CN111193701A - 一种网络设备数据融合方法 - Google Patents
一种网络设备数据融合方法 Download PDFInfo
- Publication number
- CN111193701A CN111193701A CN201910836268.1A CN201910836268A CN111193701A CN 111193701 A CN111193701 A CN 111193701A CN 201910836268 A CN201910836268 A CN 201910836268A CN 111193701 A CN111193701 A CN 111193701A
- Authority
- CN
- China
- Prior art keywords
- data
- users
- user
- key
- control center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007500 overflow downdraw method Methods 0.000 title claims abstract description 8
- 230000004927 fusion Effects 0.000 claims abstract description 34
- 238000012795 verification Methods 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims description 17
- 238000002474 experimental method Methods 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
- H04L63/0428—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/06—Network architectures or network communication protocols for network security for supporting key management in a packet data network
- H04L63/065—Network architectures or network communication protocols for network security for supporting key management in a packet data network for group communications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1097—Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/04—Protocols for data compression, e.g. ROHC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/008—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving homomorphic encryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0891—Revocation or update of secret information, e.g. encryption key update or rekeying
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Storage Device Security (AREA)
Abstract
本发明公开了一种网络设备数据融合方法数据融合算法,所述数据融合算法包括数据融合模型和数据融合算法,所述据融合模型包括控制中心、云存储器和N个用户,其中,控制中心为是可信机构,负责系统初始化、生成系统参数、管理用户的添加和撤销操作;云存储是对各用户的密文消息进行融合,并将融合的消息、签名和时间戳一同发送给控制中心;N个用户是数据源,主要提供的数据是各用户的实际用电数据和需求数据。本发明通过控制中心动态广播密钥,用户对数据进行签名和加密后上传到云存储器,云存储器对数据进行融合后存储,控制中心通过验证和解密得到数据和签名,该算法支持用户身份隐私保护,且可以实现实时密钥更新。
Description
技术领域
本发明涉及数据融合技术领域,更具体地说,尤其涉及一种网络设备数据融合方法。
背景技术
智能电网的理念是通过获取更多的用户如何用电、怎样用电的信息,来优化电的产生、分配及消耗。利用现代网络、通信和信息技术进行海量信息交互,实现电网设备间的信息交换与共享。智能电网庞大的数据量需要进行实时通信,所以对系统的计算能力和网络的通信能力提出了很大的要求。数据融合是一种自动化信息综合处理技术,对智能电网起着十分重要的作用。在传感器数据传输中,可以通过数据融合降低网络数据传输总量,减少网络拥塞的发送,提高网络性能。在数据计算中心,通过数据融合可以将原始数据融合为易懂的信息或决策。云存储技术是通过集群应用、网络技术或分布式文件系统等功能,将集群内的物理存储资源无缝整合为统一的存储系统,从而可以融合并存储智能电网中的大数据。所以,通过云存储技术把不同系统间、不同设备间的数据进行融合具有重大意义,为此,我们提出一种网络设备数据融合方法。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种网络设备数据融合方法,通过控制中心动态广播密钥,用户对数据进行签名和加密后上传到云存储器,云存储器对数据进行融合后存储,控制中心通过验证和解密得到数据和签名,该算法支持用户身份隐私保护,且可以实现实时密钥更新。
为实现上述目的,本发明提供如下技术方案:一种网络设备数据融合方法,包括
数据融合算法,所述数据融合算法包括数据融合模型和数据融合算法,所述据融合模型包括控制中心、云存储器和N个用户,其中,控制中心为是可信机构,负责系统初始化、生成系统参数、管理用户的添加和撤销操作;云存储是对各用户的密文消息进行融合,并将融合的消息、签名和时间戳一同发送给控制中心;N个用户是数据源,主要提供的数据是各用户的实际用电数据和需求数据;所述数据融合算法主要分为四个阶段,分别为密钥生成阶段、初始化阶段、数据融合阶段和完整性验证阶段;
理论分析,所述理论分析包括数据完整性分析、检测准确率高、用户身份隐私保护和实时密钥更新;
S1、数据完整性分析:在控制中心是安全的前提下,用户被篡改或删除有两种可能:数据在传输过程中被篡改或者删除;数据在云端融合和存储的过程中被篡改或者删除;针对第一个问题,所有的数据都是经过同态加密的,即网络中所有传输的数据都是密文,也就是只有用户和可信机构控制中心才可以对密文进行解密获得明文;而其他没有秘钥的攻击者是无法获得明文的,从而保证数据在传输过程中的安全;针对第二个问题,数据存储在云端可以通过完整性验证判断数据的安全性,即验证本文所提出的算法的正确性,也就是验证等式是否成立,
证明:
S2、检测准确率高:随机选择d个数据块组合为集合D,在保持错误检测概率的同时减少了通信和计算开销,由已知算法得到,错误检测概率为 P=1-(1-E)d,其中,E是出错率,假设出错率E=1%,集合D=460,则通过错误检测率公式计算得到P=95%由上述分析,我们得出结论,本算法在错误率低的情况下仍然是高检测准确率;
S3、用户身份隐私保护:由控制中心生成私钥,对私钥加密后通过安全信道动态广播给用户组U中的每个成员,从而用户对自身的数据进行加密时是使用的同一个密钥,公开验证者无法获取哪一个用户是更为重要的攻击目标;
S4、实时密钥更新:所述实时密钥更新包括添加用户和撤销用户,加用户或者撤销用户的过程中都需要对密钥进行更新操作,为了保证密钥更新过程中减少计算开销,采用动态广播技术进行实时密钥更新;
还包括实验与结果分析,所述实验与结果分析包括完整性实验、密钥更新实验和时间开销实验。
优选的,为了对n个用户的数据进行融合,每个用户对数据进行分块加密签名后,将签名信息和数据发送到云存储器;云存储器收到n个用户发送的信息后,将其签名信息和数据融合后存储;控制中心可以通过验证确定云存储器中的数据是否被正确的存储,验证通过后提取云存储器中的融合数据,解密后分析,提高了安全性和节省了传输和存储资源;所述数据融合算法。
优选的,由控制中心生存密钥,并通过动态广播加密技术将密钥广播到每个用户;初始化阶段是用户通过广播得到的密钥对文件进行分块并签名后发送到云存储器;数据融合阶段是由云存储器对签名和数据进行融合;完整性验证阶段是由控制中心对云存储器中的数据进行验证,保证数据被正确的存储,然后下载并解密云存储器中的数据后进行分析。
优选的,在实验与结果分析时在实验室搭建4个节点的Hadoop云平台,每个节点的机器配置为Intel(R)Core(TM)i5-24004-core CPU@2.60GHz,4 GB RAM,网络带宽为100Mbit/s,Hadoop版本为0.20.2;TPA机器的硬件配置为Linux,3.4GHz Intel i7-3770CPU、16GB,用户机器的硬件配置为Linux, 2.50GHz Intel i5-2520M CPU、8GB。
本发明的技术效果和优点:
1、本发明通过控制中心动态广播密钥,用户对数据进行签名和加密后上传到云存储器,云存储器对数据进行融合后存储,控制中心通过验证和解密得到数据和签名,该算法支持用户身份隐私保护,且可以实现实时密钥更新。
2、本发明通过通过动态广播加密技术使用公开的信道广播密钥,实时对用户的添加和撤销进行管理,有效的保证用户的身份隐私以及用户数据融合的安全性。
附图说明
图1为本发明的用户数量与验证时间的关系图;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
数据融合算法设计
(1)密钥生成阶段
控制中心随机生成私钥生成随机选择并生成主密公钥和私钥分别为:MK={∈0,α},动态广播组 U{U|Ui∈U,1≤i≤d}。用DBE加密私钥DBE.Encek(SK,U),ek是组加密秘钥,主用户通过信道将解密秘钥分发给U内每个用户,用户Ui计算
SK=DBE.Decdki(DBE.Encek(SK,U)),其中dki是Ui的解密秘钥。
其中,p,g是G1和G2的两个素数阶,有双线性映射e:G1×G2→G2,参数为 (G1,G2,p,e,g,H,η1,···ηK),H是哈希函数H:{0,1}*→G1,(η1···ηK)∈G1,每个数据块包含k个元素,数据块的总数为n,共享数据M=(m1,···mn),其中群组中的用户数为d,原始用户为DBE生成相应的参数[14-15]。
(2)密钥生成阶段
(3)数据融合阶段
(4)完整性验证阶段
在动态广播组中的用户收到私钥后,都有对数据进行修改的权限.为了保证云存储器中的数据被完整地保存,控制中心可以对其进行完整性验证。验证过程如下:随机选择d个数据块作为数据集D0生成两个随机数R和μ,挑战信息为CM={D,X,gR,μ}。
控制中心计算η=uW,其中W=∑i∈DBipi。验证如下等式是否成立:
若成立,则返回1,代表完整性验证通过。否则返回0,代表完整性验证失败。
实施例2
添加用户
主用户把u′(u′∈U′)加入到广播组U中,得到重新使用加密密钥加密私钥DBE.Encek(SK,U′),并发送给广播组U′。将解密秘钥发送给用户u′,用户u′通过解密获得私钥,即SK=DEB.Decdk′(DEB.Encek(SK,U′))
其中dk′是用户u′的解密秘钥。新添加的用户便可以使用SK对数据块进行读写和签名。
撤销用户
如果有用户撤消,原始用户就生成一个新的组私钥SK′=∈0′,和一个新的组公钥其中t为撤消后广播组中用户的个数。主用户把撤销用户u′从广播组U中删除,重新组成广播组U′,其中主用户重新加密私钥SK′,即DBE.Encek(sk′,u′),并使用安全信道广播,每个组内的用户可以收到SK′,而被撤销的用户u′收不到私钥SK′,因为同时主用户重新计算一个公钥,并通过安全信道 (SSL)发送给云存储器,云存储器收到重签秘钥后,对所存储的数据块进行重签名,即
实施例3
(1)完整性实验
对三个用户数据值(A、B、C)进行签名后存储,对A删除10%的数据,对B修改10%的数据,对C不做任何操作。最后,对三个数据值进行完整性检测。检测结果如表1所示。
表1检测结果
Table 1 Result of detection
文件A与文件B分别被删除10%和被修改10%后,完整性检测算法结果返回Fail,表示算法检测到文件已被修改或者删除,完整性验证不通过。而实验对文件C不做任何改变,得到检测结果Success,代表文件C通过了完整性验证。通过实验得到,文件被窜改或者删除后,都无法通过完整性检测算法的完验证,只有没有修改的文件可以通过完整性验证。
(2)密钥更新实验
当有新的成员加入群组,原始用户只需要通过现有的群组将私钥动态广播给新成员,如表2所示,新加入一个用户所需要的运行时间仅为0.13S;当撤销一个用户时,云存储器使用重签秘钥对对应的数据块进行重签,合法用户无需再自己下载并重签数据块,此时间需要花费2.91s。与现有算法相比,虽然在添加用户时时间多0.02s,但是现有在用户撤消时需要原始用户使用新的私钥对数据进行重签,耗费时间较长。
表2添加与删除用户所需时间比较
(3)时间开销实验
随着智能电网的快速发展,用户的数量也呈直线式上升。本算法在此基础上进行设计,使其在保证用户数量不同时,完整性验证时间保持不变。如图所示,本文算法在用户数量增加的同时,验证时间使用保持在2.14s左右。同时证明,本文数据融合方法的有效性,得到用户数量与验证时间的关系图(如图1);
结论:由控制中心动态广播密钥后,组中用户对数据进行加密并上传到云存储器,云端对数据融合并存储,控制中心通过对数据进行完整性验证可得到云端数据的正确性,分析使用被正确存储的数据。该算法支持用户身份隐私保护的同时支持实时密钥更新。
Claims (4)
1.一种网络设备数据融合方法,其特征在于:包括
数据融合算法,所述数据融合算法包括数据融合模型和数据融合算法,所述据融合模型包括控制中心、云存储器和N个用户,其中,控制中心为是可信机构,负责系统初始化、生成系统参数、管理用户的添加和撤销操作;云存储是对各用户的密文消息进行融合,并将融合的消息、签名和时间戳一同发送给控制中心;N个用户是数据源,主要提供的数据是各用户的实际用电数据和需求数据;所述数据融合算法主要分为四个阶段,分别为密钥生成阶段、初始化阶段、数据融合阶段和完整性验证阶段;
理论分析,所述理论分析包括数据完整性分析、检测准确率高、用户身份隐私保护和实时密钥更新;
S1、数据完整性分析:在控制中心是安全的前提下,用户被篡改或删除有两种可能:数据在传输过程中被篡改或者删除;数据在云端融合和存储的过程中被篡改或者删除;针对第一个问题,所有的数据都是经过同态加密的,即网络中所有传输的数据都是密文,也就是只有用户和可信机构控制中心才可以对密文进行解密获得明文;而其他没有秘钥的攻击者是无法获得明文的,从而保证数据在传输过程中的安全;针对第二个问题,数据存储在云端可以通过完整性验证判断数据的安全性,即验证本文所提出的算法的正确性,也就是验证等式是否成立,
证明:
S2、检测准确率高:随机选择d个数据块组合为集合D,在保持错误检测概率的同时减少了通信和计算开销,由已知算法得到,错误检测概率为P=1-(1-E)d,其中,E是出错率,假设出错率E=1%,集合D=460,则通过错误检测率公式计算得到P=95%由上述分析,我们得出结论,本算法在错误率低的情况下仍然是高检测准确率;
S3、用户身份隐私保护:由控制中心生成私钥,对私钥加密后通过安全信道动态广播给用户组U中的每个成员,从而用户对自身的数据进行加密时是使用的同一个密钥,公开验证者无法获取哪一个用户是更为重要的攻击目标;
S4、实时密钥更新:所述实时密钥更新包括添加用户和撤销用户,加用户或者撤销用户的过程中都需要对密钥进行更新操作,为了保证密钥更新过程中减少计算开销,采用动态广播技术进行实时密钥更新;
还包括实验与结果分析,所述实验与结果分析包括完整性实验、密钥更新实验和时间开销实验。
2.根据权利要求1所述的一种网络设备数据融合方法,其特征在于:为了对n个用户的数据进行融合,每个用户对数据进行分块加密签名后,将签名信息和数据发送到云存储器;云存储器收到n个用户发送的信息后,将其签名信息和数据融合后存储;控制中心可以通过验证确定云存储器中的数据是否被正确的存储,验证通过后提取云存储器中的融合数据,解密后分析,提高了安全性和节省了传输和存储资源;所述数据融合算法。
3.根据权利要求1所述的一种网络设备数据融合方法,其特征在于:由控制中心生存密钥,并通过动态广播加密技术将密钥广播到每个用户;初始化阶段是用户通过广播得到的密钥对文件进行分块并签名后发送到云存储器;数据融合阶段是由云存储器对签名和数据进行融合;完整性验证阶段是由控制中心对云存储器中的数据进行验证,保证数据被正确的存储,然后下载并解密云存储器中的数据后进行分析。
4.根据权利要求1所述的一种网络设备数据融合方法,其特征在于:在实验与结果分析时在实验室搭建4个节点的Hadoop云平台,每个节点的机器配置为Intel(R)Core (TM)i5-2400 4-core CPU@2.60 GHz,4 GB RAM,网络带宽为 100 Mbit/s,Hadoop版本为0.20.2;TPA机器的硬件配置为Linux,3.4GHz Intel i7-3770 CPU、16GB,用户机器的硬件配置为Linux,2.50GHz Intel i5-2520M CPU、8GB。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019105672281 | 2019-06-27 | ||
CN201910567228 | 2019-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111193701A true CN111193701A (zh) | 2020-05-22 |
Family
ID=70708996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910836268.1A Pending CN111193701A (zh) | 2019-06-27 | 2019-09-05 | 一种网络设备数据融合方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111193701A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111931253A (zh) * | 2020-09-15 | 2020-11-13 | 腾讯科技(深圳)有限公司 | 基于节点群的数据处理方法、系统、设备和介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107566118A (zh) * | 2017-09-13 | 2018-01-09 | 陕西师范大学 | 轻量级用户可动态撤销及数据可动态更新的云审计方法 |
CN107948143A (zh) * | 2017-11-15 | 2018-04-20 | 安徽大学 | 一种云存储中基于身份的隐私保护完整性检测方法和系统 |
-
2019
- 2019-09-05 CN CN201910836268.1A patent/CN111193701A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107566118A (zh) * | 2017-09-13 | 2018-01-09 | 陕西师范大学 | 轻量级用户可动态撤销及数据可动态更新的云审计方法 |
CN107948143A (zh) * | 2017-11-15 | 2018-04-20 | 安徽大学 | 一种云存储中基于身份的隐私保护完整性检测方法和系统 |
Non-Patent Citations (2)
Title |
---|
SHAOMIN ZHANG等: "Research on the Data Fusion Method for Smart Grid Cloud Storage", 《4TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2016)》 * |
赵庆: "云存储环境下智能电网数据完整性保护方法研究_赵庆", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111931253A (zh) * | 2020-09-15 | 2020-11-13 | 腾讯科技(深圳)有限公司 | 基于节点群的数据处理方法、系统、设备和介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112491846B (zh) | 一种跨链的区块链通信方法及装置 | |
CN111371730B (zh) | 边缘计算场景下支持异构终端匿名接入的轻量级认证方法 | |
Lei et al. | Blockchain-based dynamic key management for heterogeneous intelligent transportation systems | |
CN109145612B (zh) | 基于区块链实现防数据篡改、用户共谋的云数据共享方法 | |
CN113360925B (zh) | 电力信息物理系统中可信数据的存储和访问方法及系统 | |
CN112311537B (zh) | 基于区块链的设备接入认证系统及方法 | |
CN110430161B (zh) | 一种基于区块链的可监管数据匿名分享方法及系统 | |
CN109412794A (zh) | 一种适应电力业务的量子密钥自动充注方法及系统 | |
CN111371543B (zh) | 基于双区块链结构的物联网设备访问控制方法 | |
Guo et al. | Accountable attribute-based data-sharing scheme based on blockchain for vehicular ad hoc network | |
CN113872760A (zh) | 一种sm9秘钥基础设施及安全系统 | |
CN110012443A (zh) | 一种全同态的数据加密聚合方法及其系统 | |
CN115086337A (zh) | 文件处理方法、装置、存储介质以及电子设备 | |
CN111768189A (zh) | 基于区块链的充电桩运营方法、装置及系统 | |
CN113840115B (zh) | 一种基于区块链的监控视频数据加密传输系统及方法 | |
CN113193958A (zh) | 一种高安全高效率的量子密钥服务方法与系统 | |
CN111193701A (zh) | 一种网络设备数据融合方法 | |
CN110048852B (zh) | 基于非对称密钥池的量子通信服务站数字签密方法和系统 | |
CN106612325A (zh) | 云存储中一种权限管理下的数据真实性验证 | |
Zhang et al. | Study on secure communication of internet of vehicles based on identity-based cryptograph | |
CN112423295A (zh) | 一种基于区块链技术的轻量级安全认证方法及系统 | |
CN112422563A (zh) | 一种基于混合密码技术的气象数据加解密服务系统 | |
Navya et al. | Securing smart grid data under key exposure and revocation in cloud computing | |
Deng et al. | Identity-based secret sharing access control framework for information-centric networking | |
CN215010302U (zh) | 基于区块链的配电物联网的安全认证设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200522 |
|
RJ01 | Rejection of invention patent application after publication |