CN111191406A - 确定光伏模块串的电学模型的方法、与其相关的诊断方法和装置 - Google Patents

确定光伏模块串的电学模型的方法、与其相关的诊断方法和装置 Download PDF

Info

Publication number
CN111191406A
CN111191406A CN201911110489.7A CN201911110489A CN111191406A CN 111191406 A CN111191406 A CN 111191406A CN 201911110489 A CN201911110489 A CN 201911110489A CN 111191406 A CN111191406 A CN 111191406A
Authority
CN
China
Prior art keywords
bypass
model
string
parameters
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911110489.7A
Other languages
English (en)
Inventor
西尔万·莱斯品纳特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of CN111191406A publication Critical patent/CN111191406A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/38Circuit design at the mixed level of analogue and digital signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明的一个方面涉及一种根据光伏模块串的特征I(V)确定所述光伏模块串的电学模型的方法(100),包括:检测特征I(V)的第一线性区域和第二线性区域的步骤(E2);初始化对应于被称为非旁路条件的第一操作条件的非旁路电学模型的参数的步骤(E3);根据等于I(V)的参考特征I(Vref)优化该非旁路电学模型的参数的步骤(E4);确定对应于被称为旁路条件的第二操作条件的电学模型的参数,以根据特征I(V)获得一旁路电学模型的步骤(E5);根据特征I(V)确定所述非旁路模型和旁路模型中的最佳模型的步骤(E6)。

Description

确定光伏模块串的电学模型的方法、与其相关的诊断方法和 装置
技术领域
本发明的技术领域是诊断光伏模块串的领域。本发明涉及一种确定光伏模块串的模型的方法,并且尤其涉及一种考虑旁路效应的方法。本发明还涉及一种用于检测光伏模块串中异常的方法。
背景技术
通过考虑光伏模块的曲线I(V)(作为所施加电压的函数的电流测量)来诊断光伏模块的正常运行是众所周知的。最通常地根据“闪光测试”测量实施这种诊断,即在标准条件下的测量I(V)。然而,当试图现场诊断模块时,分析不再必须与单元模块相关,而最通常地与几个模块的串相关。此外,可存在更多的不同类型故障,例如存在阴影。更具体地,模块或模块串的曲线I(V)具有拐点。当该串的一部分以很不利的模式运行时,就会发生这种拐点。在这种情况下,模块中引入的旁路二极管因此使该部分的“故障”串独立于系统的其他部分,以避免其被完全地影响。例如,这种情况发生在串出现部分阴影的情况下,在串上出现非均匀污染的情况下,在局部故障(如热点)的情况下等等。在本说明书中,通常在术语“旁路”下提及所有这些情况。
旁路对模块串的曲线I(V)以及对等效于二极管的电学模型(在以下标记为“等效模型”)的影响,在Batzelis,E.I.,Georgilakis,P.S.,&Papathanassiou,S.A.(2014);Energy models for photovoltaic systems under partial shading conditions:acomprehensive review.IET Renewable Power Generation,9(4),340-349中已知和描述了所述模型。然而,没有任何方法能够评估由一组测量值集成可能旁路的曲线I(V)的模型参数并且由该评估实施诊断。
在Batzelis,E.,&Papathanassiou,S.A.(2016).An Algorithm to DetectPartial Shading Conditions in a PV System;In Materials Science Forum(Vol.856,pp.303-308)中,提供了一种能够检测旁路存在的方法,但后者并不能进行对被测模块串的诊断。在Jordehi,A.R.(2016).Parameter estimation of solar photovoltaic(PV)cells:a review;Renewable and Sustainable Energy Reviews,61,354-371中,提供了一种依赖于用于诊断串(假定为非旁路)的等效模型的方法。然而,不存在一种能够同时实施这两项任务的解决方案:即确定一种包括在存在旁路的情况下的等效模型。应该注意的是,先前讨论过的这两种方法的顺序使用并不令人满意,因为它不能在例如部分阴影的情况下提供关于等效模型参数的信息(以及因此除“旁路存在”之外的诊断)。
在El Basri,Y.,Bressan,M.,Seguier,L.,Alawadhi,H.,&Alonso,C.(2015).Aproposed graphical electrical signatures supervision method to study PVmodule failures;Solar Energy,116中,提供了一种考虑曲线I(V)的一阶导数和二阶导数的方法。这两条曲线的分析用于提出一种诊断,其尤其将正确的操作事件与存在旁路(尤其阴影事件)的事件和串联电阻显著增加的事件区分开。然而,值得注意的是,不建议对等效模型的参数进行评估(尤其在存在旁路的情况下),并且本文献中建议的方法对测量噪声非常敏感(尤其是由于使用了信号的一阶和二阶导数)。
因此,需要一种对测量噪声具有鲁棒性并且快速实施,因此允许现场使用的诊断方法。此外,还需要一种不对环境条件进行假并且考虑到旁路的可能存在的诊断方法。
发明内容
通过提供一种对测量噪声具有鲁棒性(并且因此适用于现场实施)并且可快速实施的诊断方法,本发明提供了一种对先前讨论的问题的解决方案。
在下文中,“I”表示一组电流测量值(以安培为单位),并且“V”表示一组电压测量值(以伏特为单位)。因此,I(V)描述了空间中的一组点,其横坐标轴对应于电压并且其纵坐标轴对应于电流。“Y(W)”将表示同一空间中的参数曲线,其将电流值Y关联为电压值W的函数。
为此,本发明的第一方面涉及一种根据所述串的特征I(V)确定光伏模块串的电学模型的方法,其特征在于,所述方法包括:
-检测特征I(V)的第一线性区域和第二线性区域的步骤;
-根据特征I(V)初始化对应于被称为非旁路条件的第一操作条件的非旁路电学模型参数的步骤;
-根据等同于I(V)的参考特征I(Vref)优化非旁路电学模型参数的步骤;
-确定对应于第二操作条件,被称为旁路条件,的电学模型参数的步骤,以便根据特征I(V)获得旁路电学模型;
-根据特征I(V)确定非旁路模型和旁路模型中的最佳模型的步骤。
由于本发明,可以获得一种等效的电学模型,同时在假设方面以及在参数数量方面保持有效(例如,不需要测量串的环境,如辐照度或温度)。因此,获得了一种即使在远离标准条件的环境条件下也能运行的方法。此外,与根据本发明第一方面的方法相关联的低计算时间使其与现场诊断目标(该方法的持续时间通常在笔记本电脑上为约十分之一秒)兼容。
除了前一段中刚刚讨论的特征之外,根据本发明第一方面的方法可以具有单独地或根据任何技术上可能的组合考虑的以下特征中的一个或多个互补特征。
在一个实施例中,所述非旁路模型采用以下形式:
Figure BDA0002272568090000031
其中Y是由串提供的电流,Iph是光电流,Wth是假设没有旁路缺失时的串上电压、RS是串联电阻,RP是并联电阻,I0是二极管暗电流,以及N是由
Figure BDA0002272568090000032
限定的参数,其中,NS是串中串联单元的数量,n是二极管理想系数,kb是玻尔兹曼常数,q是质子的元电荷,TC是该串的模块单元的温度。
在一个实施例中,根据本发明第一方面的方法包括,在检测特征I(V)的线性区域的步骤之前,检查特征I(V)的数据的步骤。
该步骤能够改进确定电气模型中的精度,同时移除如上测量的特征I(V)的不必要部分。
在一个实施例中,检查特征I(V)的数据的步骤包括两个以下子步骤的至少一个:
-检测所述串的切换周期的子步骤;
-移除异常值的子步骤。
因此,从异常值和/或与与在切换期望被诊断的串之前实施的测量值对应的数据清除该特征I(V)。在此提醒,通过逐渐地从模块串短路的操作切换到该串开路的操作(或反向)获得了实施该方法所需的该组测量值。通过切换周期,这是指在这两个极端事件之间的周期,即在实施测量I(V)的周期。
在一个实施例中,检测特征I(V)的第一线性区域和第二线性区域的步骤包括:
-确定最大功率点(IMPP,VMPP)的子步骤,特征点I(V)位于穿过原点(0,0)的直线之上,并且点(IMPP,VMPP)被认为是接近Isc的第一线性区域的候选点,所述接近Isc的第一线性区域称为第一线性区域,并且位于该直线以下的这些点被认为是接近Voc的第二线性区域的候选点,所述接近Voc的第二线性区域称为第二线性区域;
-根据第一线性区域的候选点确定Y作为W的函数使得Y=asc×W+bsc的线性模型,根据第二线性区域的候选点确定W作为Y的函数使得W=aoc×Y+boc的线性模型,从而确定参数asc、bsc、aoc和boc的子步骤。
在一个实施例中,在初始化非旁路电学模型参数的步骤E3中,以如下方式对电学模型Iph、Rs、Rp、I0和N的参数初始化:
-RP
Figure BDA0002272568090000051
给出;
-N由
Figure BDA0002272568090000052
给出,其中Tinit∈[200,300],优选地Tinit∈[230,240],或者甚至Tinit=233.15;
-I0
Figure BDA0002272568090000053
给出;
-RS
Figure BDA0002272568090000054
给出;以及
-Iph
Figure BDA0002272568090000055
给出;
其中Iph是光电流,RS是串联电阻,RP是并联电阻,I0是二极管暗电流,NS是串中串联单元的数量,kb是玻尔兹曼常数,以及q是质子的元电荷。
在一个实施例中,优化非旁路电学模型参数的步骤包括:
-优化非旁路电学模型的线性分量参数的第一子步骤;
-优化非旁路电学模型的指数分量参数的第二子步骤;
所述第一和第二子步骤被多次迭代以获得非旁路模型。
因此,非旁路模型参数的优化可以在两个子步骤进行,这使得所述优化的计算强度更小。因此可以获得线性分量和指数分量参数的单独评估。重复迭代这两个子步骤以改进模型参数的精度。因此,在迭代过程中,获得了线性和指数分量的交叉补偿,能够简化任一个分量的评估。
在一个实施例中,优化非旁路模型的线性分量参数的子步骤包括:
-确定线性特征I(V)以获得I线性(V)的阶段;
-根据曲线I线性(V)确定方程Y=asc×W+bsc的线性回归的阶段;
-从所述回归确定非旁路模型的线性分量参数的阶段。
在一个实施例中,优化该模型的指数分量参数的子步骤包括:
-确定线性特征V(I)以获得V线性(I)的阶段;
-根据曲线V线性(I)确定方程aoc×Y+boc的线性回归的阶段;
-从所述回归确定非旁路模型的指数分量参数的阶段。
在一个实施例中,确定旁路电学模型参数的步骤包括:
-初始化表征旁路的第一参数Pd和第二参数PI的第一子步骤;
-根据参数Pd和PI确定与旁路模型相关联的特征Wmod(Y)的第二子步骤;
-根据特征I(V)优化旁路模型Wmod(Y)的参数Pd和PI的第三步骤;
-根据参数Pd和PI使曲线I(V)变形以获得非旁路特征I(Vunshaded)的第四子步骤;
-根据等于I(Vunshaded)的参考特征I(Vref)优化非旁路电学模型参数的第五子步骤。
本发明的第二方面涉及一种检测光伏模块串中异常的方法,包括:
-使用根据本发明第一方面的方法确定模块串的电学模型的步骤;
-检测异常作为所确定的电学模型的至少一个参数值的函数的步骤。
本发明的第三方面涉及一种数据处理装置,包括用于实施根据本发明的第一方面或第二方面的方法的设备。
本发明的第四方面涉及一种包括指令的计算机程序,当在计算机上运行所述程序时,所述指令致使计算机实施根据本发明的第一方面或第二方面的方法。
本发明的第五方面涉及一种计算机可读数据介质,其上记录了根据本发明第四方面的计算机程序。
在阅读以下的描述并且在检查附图后,将更好地理解本发明及其不同的申请。
附图说明
附图用于指示并且绝不限制本发明。
图1示出了根据本发明第一方面的方法的一种实施例的流程图。
图2示出了可经受根据本发明第一或第二方面的方法的模块串的示意图。
图3示出了模块串的等效模型的电路图。
图4示出了根据本发明第一方面的方法的一种实施例的步骤的流程图。
图5示出了电压V作为时间的函数(在中心)以及电流I作为时间的函数(在右侧)的表征I(V)(在左侧)的示意图。
图6示出了非旁路(在左侧)特征I(V)和旁路(在右侧)特征I(V)以及区域的示意图,在所述区域外侧数据被视为异常。
图7示出了根据本发明第一方面的方法的一种实施例的步骤的流程图。
图8示出了确定非旁路(在左侧)特征I(V)和旁路(在右侧)特征I(V)的线性区域的示意图。
图9示出了根据本发明第一方面的方法的一种实施例的步骤的流程图。
图10示出了补偿非旁路(在左侧)特征I(V)和旁路(在右侧)特征I(V)的指数分量的示意图。
图11示出了对于非旁路(在左侧)特征Y(W)和旁路(在右侧)特征Y(W)确定指数分量参数的示意图。
图12示出了根据本发明第一方面的方法的一种实施例的步骤的流程图。
图13示出了确定旁路效应的参数的示意图。
图14示出了补偿特征I(V)的拐点的示意图。
具体实施方式
除非另有说明,出现在不同附图中的同一元件仅具有一个标记。
图1所示的本发明第一方面的一种实施例涉及一种根据特征I(V)确定光伏模块串的电学模型的方法100。该特征I(V)可以在生产线结束的测试过程中测量,而且也可以在现场模块串的运行过程中测量。为此,在一个实施例中,根据本发明第一方面的方法100包括获取特征I(V)的步骤。在以下,术语特征I(V)和曲线I(V)可以无差别地使用。此外,Vi(相应地Ii)将表示曲线的第i点(或第i个测量值,每个点对应于一个测量值)的V(相应地I)值。此外,除非另有说明,所使用的单位为国际系统单位(I.S.U.)。
电气模型的限定
通常通过一种等效于“二极管”的电学模型描述如图2所示的光伏模块串。该模型可以无差别地用于描述单元、模块或模块串(在一个系数内),并且可以使由其模拟的串所产生的电压V和电流I相关联。它可以被表示为如图3所述的等效电路。具有一个二极管的模型具有在参数方面最简单和最有效之一的优点。然而,与具有两个二极管的模型不同,它并不模拟半导体的异质性,并且具有在低光照下更低的性能。以下将使用具有“一个二极管”的模型描述根据本发明的方法,但其可与任何类型的模型一起使用。然而,优选的是,该模型具有线性分量和指数分量。
图3所示的带有一个二极管的模型可以用以下形式表示:
Figure BDA0002272568090000081
其中,Y是由串提供的电流,Iph是光电流, Wth是假设没有旁路缺失时的串上电压、RS是串联电阻,RP是并联电阻,I0是二极管暗电流, 以及N是由
Figure BDA0002272568090000082
限定的参数, 其中,NS是串中串联单元的数量,n是二极管理想系数,kb是玻尔兹曼常数,q是质子的元电荷,TC是该串的模块单元的温度。将会注意的是,该模型可以如下方式重新表示:
Figure BDA0002272568090000083
从该模型因此可以获得作为Y作为Wth的函数或Wth作为Y的函数,例如通过迭代计算方法或通过使用Lambert W函数。
将会注意的是,N取决于两个初始未知的参数:n和Tc。然而,作为第一近似值, 可以选择n为等于1.25, 这是被接受用于新光伏模块的平均值。此外, 可使用以下公式计算温度Tc
Figure BDA0002272568090000084
其中Voc是开路电压,
Figure BDA0002272568090000085
是STC(标准试验条件)条件下的开路电压,βVoc是单元温度升高的电压损失系数(最通常地该系数为负),TSTC为STC条件下的温度(并且为298.15K,即约25℃),Isc为短路电流,并且
Figure BDA0002272568090000091
为STC条件下的短路电流。应该注意的是,在STC条件下开路电池上的电压
Figure BDA0002272568090000092
单元温度升高的电压损失系数βVoc以及STC条件下的短路电流
Figure BDA0002272568090000093
最通常地由单元或模块制造商提供,并且因此未被确定。Isc和Voc的值可依次根据曲线Y(W)确定。事实上,Isc的值由曲线Y(W)和纵坐标轴的交叉点给出,而Voc的值由曲线Y(W)和横坐标轴的交叉点给出。
刚刚示出的模型并没有考虑旁路效应,并且因此在以下被称为“非旁路模型”。
电学模型参数的边界值
在实施根据本发明第一方面的方法时,有时将需要检查某些参数(模型的参数或计算所需的中间参数)未超出某些边界值。为了更清楚,所有这些边界都将在这里详述。当然,这是在实施根据本发明的方法后施加的边界的可能示例。当然,也可以考虑其他的边界。
以如下方式限制了表示潜在旁路的旁路二极管比例的参数Pd
Figure BDA0002272568090000094
以及
Figure BDA0002272568090000095
其中Vmin是V的最小值,Vmin+1是V的第二最小值,Vmax-1是V的第二最大值,以及Vmax是V的最大值。
如果其相对于未受影响的子串中的短路电流损耗绝缘,表示子串上诱导的短路电流损耗的参数PI以如下方式限制:
Figure BDA0002272568090000096
以及
Figure BDA0002272568090000097
表示短路电流的参数Isc以如下方式限制:
Figure BDA0002272568090000101
以及
Figure BDA0002272568090000102
其中,median(x)表示变量x的中值。
表示开路电压的参数Voc以如下方式限制:
·如果LOGI<0
Figure BDA00022725680900001013
以及
Figure BDA0002272568090000103
·否则
Figure BDA0002272568090000104
以及
Figure BDA0002272568090000105
其中,当已经评估了Isc的值时,
Figure BDA0002272568090000106
否则
Figure BDA0002272568090000107
表示并联电阻的参数Rp以如下方式限制:
Figure BDA0002272568090000108
以及
Figure BDA0002272568090000109
其中
Figure BDA00022725680900001010
如果
Figure BDA00022725680900001011
被限定,并且
Figure BDA00022725680900001012
否则,Vmax是V的最大值,Imax是I的最大值,V(Imax)是曲线I(V)的点的V值,在所述点I是最大值,并且I(Vmax)是曲线I(V)的点的I值,在所述点V是最大值。
表示串联电阻的参数RS以如下方式限制:
Figure BDA0002272568090000111
以及
Figure BDA0002272568090000112
表示等效模型的二极管暗电流的参数I0以如下方式限制:
Figure BDA0002272568090000113
以及
Figure BDA0002272568090000114
先前详述的参数N以如下方式限制:
Figure BDA0002272568090000115
以及
Figure BDA0002272568090000116
其中,参数boc是将在以下描述中限定的参数。关于N的限制确保了Tc保持包括在-40℃与100℃之间,并且n保持包括在1到3之间。这还确保了N在bsc(将在以下限定的参数)的2%和100 000%之间,以确保值
Figure BDA0002272568090000117
保持在可计算的字段中。
当检查参数时,后者超出了在此设置的一个边界,然后所述参数的值被选择为等于所超出的边界。
电学模型与测量值的比较
在一种确定模型的方法中,将可能的模型与测量值进行比较很重要,即量化模型与其中Vref作为参考数据的一组测量值Vref(I)之间的匹配。这些数据可以直接来自测量值,或者在使初始数据变形之后获得,例如以便于补偿旁路现象(这方面将在以下详述)。
几种考虑解决方案以量化这种匹配。一种已知的方法是使用标准化均方根误差(NRMSE)。然而,该度量在本案中具有缺点,尤其是对指数部分赋予更大的重要性。
在一个实施例中,如下限定函数S(W,V),其中W是被评估的模型,以及V是测量(修改或不修改):
Figure BDA0002272568090000121
实际上,通过将V作为I的函数的测量曲线同化为其线性插值来如下计算S:
Figure BDA0002272568090000122
其中,{I1,I2,...,Icardinal(I)}描述了按递增顺序排列的向量I值的列表。因此,计算函数S是快速可执行的,尽管忽略了曲线W和V彼此交叉的情况。此外,S在模型W与测量值V之间进行拟合质量调整,如果模型W与测量值V完全地吻合,则此函数为零,并且随着模型W与测量值V之间偏差的增加而增加。
该原始成本评估函数避免了传统评估指标的收敛性错误或可分离性问题,并为评估高度相关的参数(尤其是I0和N)提供了直接的解决方案。
检查数据
根据本发明的方法建议,根据测量串模块的特征I(V)确定串的等效电学模型的参数。然而,通常发生的是,特征I(V)的测量没有被充分地考虑和/或包括异常值。为了仅保留特征I(V)的必要部分,在图4至6所示的一种实施例中,该方法包括检查特征I(V)的数据的步骤E1。
例如,如图5所示,记录特征I(V)可以在串切换之前开始,并且在串切换之后停止。图5在左侧表示特征I(V),在中间表示电压V作为时间的函数,在右侧表示电流I作为时间的函数。在图5所示的情况下,在信号的开始和结束处(图5中的环绕区域)存在不可忽略的噪声,这可以降低在确定模型的参数时的精度。为了移除与模块串切换的周期不对应的特征I(V)的部分,在一个实施例中,检查特征I(V)数据的该步骤E1包括检测切换周期的子步骤E11。一种实施该检测的方法是考虑以下事实,当切换该串时,曲线I(V)总是增加并且曲线V(I)总是减少。如果考虑曲线V(I)(但对于曲线I(V)也可以这样进行),则可以计算整个测量周期的导数。在目标周期之外,所测量的偏差一方面是由于环境条件的变化(假设是具有对称概率定律的随机变化),另一方面是由于测量噪声(也假设是对称独立定律的随机变化)。因此,在滑动窗口上,信号导数的正号数应遵从具有参数L和1/2的二项式分布,其中L是窗口宽度。相反,在目标周期中(即当切换该串时),大多数符号应该为负(如果考虑了特征I(V),则为正)。对于每个滑动窗口,随机获取观察到的比值
Figure BDA0002272568090000131
以及由该比率推断出可因此量化滑动窗口是否与串的切换周期有关。例如,当滑动窗口给出低于符号分布遵从二项式分布的选定边界的概率(例如5%)时,切换周期被视为开始。同样,当不再满足先前条件时,运行周期视为结束。因此,可以确定模块串切换的周期。
该特征I(V)还可以包括异常值,即不表示模块串的数据,所述模块串的模型实际上被试图确定。因此移除它们可能是有利的。为此,在图6所示的一种实施例中,检查特征I(V)数据的步骤E1包括移除异常值的子步骤E12。在一个实施例中,移除了与高于
Figure BDA0002272568090000132
的电流或高于
Figure BDA0002272568090000133
的电压对应的点。在图6中同样示出的一种实施例中,移除了位于基于等效模型的不同参数的极值的曲线Y(W)以上的点。换句话说,通过采取
Figure BDA0002272568090000134
Figure BDA0002272568090000135
N=Nmin,以及下式计算电流Y(W):
Figure BDA0002272568090000141
当然,将会检查的是,I0保持在所施加的边界内(例如,将会监测的是,边界曲线的电压最大值保持在
Figure BDA0002272568090000142
以下)。同样,V的值不应在以下曲线之下:
Figure BDA0002272568090000143
此外,在一个实施例中,也移除了位于该曲线以下的点。此外,I的值不应位于以下曲线之下:
Figure BDA0002272568090000144
此外,在一个实施例中,也移除了位于该曲线下的点。
检查刚刚描述的数据的步骤E1并不是强制性的,但在某些情况下,可导致在确定电气模型的参数时的准确性方面的灵敏改进。
检测线性区域并初始化非旁路电学模型的参数
根据本发明第一方面的方法然后包括检测特征I(V)的第一线性区域和第二线性区域的步骤E2。如图8所示,曲线I(V)的两端可以通过线性模型近似(图8在左侧表示非旁路特征I(V)并且因此没有拐点,以及在右侧表示旁路特征I(V)并且因此具有拐点)。其目的因此是检测与两个准线性状态的每个都一致的曲线I(V)的点。在图7所示的一种实施例中,为了识别准线性区域,该方法包括确定最大功率点的子步骤E21,所述最大功率点的坐标由(IMPP,VMPP)给出,其中IMPP×VMPP=max(I×V),即IMPP和VMPP是在最大功率点处的电流和电压。位于连接(0,0)和(IMPP,VMPP)的直线以上的点被认为是属于第一线性区域的候选点,所述第一线性区域称为接近Isc的线性区域(即在特征I(V)左上角的线性区域),并且位于该直线以下的点被认为是属于第二线性区域的候选点,所述第二线性区域称为接近Voc的线性区域(即,在特征I(V)右下角的线性区域)。这种分离在图8中示出,与属于接近Voc的线性区域的候选点对应的阴影区域,以及与属于接近Isc的线性区域的候选点对应的虚线区域。
然后,它包括确定Y作为W的函数的线性模型的子步骤E22,使得对于接近Isc的线性区域以及作为Y的函数的W的线性模型来说Y=asc×W+bsc,使得对于接近Voc的线性区域来说W=aoc×Y+boc,从而确定参数asc,bsc,aoc以及boc
例如,如果考虑接近Voc的线性区域,则测试多个值k,k值随着VMPP更接近而递增(换句话说,V(k)>V(k+1))。为此,对于每个k值,通过实施曲线{V(i)}i=1...,...k作为{I(i)}i=1...,...k的函数的线性回归确定系数ak和bk,以获得线性近似W=ak×Y+bk。然后,k的每个值都与误差相关联,所述误差通过对任何i的成本求和获得,使得V(i)>VMPP(i以与k相同的方式递增),与i相关联的成本由如果i<k,
Figure BDA0002272568090000151
以及如果i>k,
Figure BDA0002272568090000152
给出。最后,确定误差最小的k的值,被标记为ksol,由此通过aoc=aksol以及boc=bksol给出线性模型的参数。这些k点在图8中由暗阴影区域表示,使得i>k并且V(i)>VMPP的这些点依次位于光阴影区域中。点划直线依次表示具有方程W=aoc×Y+boc的直线。
以同样的方式,如果考虑了接近Isc的线性区域,则测试多个值k',k'的值随着IMPP更接近而递增(换句话说,I(k')>I(k'+1))。为此,对于每个k'的值,通过实施对曲线{I(i)}i‘=1...,...k‘作为{V(i)}i‘=1...,...k’的函数的线性回归确定系数ak'和bk',以得到线性近似Y=ak'×W+bk'。然后,对于与误差相关联的每个值k',所述误差通过对任何i'的成本求和获得,使得I(i')>IMPP(i'以与k'相同的方式递增),与i'相关联的成本由如果i'<k',
Figure BDA0002272568090000153
以及如果i'>k',
Figure BDA0002272568090000154
给出。最后,确定误差最小的k'的值,被标记为k'sol,由此通过aoc=ak'sol以及boc=bk'sol给出线性模型的参数。这些k'点在图8中由暗阴影区域表示,使得i'>k'并且I(i')>IMPP的这些点依次位于光阴影区域中。实直线依次表示具有方程W=asc×Y+bsc的直线。
在检测特征I(V)的线性区域的步骤结束时,由此确定了参数asc,bsc,aoc以及boc
在一个实施例中,参数asc,bsc,aoc以及boc的值与边界值比较,所保留的最终值是参数本身的值或由所述参数超出的边界的值。第一边界涉及asc并且可如下描述:
Figure BDA0002272568090000161
第二边界涉及aoc并且可如下描述:
Figure BDA0002272568090000162
第三边界涉及bsc并且可如下描述:
Figure BDA0002272568090000163
该边界不同于先前示出的边界,因为在初始化阶段,无法获得参数Rs的评估。当然,当可获得该参数的评估时,要使用的与bsc相关的边界的限定是在详细地解释不同边界的段落中示出的。
第四边界涉及boc并且可如下表示:
Figure BDA0002272568090000164
如先前提到的,所保留的最终值是参数本身的值或由所述参数超出的边界的值。因此,例如,如果asc的值实际上包含在
Figure BDA0002272568090000165
Figure BDA0002272568090000166
之间,则不修改后者。另一方面,如果
Figure BDA0002272568090000167
那么该值asc将被选择为等于
Figure BDA0002272568090000168
同样,如果
Figure BDA0002272568090000169
那么asc的值将被选择为等于
Figure BDA00022725680900001610
该方法然后包括初始化非旁路电学模型参数的步骤E3。如先前所示,非旁路电气模型的参数为Iph,Rs,Rp,I0和N。在一个实施例中,Rp
Figure BDA00022725680900001611
给出,N由
Figure BDA0002272568090000171
给出,其中Tinit∈[200,300],优选地Tinit∈[230,240],或者甚至Tinit=233.15(即大约-40℃的温度);I0
Figure BDA0002272568090000172
给出,其确保Voc的值将保持接近boc;Rs
Figure BDA0002272568090000173
给出,其确保了曲线I(V)在Voc附近的导数接近aoc;并且Iph
Figure BDA0002272568090000174
给出,其确保了Isc接近bsc
在一个实施例中,参数Iph,Rs,Rp,I0和N的值与以上提到的边界值比较,所保留的最终值为参数本身的值或由所述参数超出的边界的值。
优化非旁路模型的参数
在该步骤结束时,非旁路模型的所有参数都已被初始化。已经根据曲线I(V)的线性区域并且通过确保由此确定的参数满足某些边界实施了该初始化。为了改进这些参数的精度,该方法然后包括根据等于I(V)的参考特征I(Vref)优化非旁路电学模型参数的步骤E4。当然,根据参考特征I(Vref)也意味着考虑了相应特征Vref(I)。
然而,同时优化非旁路电学模型的所有5个参数是非常计算密集的(但并非不可能包括在本发明的范围内)。因此,将优化划分为几个步骤是有利的。为此,在一个实施例中,考虑了其优化相对容易的两个分量:线性分量和指数分量。作为提醒,非旁路电气模型可以用以下形式编写:
Figure BDA0002272568090000175
在下文中,分量
Figure BDA0002272568090000176
将被指定为线性分量,并且分量
Figure BDA0002272568090000177
将被指定为指数分量。
在图9所示的一种实施例中,优化非旁路模型参数的该步骤E4包括优化电学模型的线性分量参数的第一子步骤E41。在一个实施例中,该子步骤依次包括通过添加
Figure BDA0002272568090000181
到特征I(Vref)来确定线性特征以获得I线性(V)的第一阶段P411。该添加可视为特征I(Vref)的实验数据的变形,从而能够确定其线性分量。该补偿如图10所示(左侧的图形与非旁路特征I(Vref)有关,而右侧的图形与旁路特征I(Vref)有关),其中黑点对应于I(Vref)的测量,而黑色环绕的白点对应于曲线I线性(V),其为在补偿指数分量后获得的曲线。换句话说,线性电流I线性(V)可被描述为:
Figure BDA0002272568090000182
此外,在计算I线性(V)时,I线性被限制到最大值
Figure BDA0002272568090000183
以避免参数的错误评估导致值中的“激增”。该检查如图10所示,其中长划线曲线示出了不超出该边界,位于该边界以上的点由此在所述边界处被带回。在图10中将会注意到的是,黑色环绕的白点并未如可能预期的那样形成一直线。这是由于在优化非旁路电学模型参数的步骤E4的子步骤的不同迭代过程中将会改进的指数分量的错误评估。
一旦已经确定了I线性(V),优化线性分量参数的第一子步骤E41还包括根据曲线I线性(V)确定方程I=asc×V+bsc的线性回归的第二阶段P412,以确定参数asc和bsc的新评估。在图10中,短划线直线示出了初始线性模型,而实线曲线示出了与参数asc和bsc的新值对应的新线性模型。此外,在线性回归的该阶段中,将再次检查之前示出的参数asc和bsc的值中的边界。
最后,优化线性分量参数的第一子步骤E41还包括确定模型的线性分量参数的第三阶段P413,后者如下计算:
Figure BDA0002272568090000184
Figure BDA0002272568090000185
确定了这些参数,使得模型实际上通过点(0,bsc)并且在该点上的曲线的导数与该线性分量的评估兼容。它依赖于模型的其他参数值被正确地评估的假设。
在一个实施例中,通过考虑在检测特征I(V)的线性区域的步骤E2过程中确定的点k'sol来实施刚刚描述的线性回归阶段。在一个实施例中,通过考虑在优化线性分量参数的第一子步骤E41的第一次迭代过程中的k'sol实施该线性回归阶段,考虑越来越多的点用于所述子步骤的下一次迭代,以便对于曲线I线性(V)的所有点来说首先考虑位于穿过{0,0}和{IMPP,VMPP}的直线左侧上的所有点。每次迭代中所包含的点的数目例如将为迭代总数目的函数。例如,如果总迭代数目等于10,在每次迭代中,1/10的点可被引入到已经考虑的点。
而且,优化非旁路电学模型参数的步骤E4还包括优化非旁路电学模型的指数分量参数的子步骤E42。在一个实施例中,该子步骤依次包括确定特征Vlinear(I)=Vref(I)-Wth(I)+boc+aoc×I的第一阶段P421,其中aoc和boc涉及所述参数的先前评估。作为提醒,非旁路电气模型可以如下方式编写:
Figure BDA0002272568090000191
该特征V线性(I)对应于指数分量被补偿的Vref(I)值(并且因此当正确地评估模型I(V)的参数时应接近仿射模型)。
一旦已经确定了V线性(I),优化指数分量参数的子步骤E42还包括根据曲线V线性(I)确定方程W=aoc×Y+boc的线性回归以确定参数aoc和boc的新评估的第二阶段P422,使用以下公式计算与曲线V线性(I)的一点i相关联的成本:
Figure BDA0002272568090000192
其中sum(x)是所有xi的和,xi表示变量x可采取的值。
在一个实施例中,通过考虑在检测特征I(V)的线性区域的步骤E2过程中确定的ksol点实施该线性回归阶段。在一个实施例中,通过考虑在优化指数分量参数的子步骤E42的第一次迭代过程中的ksol点实施该线性回归阶段,考虑越来越多的点用于所述子步骤的下一次迭代,以便考虑首先位于穿过{0,0}和{IMPP,VMPP}的直线右侧上的所有点,然后通过曲线V线性(I)的所有点。
而且,如图11所示,确定指数分量参数的子步骤E42还包括确定参数N,I0和Rs的第三阶段P423。对于在区间[Nmin,Nmax]中标记为
Figure BDA0002272568090000201
的N的任何值,可以计算值
Figure BDA0002272568090000202
Figure BDA0002272568090000203
使得该模型在Voc的附近保持接近线性模型。为此,建立了以下关系:
Figure BDA0002272568090000204
Figure BDA0002272568090000205
如前所述,因此确定的最大值被夹持并可能校正以不妨碍所述加持。通过进行这种计算,可以认识到的是,给出
Figure BDA0002272568090000206
并且与这些值
Figure BDA0002272568090000207
Figure BDA0002272568090000208
相关联的模型主要彼此不同的原因在于在
Figure BDA0002272568090000209
增加时它们更平滑,并且相反当
Figure BDA00022725680900002010
对应于由常量asc、bsc、aoc和boc描述的两个线性模型而降低时趋向于接近“末端”曲线。因此,可以假定已经引入并且与
Figure BDA00022725680900002011
相关联的函数S(
Figure BDA00022725680900002012
Vref),在对应于值
Figure BDA00022725680900002013
的模型和数据Vref之间的接近度为凸函数。因此可以通过依赖于成本函数S(
Figure BDA00022725680900002014
Vref)优化
Figure BDA00022725680900002015
的值。图11示出了
Figure BDA00022725680900002016
的不同值的演化
Figure BDA00022725680900002017
更具体地,阴影区的上边界对应于具有
Figure BDA00022725680900002018
的计算,而阴影区的下边界对应于具有
Figure BDA00022725680900002019
Figure BDA00022725680900002020
的计算。实线曲线对应于N的初始值的
Figure BDA00022725680900002021
的计算。长划线曲线依次对应于能够获得最小成本函数S(
Figure BDA00022725680900002022
Vref)的的计算。
因此,确定了能够使成本函数S(
Figure BDA00022725680900002024
Vref)最小化的值
Figure BDA00022725680900002025
该值对应于所搜索的N的值。然后可以使用所获得的值N确定参数Rs和I0。该优化可例如使用二分法通过选择N的当前值的一半和最大值用于
Figure BDA0002272568090000211
的最小值和最大值进行。此外,在二分法计算的每个步骤,检查和校正
Figure BDA0002272568090000212
Figure BDA0002272568090000213
的值,使得它们保持在先前限定的间隔中。
当然,在优化电学模型参数的步骤E4中,优化电学模型的线性分量参数的第一子步骤E41和优化电学模型的指数分量参数的子步骤E42被多次迭代以改进该模型,在一次迭代过程中确定的参数在下一次迭代过程中使用。换句话说,在优化电气模型的线性分量参数的第一子步骤E41中确定的参数在优化下一指数分量的参数的子步骤E42中使用,并且在优化指数分量的参数的子步骤E42中确定的参数在优化下一电学模型的线性分量参数的第一子步骤E41过程中使用(当然最后一次迭代除外)。
在一个实施例中,迭代数目等于预限定数目,例如等于30的迭代数目。在一个实施例中,替代地或另外,对优化电学模型的线性分量参数的第一子步骤E41和优化电学模型的指数分量参数的子步骤E42进行迭代,直到
Figure BDA0002272568090000214
其中
Figure BDA0002272568090000215
是使用限定的收敛准则用ε迭代i时对模型的评估,即当该模型在两次迭代之间不再实质地改进时。
在优化非旁路电学模型参数的步骤E4的最后一次迭代结束时,因此可获得非旁路模型Wth。然而,当旁路实际存在时,该模型并不能考虑模块串上的电压V。因此应该确定一种旁路模型,以便此后选择两个模型中的最佳(选择标准将在以下列出)。
确定旁路模型的参数
当模块串包括一组由旁路二极管保护的子串时,可以观察到在某些子串上的不同演化。旁路存在的一种典型示例是局部阴影的存在:一组子串的以与该串的其余部分相比更低的水平变亮。在这种情况下,根据电压设置,具有较低性能的子串被旁路,以避免其被放置在消耗由该串的其余部分产生的能量的位置。由此注意到曲线I(V)中的拐点,该拐点(在电压轴上)的位置通知“被旁路的”子串比例和高度(在电流轴上)以及通知相对于该串的其余部分关联的损失水平。在以下,将考虑的是不能存在两个以上的子串。另一种选择导致多种情况与该串的旁路二极管数量组合。实际上,需要注意的是,对于两个以上子串的结果通常保持正确:实际上检测和定位了主要拐点;因此忽略了其他拐点变化。换句话说,两个子串的假设是出于计算目的作出的,但并不防止在考虑两个以上子串的情况下使用根据本发明第一方面的方法。
为了考虑测量的这一方面,并且如图12所示,根据本发明第一方面的该方法包括根据特征I(V)确定旁路电学模型参数的步骤E5。
为了描述由旁路效应引起的曲线I(V)的变形,确定旁路电气模型参数的步骤E5包括第一子步骤E51,所述第一子步骤E51根据在表示V的轴上的拐点位置对参数Pd初始化,所述参数Pd表示被潜在地旁路(在图13中等于20%)的旁路二极管的比例(以及因此子串的比例);以及根据在表示I的轴上的拐点位置,对表示在第一串上的短路电流损失(在图13中等于40%)的参数PI初始化。因此,如图13所示,曲线I(V)的拐点可以由这两个参数表征。
根据两个参数,可以通过使用在根据等于I(V)的参考特征I(Vref)优化非旁路电学模型参数的步骤E4中确定的参数,或者在根据等于I(V无遮蔽)的参考特征I(Vref)优化非旁路电学模型的子步骤E55中确定的参数(子步骤将在以下描述)来确定模型。为此,确定旁路电学模型参数的步骤E5包括计算旁路电学模型的特征Wmod(I)的第二子步骤E52。该子步骤E52包括计算标记为V1(I)的第一子串的特征V(I)的第一阶段P521,后者由以下给出:
W1(Y)=(1-Pd)×Wth(Y).
计算旁路模型的特征V(I)的子步骤E52还包括计算标记为V2(I)的第二子串的特征V(I)的第二阶段P522,后者由以下给出:
Figure BDA0002272568090000231
通过增加如上所述的两个增益获得了该旁路模型,表示为Wmod(I):
Wmod(Y)=W1(Y)+W2(Y).
值得注意的是,与非旁路模型对应的模型Wth(Y)在该步骤中应该是正确的。
确定旁路电学模型参数的步骤E5然后包括使用先前限定的度量S(Wmod,V)并根据特征I(V)优化旁路电学模型Wmod(Y)参数的第三子步骤E53。例如可以通过诸如单纯形法的梯度下降放法实施该优化。在该优化结束时,保留了允许与测量值最佳匹配的参数PI和Pd。在该优化过程中,当然在二分算法的每次迭代时检查实现参数PI和Pd的边界值。
确定旁路电学模型参数的步骤E5包括使曲线I(V)变形以补偿旁路的第四子步骤E54。如图14所示,可以使用参数PI和Pd以及非旁路模型通过应用与由旁路诱导的变形相反的变形来实施该变形,从而获得特征V无遮蔽(I)以及相应特征I(V无遮蔽)。事实上,根据参数PI和Pd以及非旁路模型,可以评估在电压上诱导的变形作为电流的函数,并将反向变形应用在所测量的电压上,以产生一种在不存在该变形的情况下可获得的这些点的评估。
因此,通过使用该新特征I(V无遮蔽)可以重新评估非旁路模型。为此,确定旁路电学模型参数的步骤E5包括使用等于新获得的I(V无遮蔽)的参考特征I(Vref)优化非旁路模型的子步骤E55。该重新评估子步骤因此等同于确定非旁路电学模型的参数的步骤E4,除了使用特征I(V无遮蔽)进行该确定步骤之外。
当然,对第二、第三、第四和第五子步骤进行多次迭代,以便根据重新评估的非旁路模型和参数Pd和PI获得旁路电学模型。从先前变得显而易见的是,在一次迭代过程中确定的参数在下一次迭代中使用。在一个实施例中,迭代数目等于预限定的数目,例如等于30的迭代数目。在一个实施例中,替代地或另外,对确定旁路电学模型参数的步骤E5的第二、第三、第四和第五子步骤进行迭代,直到|Si+1(Wmod,V)-Si(Wmod,V)|<ε,其中Si(Wmod,V)是使用限定的收敛准则用ε迭代i时对旁路模型的评估,即当该模型在两次迭代之间不再实质地改进时。
在确定旁路电学模型的参数的步骤E5结束时,因此获得了在所述步骤中优化的使用非旁路模型表示的旁路模型Wmod(Y)以及在所述步骤中确定和优化的参数PI和Pd。后者现在应该与非旁路模型Wth比较,以确定最接近实验数据V(I)的模型。
保存最佳模型
在确定旁路电学模型参数的步骤E5结束时,已经确定了两个模型:非旁路模型Wth(I)和旁路模型Wmod(I)。然而,在这两个模型中应该确定哪个最适用于描述被测量的模块串。正如已经介绍过的,可以使用标记为S的成本函数衡量在模型的预测之间的偏差。与非旁路模型相关联的成本函数由S(Wth,V)给出,而与旁路模型相关联的成本函数由S(Wmod,V)给出。
在一个实施例中,所选择的模型是与最低成本函数相关联的模型,即其预测最接近所测量的数据。因此,如果S(Wth,V)≥S(Wmod,V),则选择非旁路模型,否则选择旁路模型。
在某些情况下,如上示出的准则可导致旁路模型的选择(并依赖于更多的假设),而非旁路模型则完全地适合。为了避免这种情况,在一种实施例中,当
Figure BDA0002272568090000241
那么选择非旁路模型,即使后者具有与旁路模型相比更高的成本函数,附带条件是Pd在间隔
Figure BDA0002272568090000242
内并且PI在间隔
Figure BDA0002272568090000243
内。
检测模块串中的异常
正如已经详细地看到的,可以根据与模块串有关的特征I(V)确定所述模块的电学模型。由因此确定的模型参数所采取的值携带有尤其关于串中可能异常的信息。因此,本发明的第二方面提出了一种检测光伏模块串中异常的方法。该方法包括使用根据本发明第一方面的方法确定模块串的电学模型的第一步骤。然后,它包括检测异常作为所确定的电学模型的至少一个参数值的函数的步骤。例如,当由该模型评估(返回到标准温度和辐射条件)的串联电阻高于平均通常值的两倍(例如由制造商数据或先前测量值确定)时,可以检测到与异常电阻对应的异常。在一个实施例中,定期地评估模型参数的演化,以便观察所述参数中的演化,当至少一个参数的值远离所述参数的初始值超出预定阈值(例如初始值的10%以上)时,检测到异常。
实施装置
为了实施根据本发明的第一方面或第二方面的方法,第三方面涉及一种装置,所述装置包括该实施所需的设备。在一个实施例中,该装置包括与存储器相关联的计算单元(例如处理器、FPGA或ASIC芯片)。存储器可包含运行根据本发明的第一方面或第二方面的方法所需的指令及变量。在一个实施例中,该装置还包括数据采集设备。在一个实施例中,这些采集设备包括网络连接设备(例如WiFi或以太网芯片)和/或总线连接设备,以便能够接收运行根据本发明的第一方面或第二方面的方法所需的数据,尤其是特征I(V)。在一个实施例中,该装置包括用于读取数据介质的设备(例如DVD读取器),在所述数据介质上存储有运行根据本发明的第一方面或第二方面的方法所需的数据。在一个实施例中,该装置包括采集曲线I(V)所需的装置。

Claims (10)

1.一种确定光伏模块串的电学模型的方法(100),该方法根据所述串的特征I-V、对应于所述串的第一操作条件的非旁路模型以及对应于该串的第二操作条件的旁路模型来进行,
所述第一操作条件被称为非旁路条件,并由以下等式给出:
Figure FDA0002272568080000011
其中Iph是光电流,RS是串联电阻,RP是并联电阻,I0是二极管的暗电流,
Figure FDA0002272568080000012
其中Tideal∈[200,300],NS是所述串中串联单元的数量,kb是玻尔兹曼常数以及q是质子的元电荷,Y是通过该串的电流,以及Wth是串上电压;
所述第二操作条件被称为旁路条件,并由以下等式给出:
Wmod(Y)=W1(Y)+W2(Y)
其中Wmod是根据电流Y的旁路模型的串上电压,W1(Y)=(1-Pd)×Wth(Y)以及
Figure FDA0002272568080000013
其中,Wth(Y)是由非旁路模型给出的串上电压,Pd是旁路二极管比例,以及PI是由该旁路引发的短路电流损失比例,所述方法包括:
-检测特征I-V的第一线性区域和第二线性区域的步骤(E2);
-根据特征I-V初始化非旁路电学模型的参数的步骤(E3);
-根据等同于I(V)的参考特征I(Vref)优化非旁路电学模型的参数的步骤(E4);
-确定该旁路电学模型的参数,以便根据特征I-V获得一旁路电学模型的步骤(E5);
-根据特征I-V确定所述非旁路模型和所述旁路模型中的最佳模型的步骤(E6)。
2.根据权利要求1所述的方法,其特征在于,在检测特征I-V的线性区域的步骤(E2)之前,包括检查特征I-V的数据的步骤(E1)。
3.根据权利要求2所述的方法,其特征在于,所述检查特征I-V的数据的步骤(E1)包括以下子步骤中的至少一个:
-检测所述串的切换周期,移除在所述切换周期之外的被测量数据的子步骤(E11);
-移除异常值的子步骤(E12)。
4.根据前述权利要求中任一项所述的方法,其特征在于,所述检测特征I-V的第一线性区域和第二线性区域的步骤(E2)包括:
-确定最大功率点(IMPP,VMPP)的子步骤(E21),特征I-V的点位于穿过原点(0,0)的直线之上,点(IMPP,VMPP)被认为是第一线性区域的候选点,位于该直线之下的所述点被认为是第二线性区域的候选点;
-根据第一线性区域的候选点确定电流Y的作为串上电压W的函数使得Y=asc×W+bsc的线性模型,根据第二线性区域的候选点确定串上电压W作为电流Y的函数使得W=aoc×Y+boc的线性模型的子步骤(E22),从而确定参数asc、bsc、aoc和boc
5.根据权利要求4所述的方法,其特征在于,在初始化所述非旁路电学模型的参数的步骤E3的过程中,以如下方式初始化电学模型Iph、Rs、Rp、I0和N的参数:
-Rp
Figure FDA0002272568080000021
给出;
-N由
Figure FDA0002272568080000022
给出,其中Tideal∈[200,300];
-I0
Figure FDA0002272568080000023
给出;
-Rs
Figure FDA0002272568080000024
给出;以及
-Iph
Figure FDA0002272568080000031
给出。
6.根据前述权利要求中任一项所述的方法,其特征在于,所述模型包括线性分量和指数分量,优化所述非旁路电学模型的参数的步骤(E4)包括:
-优化所述非旁路电学模型的线性分量的参数的第一子步骤(E41),其包括:
■确定一线性特征以获得I线性(V)的阶段(P411);
■根据曲线I线性(V)确定等式Y=asc×W+bsc的线性回归的阶段(P412);
■从所述回归确定该模型的线性分量的参数的阶段(P413);
-优化所述非旁路电学模型的指数分量的参数的第二子步骤(E42),其包括:
■确定线性特征V-I以获得V线性(I)的阶段(P421);
■根据曲线V线性(I)确定等式W=aoc×Y+boc的线性回归的阶段(P422);
■从所述回归确定该模型的指数分量的参数的阶段(P423);
所述第一和第二子步骤被多次重复,以获得一非旁路电学模型。
7.根据前述权利要求中任一项所述的方法,其特征在于,确定旁路电学模型的参数的步骤(E5)包括:
-初始化作为旁路特性的第一参数Pd和第二参数PI的第一子步骤(E51);
-根据参数Pd和PI确定与该旁路模型相关联的特征Wmod(Y)的第二子步骤(E52);
-优化该旁路模型Wmod(I)的参数Pd和PI的第三子步骤(E53);
-根据参数Pd和PI使曲线I(V)变形,以获得一非旁路特征I(V无遮蔽)的第四子步骤(E54);
-根据等于I(V无遮蔽)的参考特征I(Vref)来优化非旁路电学模型的参数的第五子步骤(E55);
多次重复第二、第三、第四和第五子步骤,以便根据重新评估的非旁路模型和参数Pd和PI获得一旁路电学模型。
8.一种检测光伏模块串中的异常的方法,其特征在于,其包括:
-使用根据前述权利要求中任何一项所述的方法确定模块串的电学模型的步骤;
-检测异常的步骤,该异常是作为所确定的电学模型的至少一个参数的值的函数。
9.一种数据处理装置,其包括用于实施根据前述权利要求中任何一项所述的方法的设备。
10.一种计算机程序,包括指令,当在计算机上运行所述程序时,所述指令使所述计算机实施根据权利要求1至8中任何一项所述的方法。
CN201911110489.7A 2018-11-14 2019-11-14 确定光伏模块串的电学模型的方法、与其相关的诊断方法和装置 Pending CN111191406A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1860499 2018-11-14
FR1860499A FR3088455B1 (fr) 2018-11-14 2018-11-14 Procede de determination d'un modele electrique d'une chaine de modules photovoltaique, procede de diagnostic et dispositif associes

Publications (1)

Publication Number Publication Date
CN111191406A true CN111191406A (zh) 2020-05-22

Family

ID=65763599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911110489.7A Pending CN111191406A (zh) 2018-11-14 2019-11-14 确定光伏模块串的电学模型的方法、与其相关的诊断方法和装置

Country Status (4)

Country Link
US (1) US11550983B2 (zh)
EP (1) EP3654527A1 (zh)
CN (1) CN111191406A (zh)
FR (1) FR3088455B1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3089015B1 (fr) * 2018-11-28 2020-10-30 Commissariat Energie Atomique Procédé de détermination d'une courbe courant-tension corrigée caractéristique d'un système électrique
FR3113320B1 (fr) * 2020-08-04 2022-08-19 Commissariat Energie Atomique Méthode et dispositif de calibration de mesures de l’effet d’encrassement d’un panneau solaire
CN114640304B (zh) * 2022-03-28 2022-09-13 合肥工业大学 一种基于i-v曲线的光伏组件电流失配故障诊断方法
CN115902465B (zh) * 2022-11-10 2024-02-20 中国原子能科学研究院 辐伏转换器件的参数确定方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103154A (zh) * 2017-05-17 2017-08-29 南京南瑞继保电气有限公司 一种光伏组件模型参数辨识方法
CN108365822A (zh) * 2018-04-12 2018-08-03 山东大学 光伏电池在不同光照温度条件下工作特性的预测方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283845A (ja) * 2008-05-26 2009-12-03 Npc Inc 太陽電池出力特性評価装置および太陽電池出力特性評価方法
TWI461882B (zh) * 2012-09-18 2014-11-21 Univ Nat Taiwan 太陽能模組系統之多點直接預測最大功率點追蹤方法及太陽能模組陣列之控制裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103154A (zh) * 2017-05-17 2017-08-29 南京南瑞继保电气有限公司 一种光伏组件模型参数辨识方法
CN108365822A (zh) * 2018-04-12 2018-08-03 山东大学 光伏电池在不同光照温度条件下工作特性的预测方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FOUZI HARROU等: "A robust monitoring technique for fault detection in grid-connected PV plants", 7TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS *
W. CHINE 等: "Fault diagnosis in photovoltaic arrays", 2015 INTERNATIONAL CONFERENCE ON CLEAN ELECTRIC POWER(ICCEP) *
WAIL REZGUI等: "Modeling of a photovoltaic field in malfunctioning", 2013 INTERNATIONAL CONFERENCE ON CONTROL,DECISION AND INFORMATION TECHNOLOGIES(CODIT)) *

Also Published As

Publication number Publication date
FR3088455A1 (fr) 2020-05-15
US20200151379A1 (en) 2020-05-14
EP3654527A1 (fr) 2020-05-20
FR3088455B1 (fr) 2021-10-08
US11550983B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
CN111191406A (zh) 确定光伏模块串的电学模型的方法、与其相关的诊断方法和装置
US9214894B2 (en) Evaluation method for solar power generation system, evaluation device, and evaluation program
JP6310948B2 (ja) 太陽電池検査システムおよび太陽電池検査方法
Müller et al. Harmonic modeling of electric vehicle chargers in frequency domain
Hocine et al. Automatic detection of faults in a photovoltaic power plant based on the observation of degradation indicators
US20230163723A1 (en) Fault diagnosis method and diagnosis device
Hansen Estimation of parameters for single diode models using measured IV curves
Li et al. A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions
CN110412472B (zh) 一种基于正态伽马滤波的电池荷电状态估计方法
CN109544476A (zh) 一种基于深度学习的电力设备红外图像去噪方法
Blakesley et al. Towards non-destructive individual cell IV characteristic curve extraction from photovoltaic module measurements
CN116383658A (zh) 一种基于bp神经网络的太阳能电池板故障诊断方法及装置
CN111245364B (zh) 确定电气系统的校正的电流-电压特性曲线的方法
Su et al. Parameter extraction of photovoltaic single-diode model using integrated current–voltage error criterion
US20230188090A1 (en) Method and device of operating diagnosis of a photovoltaic chain comprising at least one photovoltaic module
Wibowo et al. Sensor array fault detection technique using kalman filter
KR102568590B1 (ko) 태양광 시스템의 고장 진단을 위한 인공지능 학습 데이터의 전처리 시스템 및 그 방법
Spagnuolo et al. Identification and diagnosis of a photovoltaic module based on outdoor measurements
CN115800916A (zh) 一种光伏电站智能i-v诊断系统
CN113191075B (zh) 一种基于改进型樽海鞘群算法的光伏阵列故障诊断方法
KR20160085378A (ko) 랩뷰 기반의 태양광 발전 설비 진단 장치 및 방법
Iakovlev et al. Low-voltage distribution network impedances identification based on smart meter data
Acurio et al. Design and Implementation of a Machine Learning State Estimation Model for Unobservable Microgrids
Xu et al. Review on fault characterization and diagnosis technique in photovoltaic systems
Hevisov et al. I–V-curve analysis using evolutionary algorithms: Hysteresis compensation in fast sun simulator measurements of HJT cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination