R越大表示理论参与程度越高。
其中,所述车辆制动强度z为:
Figure BDA0002377748980000041
式中,az为车辆制动时的减速度,通过安装在车辆上的加速度传感器获取;g为重力加速度;
所述车辆再生制动系统的预参与指数R为:
Figure BDA0002377748980000042
式中,SOC为电池SOC值;h为制动踏板位移,单位为mm,hmax为制动踏板最大位移,单位为mm;z为车辆制动强度;v为车速,单位为km/h,v0为车辆基准车速,v0=45~55km/h;Tb为电池温度,单位为℃,Tbmax为车辆再生制动系统启动的电池温度上限。
为进一步保证车辆制动系统的正常运行,当电池温度Tb>Tbmax或电池SOC>SOCmax时,再生制动系统停止工作;其中,SOCmax为车辆再生制动系统启动的电池SOC上限值。根据经验,设定Tbmax=60~65℃,SOCmax=80%~85%。
步骤二、获取路面附着系数μ、路面坡角α及环境温度Th,并且根据所述路面附着系数μ、所述路面坡角α及所述环境温度Th得到路面环境影响校正指数E。其中,路面环境影响校正指数E代表路面状况对车辆制动效果产生的影响因素,路面环境影响校正指数E越大代表路面状况越有利于车辆制动。
在本实施例中,路面坡角α通过安装在车辆底盘上的倾角传感器获取;环境温度Th通过安装在车辆底盘上的温度传感器获取;路面附着系数μ基于大数据进行识别,具体过程为:
(1)建立路面图片数据库,按照图片处理后得到的信息和相应的路面附着系数作为比较信息存储在车辆ECU后台。
(2)车载摄像头实时拍摄路面信息,传给ECU进行图片预处理。
此处选用SAID双域图像消噪算法,去除图片的杂质、噪声等不相关特征。
(3)提取图片关键特征。此处采用能够描述纹理的LBP算子进行特征提取。该算子的公式如下:
Figure BDA0002377748980000051
Figure BDA0002377748980000052
P为圆周上的像素点个数,R为圆周半径,nc为邻域中心像素值,s(x)为圆周上的像素点的像素值,LBPP,R为LBP编码。
将预处理后的图片划分为4×4个互不重叠的区域,分别统计每个区域的LBP直方图。然后以先行后列的顺序将各个直方图级联,级联后的特征即为整幅图像的LBP直方图。
(4)将后台图像的LBP直方图与实时路面图像进行相似计算,具体公式如下:
Figure BDA0002377748980000053
式中,gi为后台图像的直方图,si为实时路面图像的直方图,N为直方图抽样个数,Q为图像相似度值。当对后台全部图像进行相似度比对后,取Q值最大的后台图像作为识别的最终路面,读取相应的路面附着系数,即为此时车辆运行的路面附着系数μ。
所述路面环境影响校正指数为:
Figure BDA0002377748980000061
式中,μ为路面附着系数;α为路面坡角;Th为环境温度,单位为℃;Th0为基准环境温度,根据经验设置Th0=20~25℃。
步骤三、根据所述车辆再生制动系统预参与指数R和所述路面环境影响校正指数E确定车辆制动系统的工作模式。
在本实施例中,采用模糊控制方法对确定车辆制动系统的工作模式,具体判断过程为:
分别将所述车辆再生制动系统的预参与指数R,以及所述路面环境影响校正指数E转换为模糊论域中的量化等级;将所述车辆再生制动系统的预参与指数R与所述路面环境影响校正指数E输入模糊控制模型,所述车辆再生制动系统的预参与指数R分为5个等级,所述路面环境影响校正指数E分为5个等级;模糊控制模型输出为车辆再生制动系统参与程度,将所述车辆再生制动系统参与程度为5个等级,每个等级分别对应车辆制动系统的5种工作模式。
车辆再生制动系统的预参与指数R及路面环境影响校正指数E为输入变量,以车辆再生制动系统参与程度(RC)为输出变量;如果车辆再生制动系统参与程度(RC)达到或高于设定阈值,则车辆再生制动系统参与车辆制动过程高。在本实施例中,所述设定阈值为0.51。
所述车辆再生制动系统的预参与指数R的论域为{0,0.2,0.35,0.5,0.65,0.8,1},所述路面环境影响校正指数E的论域为{0,0.2,0.35,0.5,0.65,0.8,1},所述车辆再生制动系统参与程度RC的论域为{0,0.2,0.35,0.5,0.65,0.8,1},输入变量R的模糊语言集为N(小),NM(较小),M(中等),ML(较大),L(大);输入变量E的模糊语言集为L(小),LM(较小),M(中等),MH(较大),H(大);输出变量RC的模糊语言集为:S(低),SM(较低),M(中等),MB(较高),B(高);R与E的量化因子分别为αR=1.0,αE=1.0。R的隶属函数采用梯形隶属函数(如图1所示),E的隶属函数采用梯形隶属函数(如图2所示);输出变量RC的隶属函数也采用梯形隶属函数(如图3所示)。
如表1所示,给出了车辆再生制动系统参与程度模糊逻辑控制模型的模糊控制规则,即用模糊语言描述控制器输入变量(R与E)与输出变量(RC)间的关系。
表1模糊控制规则
Figure BDA0002377748980000071
如果车辆再生制动系统的预参与指数R对应的模糊等级为“N”,路面环境影响校正指数E对应的模糊等级为“L”,则车辆再生制动系统参与程度对应的模糊等级为“S”,即车辆再生制动系统参与程度最低,此时,再生制动系统不参与制动过程;
如果车辆再生制动系统的预参与指数R对应的模糊等级为“L”,路面环境影响校正指数E对应的模糊等级为“H”,则车辆再生制动系统参与程度对应的模糊等级为“B”,即车辆再生制动系统参与程度最高,此时,只有再生制动系统参与制动过程,液压制动系统不参与制动过程;
如果车辆再生制动系统参与程度为“S或SM”,则车辆再生制动系统参与程度低:当车辆再生制动系统参与程度为“S”时,再生制动系统不参与制动过程,车辆再生制动系统参与程度为“SM”时,液压制动系统提供较大制动力,再生制动系统作为辅助制动。如果车辆再生制动系统参与程度为“B或MB”,则车辆再生制动系统参与程度高:当车辆再生制动系统参与程度为“B”时,液压系统不参与制动过程,由再生制动系统单独制动;当车辆再生制动系统参与程度为“MB”时,再生制动系统提供较大制动力,由液压制动系统作为辅助制动。如果车辆再生制动系统参与程度为“M”,该车辆再生制动系统参与程度为车辆再生制动系统参与程度阈值,如果车辆再生制动系统的预参与指数R或路面环境影响校正指数E数稍有变化,则会形成车辆再生制动系统参与程度高和车辆再生制动系统参与程度低的切换。
本发明提供的分布式电动汽车制动系统控制方法,针对车辆的不同制动工况和路面环境状况确定分布式电动汽车制动系统的工作模式,使车辆再生制动系统合理参与制动过程,能够在保证制动效果的前提下,充分利用回收的能量进行制动,提高能量利用效率。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (9)

1.一种分布式电动汽车制动系统控制方法,其特征在于,包括如下步骤:
步骤一、获取车速v、制动踏板位移h、电池SOC、电池温度Tb及车辆制动强度z,并根据所述车速v、所述制动踏板位移h、所述电池SOC、所述电池温度Tb及所述车辆制动强度z得到车辆再生制动系统的预参与指数R;
步骤二、获取路面附着系数μ、路面坡角α及环境温度Th,并且根据所述路面附着系数μ、所述路面坡角α及所述环境温度Th得到路面环境影响校正指数E;
步骤三、根据所述车辆再生制动系统的预参与指数R和所述路面环境影响校正指数E确定车辆制动系统的工作模式;
在所述步骤一中,所述车辆再生制动系统的预参与指数R为:
Figure FDA0002924244400000011
式中,SOC为电池SOC值;h为制动踏板位移,hmax为制动踏板最大位移;z为车辆制动强度;v为车速,v0为车辆基准车速;Tb为电池温度,Tbmax为车辆再生制动系统启动的电池温度上限。
2.根据权利要求1所述的分布式电动汽车制动系统控制方法,其特征在于,当电池温度Tb>Tbmax或电池SOC>SOCmax时,再生制动系统停止工作;
其中,SOCmax为车辆再生制动系统启动的电池SOC上限值。
3.根据权利要求2所述的分布式电动汽车制动系统控制方法,其特征在于,Tbmax=60℃,SOCmax=80%。
4.根据权利要求3所述的分布式电动汽车制动系统控制方法,其特征在于,所述车辆制动强度为:
Figure FDA0002924244400000012
式中,az为车辆制动时的减速度;g为重力加速度。
5.根据权利要求4所述的分布式电动汽车制动系统控制方法,其特征在于,在所述步骤二中,所述路面环境影响校正指数为:
Figure FDA0002924244400000021
式中,μ为路面附着系数;α为路面坡角;Th为环境温度,Th0为基准环境温度。
6.根据权利要求1或5所述的分布式电动汽车制动系统控制方法,其特征在于,在所述步骤三中,采用模糊控制方法确定车辆制动系统的工作模式,包括:
分别将所述车辆再生制动系统的预参与指数R,以及所述路面环境影响校正指数E转换为模糊论域中的量化等级;
将所述车辆再生制动系统的预参与指数R与所述路面环境影响校正指数E输入模糊控制模型,所述车辆再生制动系统的预参与指数R分为5个等级,所述路面环境影响校正指数E分为5个等级;
模糊控制模型输出为车辆再生制动系统参与程度,将所述车辆再生制动系统参与程度分为5个等级,每个等级分别对应车辆制动系统的5种工作模式。
7.根据权利要求6所述的分布式电动汽车制动系统控制方法,其特征在于,所述车辆再生制动系统的预参与指数R的论域为{0,1},所述路面环境影响校正指数E的论域为{0,1},所述车辆再生制动系统参与程度的论域为{0,1},阈值为0.51。
8.根据权利要求7所述的分布式电动汽车制动系统控制方法,其特征在于,所述车辆再生制动系统的预参与指数R分为5个等级,模糊集为{N,NM,M,ML,L};所述路面环境影响校正指数E分为5个等级,模糊集为{L,LM,M,MH,H};所述车辆再生制动系统参与程度分为5个等级,模糊集为{S,SM,M,MB,B};隶属函数均选用梯形隶属函数。
9.根据权利要求8所述的分布式电动汽车制动系统控制方法,其特征在于,所述模糊控制模型的控制规则为:
如果车辆再生制动系统的预参与指数R对应的模糊等级为“N”,路面环境影响校正指数E对应的模糊等级为“L”,则车辆再生制动系统参与程度对应的模糊等级为“S”,即车辆再生制动系统参与程度低;
如果车辆再生制动系统的预参与指数R对应的模糊等级为“L”,路面环境影响校正指数E对应的模糊等级为“H”,则车辆再生制动系统参与程度对应的模糊等级为“B”,即车辆再生制动系统参与程度高;
如果车辆再生制动系统参与程度为“S或SM”,则车辆再生制动系统参与程度低;如果车辆再生制动系统参与程度为“B或MB”,则车辆再生制动系统参与程度高;如果车辆再生制动系统参与程度为“M”,该车辆再生制动系统参与程度为车辆再生制动系统参与程度阈值,如果车辆再生制动系统的预参与指数R或路面环境影响校正指数E数稍有变化,则会形成车辆再生制动系统参与程度高和车辆再生制动系统参与程度低的切换。
CN202010072941.1A 2020-01-22 2020-01-22 一种分布式电动汽车制动系统控制方法 Active CN111196164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010072941.1A CN111196164B (zh) 2020-01-22 2020-01-22 一种分布式电动汽车制动系统控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010072941.1A CN111196164B (zh) 2020-01-22 2020-01-22 一种分布式电动汽车制动系统控制方法

Publications (2)

Publication Number Publication Date
CN111196164A CN111196164A (zh) 2020-05-26
CN111196164B true CN111196164B (zh) 2021-06-04

Family

ID=70742306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010072941.1A Active CN111196164B (zh) 2020-01-22 2020-01-22 一种分布式电动汽车制动系统控制方法

Country Status (1)

Country Link
CN (1) CN111196164B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111891127B (zh) * 2020-08-11 2021-10-19 辽宁工业大学 一种用于自动驾驶车辆的安全行驶方法
CN112904826A (zh) * 2021-01-18 2021-06-04 辽宁工业大学 一种无人驾驶电动赛车算法开发平台
CN113173075A (zh) * 2021-05-19 2021-07-27 上汽通用五菱汽车股份有限公司 新能源汽车、能量回馈控制方法、装置及介质
US20230331229A1 (en) * 2022-04-15 2023-10-19 Lenovo (Singapore) Pte. Ltd. Automated assistance with one-pedal driving

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933264A (zh) * 2015-07-07 2015-09-23 电子科技大学 一种电动汽车再生制动分配系数的确定方法
CN106184199A (zh) * 2016-07-07 2016-12-07 辽宁工业大学 分布式控制电动汽车稳定性的集成控制方法
CN107264293A (zh) * 2017-06-30 2017-10-20 重庆大学 一种基于模糊控制的并联式混合动力车的能量回收方法
CN109532817A (zh) * 2019-01-04 2019-03-29 大连民族大学 混合动力电动汽车基于soc的再生制动力矩分配方法
CN109606124A (zh) * 2018-12-13 2019-04-12 北京奕为汽车科技有限公司 电动汽车再生制动方法和装置
CN109941245A (zh) * 2019-04-08 2019-06-28 哈尔滨理工大学 一种电动汽车制动力分配方法
CN110103954A (zh) * 2019-03-01 2019-08-09 辽宁工业大学 基于电控的汽车防追尾预警装置及方法
CN110435623A (zh) * 2019-08-28 2019-11-12 吉林大学 一种自动调整的电动车分级自动紧急制动控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11010503B2 (en) * 2018-05-15 2021-05-18 Tata Consultancy Services Limited Method and system providing temporal-spatial prediction of load demand

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933264A (zh) * 2015-07-07 2015-09-23 电子科技大学 一种电动汽车再生制动分配系数的确定方法
CN106184199A (zh) * 2016-07-07 2016-12-07 辽宁工业大学 分布式控制电动汽车稳定性的集成控制方法
CN107264293A (zh) * 2017-06-30 2017-10-20 重庆大学 一种基于模糊控制的并联式混合动力车的能量回收方法
CN109606124A (zh) * 2018-12-13 2019-04-12 北京奕为汽车科技有限公司 电动汽车再生制动方法和装置
CN109532817A (zh) * 2019-01-04 2019-03-29 大连民族大学 混合动力电动汽车基于soc的再生制动力矩分配方法
CN110103954A (zh) * 2019-03-01 2019-08-09 辽宁工业大学 基于电控的汽车防追尾预警装置及方法
CN109941245A (zh) * 2019-04-08 2019-06-28 哈尔滨理工大学 一种电动汽车制动力分配方法
CN110435623A (zh) * 2019-08-28 2019-11-12 吉林大学 一种自动调整的电动车分级自动紧急制动控制系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《基于多因素输入模糊控制的再生制动策略》;杨小龙等;《湖南大学学报(自然科学版)》;20171031;第17-24页 *
《基于模糊控制的电动汽车低速再生ABS研究》;赵国柱等;《中国机械工程》;20120131;第117-121页 *

Also Published As

Publication number Publication date
CN111196164A (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
CN111196164B (zh) 一种分布式电动汽车制动系统控制方法
CN107662503B (zh) 基于加速与制动踏板状态的电动汽车制动意图辨识方法
CN109532566B (zh) 燃料电池动力系统及动力电池荷电状态控制方法
US7683569B2 (en) Parallel hybrid vehicle optimal storage system
CN105034817B (zh) 一种基于多约束条件下的电动汽车再生制动控制方法
CN104015625A (zh) 一种电动车能量回收方法及装置
CN108068814B (zh) 使用车辆行驶信息控制车辆行驶的方法及使用方法的车辆
CN108928238B (zh) 一种制动能量回收方法及电动汽车
CN103935251A (zh) 一种电动汽车制动时最大能量回收的控制方法
CN113635772B (zh) 能量回收的控制方法、控制装置、车辆及存储介质
CN111546903A (zh) 滑行扭矩的确定方法、装置、设备及存储介质
CN110667393B (zh) 一种纯电动物流车滑行能量的回收控制方法
CN106994904B (zh) 一种电动汽车基于线控制动的能量回收系统及方法
CN210502292U (zh) 基于智能控制的电动汽车再生制动系统
CN106585618A (zh) 一种串联式混合动力汽车能量管理控制方法及装置
CN112677771A (zh) 一种基于模糊控制的前驱电动汽车的再生制动控制方法
CN111196270B (zh) 一种电动汽车电液复合制动系统转弯控制方法
CN116443011A (zh) 一种基于v2v通信网络电动汽车制动能量回收分层控制系统及方法
CN116176557A (zh) 一种混合动力越野车的能量管理方法、装置及电子设备
CN107885953B (zh) 基于能量回收率的空行程阶段电机制动速度标定方法
Shang et al. Regenerative Braking Control Strategy Based on Multi-source Information Fusion under Environment Perception
DE102020120589A1 (de) Elektrifiziertes fahrzeug, das konfiguriert ist, um eine energierückgewinnungsschwelle auf grundlage einer reibungsprognose selektiv zu erhöhen, und entsprechendes verfahren
CN114633629B (zh) 电动汽车的能量回收方法及电子设备
CN107719131A (zh) 一种基于制动时间识别的电动汽车制动力分配方法
CN106553651A (zh) 一种电动汽车电制动力分配方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant