CN111188058B - 一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用 - Google Patents
一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用 Download PDFInfo
- Publication number
- CN111188058B CN111188058B CN202010084395.3A CN202010084395A CN111188058B CN 111188058 B CN111188058 B CN 111188058B CN 202010084395 A CN202010084395 A CN 202010084395A CN 111188058 B CN111188058 B CN 111188058B
- Authority
- CN
- China
- Prior art keywords
- film
- silicon
- full
- hydrogen
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/085—Oxides of iron group metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
- C25B1/55—Photoelectrolysis
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本发明公开了一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用,该体系包括光阳极、光阴极、电解液、光源、电解池,所述光阳极的结构依次为衬底层、n/i/p结构的单节硅薄膜、氧化物薄膜,所述光阴极的结构依次为衬底层、p/i/n结构的单节硅薄膜、产氢金属纳米颗粒,首例以硅薄膜电极结合催化剂组成全薄膜硅半导体两电极体系,实现了无偏压全分解水效率0.92%,为实现大规模的可持续太阳能制氢提供了希望和策略。
Description
技术领域:
本发明涉及一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用。
背景技术:
光电化学分解水产氢可以直接把太阳能转化并储存为化学能,是利用洁净能源的关键技术之一。半导体材料是构筑太阳能光电转化的主体,而界面间良好的电荷转移以及稳定的助催化剂是实现太阳能高效转化成氢气的必要条件。半导体光电极和光伏(PV)材料的共同特性是光吸收、电荷分离和电荷转移。对于一个光电化学器件,应考虑三个因素:一个是用于析氢(HER)或析氧反应的(OER)的催化剂利用电子/空穴的能力。另一个是光电极在强酸或者强碱溶液中的稳定性。最后一个则是光电极材料,它是进行光捕获、电荷分离和催化半反应的关键部分。硅材料已广泛应用于光伏产业,相对于其他半导体材料,具有无可比拟的优势。因为它在光吸收、载流子浓度、载流子传输能力、电极织构化结构上都比其他半导体材料有明显的优势,再加上硅半导体材料因为具有高吸收系数,宽吸收光谱,成熟的制备技术以及丰富的储量,是PEC系统理想光电极选择之一。目前,晶硅、薄膜硅基光电极(包括非晶、微晶和纳米晶硅)以及其他光伏器件均在分解水半反应方面取得了很大进展,在全分解水方面仍受析氧反应迟滞的界面反应动力学影响,需要额外偏压才能实现全分解水。此外,薄膜硅在溶液中的电化学不稳定,特别是在富氧环境中更为严重,利用薄膜硅实现太阳能分解水产氢仍具有挑战。虽然晶体硅担载Pt、CuCo、Mo2Se,光电流可以实现30mA/cm2,具有n+np+-Si结构晶硅可以达到10%的半反应太阳能制氢(STH)效率。然而,由于所产生的开路电压不足以抵消1.23V和过电位这个能量限制,目前还未实现以单结的硅薄膜结构进行全分解水。
发明内容:
本发明的目的是提供一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用,首例以硅薄膜电极结合催化剂组成全薄膜硅半导体两电极体系,实现了无偏压全分解水效率0.92%,为实现大规模的可持续太阳能制氢提供了希望和策略。
本发明是通过以下技术方案予以实现的:
一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,该体系包括光阳极、光阴极、电解液、光源、电解池,所述光阳极的结构依次为衬底层、n/i/p结构的单节硅薄膜、氧化物薄膜,所述光阴极的结构依次为衬底层、p/i/n结构的单节硅薄膜、产氢金属纳米颗粒薄膜,所述的电解液为0.5~1.2M的KOH溶液;将所述的光阳极与光阴极采用硅胶封装出相同面积的电极,插入电解池中,内含有0.5~1.2M的KOH溶液,并且通过外电路导线连通;开启光源分别照射所述的光阳极和光阴极,此时所述的光阳极和光阴极分别发生氧化与还原反应并通过外电路形成回路,从而实现无偏压光电催化全分解水产氢。
特别地,n/i/p结构的单节硅薄膜或p/i/n结构的单节硅薄膜,其中n层厚度为60-80nm,I层厚度300-400nm,p层厚度为20-40nm。
所述衬底包括透明导电玻璃或柔性不锈钢或高分子薄膜。
所述氧化物包括CoOx、NiOx、RuOx、NiFeOx等氧化物,其中x为1-2.5。
所述产氢催化剂包含金属如Pt、Ni等金属或其合金或过渡金属化合物,例如硫化物MoSx等,碳化物Mo2C,磷化物MoP,氢氧化物等。
所述的光阳极制备方法如下:1)利用甚高频等离子气相沉积设备依次在清洗干净后衬底上沉积n型硅薄膜、本征硅薄膜和p型硅薄膜,获得n/i/p结构的单节硅薄膜;其中,在腔室中通入SiH4和氢气,在衬底上生成本征硅薄膜;而且通过掺杂磷烷,硼烷气体,制备n型硅薄膜,p型硅薄膜,2)利用磁控溅射方法制备氧化物薄膜作为产氧催化剂也作为保护层担载在具有n/i/p结构的硅薄膜表面,形成氧化物/nip光阳极。
所述的光阴极制备方法如下:1)利用甚高频等离子气相沉积设备依次在清洗干净后衬底上沉积p型硅薄膜、本征硅薄膜和n型硅薄膜,获得p/i/n结构的单节硅薄膜;其中,在腔室中通入SiH4和氢气,在衬底上生成本征硅薄膜;而且通过掺杂磷烷,硼烷气体,制备n型硅薄膜,p型硅薄膜,2)利用磁控溅射方法制备产氢金属纳米颗粒薄膜作为助催化剂,也作为保护层担载在具有p/i/n结构的单节硅薄膜表面,形成产氢催化剂/pin光阴极。
催化剂不仅快速的消耗了转移到光阴极表面的光生电子和光阳极表面的光生空穴,还减缓了硅薄膜在碱性溶液中腐蚀的速度,产氢催化剂/pin光阴极和氧化物/nip光阳极组装成全薄膜硅半导体双电极体系,进行平行照光,体系产生足够的偏压,实现了全硅两电极无偏压太阳能全分解水产氢理论效率0.92%。
本发明在保证p/i/n和n/i/p光电压,光电流性能的基础上,实现单结薄膜硅分解水产氢。此外,还可以采用双节,三节硅薄膜作为光阴极和光阳极。如双节组合:非晶硅/纳晶硅,非晶硅/非晶硅,非晶硅/硅锗。如三节组合:非晶硅/非晶硅/非晶硅,非晶硅/纳晶硅/硅锗,非晶硅/非晶硅/硅锗。在保证较好的吸收光谱匹配的情况下,实现高的开压和电流,不仅可以实现无偏压全硅电极分解水,还可以进一步提高太阳能产氢的效率。
本发明还保护所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系在太阳能制氢中的应用。
本发明的有益效果如下:
1、本发明利用硅薄膜半导体材料光生电荷在电解质/助催化剂/半导体电极体间传输机理。具有p/i/n结构硅薄膜电极可在受光之后产生光生电荷,受能带弯曲影响,光生电子被分离传输到表面产氢催化剂表面发生水还原反应产生氢气,n/i/p结构在受光之后产生光生空穴,受能带弯曲影响,光生电荷被分离传输到表面产氧催化剂表面发生水氧化反应产生氧气,具有p-n节的光阳极,光阴极不同于晶硅电极,以及别的半导体材料,由于薄膜硅带隙~1.75eV,单一的p-n节就可以产生接近1V的开压,电流密度接近10mA/cm2,而且两电极采用平行照光,太阳光谱不会受到影响,所以不需要外加偏压,就可以直接实现太阳能到氢的转换。此外,利用磁控溅射方法制备产氢金属纳米颗粒薄膜和低成本的氧化物薄膜作为助催化剂,也作为保护层,分别担载在具有p/i/n结构和n/i/p结构的硅薄膜表面,形成光阴极,光阳极,助催化剂可抑制载流子在电极表面复合,在强碱溶液中快速将光生载流子提取至催化剂表面参与反应,减轻硅薄膜的腐蚀,该设计是首例全硅半导体两电极体系,实现了无偏压分解水,而且太阳能产氢转换效率达到了极有前景的0.92%,这种融合高效低成本助催化剂进行设计PEC体系的理念为实现大规模的可持续太阳能制氢提供了希望和策略。
2、本发明全薄膜硅半导体双电极的原料硅元素地壳含量丰富,光吸收系数高,吸光范围宽,带隙可调,可以通过调整薄膜沉积顺序得到光阳极,光阴极;助催化剂通过磁控溅射方法制备,成本低廉,制备条件温和,成分可调,元素多变,制备的催化剂颗粒均匀,薄膜致密、性能优异,既能够实现分离电荷能力,又可以在其表面发生催化反应,同时还保护了薄膜硅电极表面不被侵蚀,所制备的产氧催化剂在反应过程中可生成双羟基氢氧化物,对电极表面有一定的钝化作用,实现了在碱性溶液中同时产生氢气和氧气,解决硅薄膜在碱性溶液中易腐蚀的问题。
3、通过磁控溅射可有效控制纳米金属的颗粒尺寸,分散情况。此外制备的氧化物薄膜具有高透光性,能够保证足够的光穿透氧化物催化剂进入薄膜硅电极。
4、全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,光阴极与光阳极直接相连,平行受光,半导体具有匹配的能带结构,光阴极受光之后,光生电子被分离,通过p-n节被分离,迁移到表面的产氢催化剂上发生放氢反应,而光生空穴迁移到背电极,被复合,而光阳极本身受光之后产生光生电荷,空穴被硅电极中p-n节分离,迁移到电极表面发生产氧反应,而光生电子通过外电路转移到光阴极参与反应,同时也形成了光生电流,光生电流的大小决定了太阳能转换产氢的效率。
附图说明:
图1中a是本发明实施例1全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系结构示意图;b是Co3O4/nip光阳极、Pt/pin光阴极光电流-电势曲线;
其中,1、FTO衬底,2、n/i/p结构的单节硅薄膜,3、Co3O4氧化物薄膜,4、Pt纳米颗粒薄膜,5、p/i/n结构的单节硅薄膜,6、光源,7、电解池。
图2是本发明Co3O4/nip光阳极、Pt/pin光阴极的SEM图,其中a是Pt/pin光阴极的俯视图、b是Co3O4/nip光阳极的俯视图,c是Pt/pin光阴极的侧视图,d是Co3O4/nip光阳极的侧视图。
图3中a是本发明实施例1全薄膜硅半导体双电极组装的器件图,b是本发明实施例1全薄膜硅半导体双电极全分解水电流-时间曲线,斩光时间间隔50s。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
如图1所示的一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,该体系包括Co3O4/nip光阳极、Pt/pin光阴极、电解液、光源6、电解池7,所述光阳极的结构依次为FTO衬底层1、n/i/p结构的单节硅薄膜2、Co3O4氧化物薄膜3,所述光阴极的结构依次为FTO衬底层1、p/i/n结构的单节硅薄膜5、产氢金属Pt纳米颗粒薄膜4,所述的电解液为1M的KOH溶液;所述的Co3O4/nip光阳极制备方法如下:FTO(透明导电玻璃)衬底1经过丙酮,乙醇,水各30min清洗之后,烘干,放入甚高频等离子体气相沉积设备(PEVCVD)中依次沉积沉积n型硅薄膜、本征硅薄膜和p型硅薄膜,获得n/i/p结构的单节硅薄膜;其中,在腔室中通入SiH4和氢气,在衬底上生成本征硅薄膜;而且通过掺杂磷烷,硼烷气体,制备n型硅薄膜,p型硅薄膜,利用磁控溅射方法制备Co3O4氧化物薄膜作为产氧催化剂也作为保护层担载在具有n/i/p结构的硅薄膜表面,形成Co3O4/nip光阳极。
所述的光阴极制备方法如下:1)利用甚高频等离子气相沉积设备依次在清洗干净后FTO衬底上沉积p型硅薄膜、本征硅薄膜和n型硅薄膜,获得p/i/n结构的单节硅薄膜;2)利用磁控溅射方法制备产氢金属Pt纳米颗粒薄膜作为助催化剂,也作为保护层担载在具有p/i/n结构的单节硅薄膜表面,形成产氢金属Pt/pin光阴极。
如图2所示,Pt纳米颗粒散落分布,占比6.5%,颗粒直径尺寸接近20nm左右。Co3O4薄膜致密沉积在硅薄膜表面,厚度接近30nm,Pt/pin光阴极和Co3O4/nip光阳极从截面观察厚度接近600nm。将所述的Co3O4/nip光阳极与Pt/pin光阴极采用密封树枝胶封装出相同面积的电极,如图3中a所示,插入电解池中,内含有1M的KOH溶液,并且通过外电路导线连通;开启光源6分别照射所述的光阳极和光阴极,此时所述的光阳极和光阴极分别发生氧化与还原反应并通过外电路形成回路,从而实现无偏压光电催化全分解水产氢,观察到H2气泡在光阴极处产生,同时,光阳极处产生O2气泡。在进行全分解水测试前,分别测试了担载有助催化剂的光阴极和光阳极,二者的光电流-电势曲线如图1中b所示,由于光阴极开启电位正向移动,光阳极开启电位负向移动,因此观察到二者在0.81V具有1.5mA/cm2的电流密度,经过如下公式(1)计算,可实现0.92%的太阳能分解水产氢效率。
太阳能-氢气转换效率(STH)描述了在零偏压条件下在太阳光谱AM 1.5G照明下的PEC器件整体效率。一般来说,这是建立在双电极测试系统基础上,无需外加偏压而在直接短路的情况下测试的。因此,在工业应用中,STH是评估PEC系统最具权威性的参数,而氢气则是PEC水分解反应所期望的化学物质之一。因此,太阳能-氢转化效率(STH)即是储存在氢气中的化学能量与太阳能输入能量的比值,更直接地描述PEC水分解的效率。对于双光极PEC系统,如果它们以并联模式布置,则照明面积是阳极和阴极面积之和。由于实例中光阴极和光阳极的法拉第效率(F)为100%,总输入的太阳能为100mW/cm2,则效率可由公式(1)给出:
由于电路中存在的一定的损耗,实际达到的电流在1mA/cm2,经过公式(1)计算,太阳能产氢效率0.62%。
本实施例采用单结的薄膜硅首次实现无偏压全分解水,且效率达到0.62%,如果更换为双节或者三节,同时减少实际电路中的损耗,该效率可进一步提升。因此本发明不仅限于单结薄膜硅,双节,甚至三节薄膜硅都可以作为电极材料,在磁控溅射腔室中制备合适的助催化剂就可以进行无偏压全分解水的研究,且可以增强太阳能到氢的转换效率。此外该设计也可以适用于能够产生分解水+过电位的其他光伏半导体来实现无偏压的光电化学转化。
上述实施例仅为事宜说明,对于本领域普通技术人员来说,可以根据上述情况进行改进和变换,而这些改进和变换都应落入本发明的保护范围。
Claims (10)
1.一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,该体系包括光阳极、光阴极、电解液、光源、电解池,所述光阳极的结构依次为衬底层、n/i/p结构的单节硅薄膜、氧化物薄膜,所述光阴极的结构依次为衬底层、p/i/n结构的单节硅薄膜、产氢金属纳米颗粒薄膜,所述的电解液为0.5~1.2M的KOH溶液;将所述的光阳极与光阴极采用硅胶封装出相同面积的电极,插入电解池中,内含有0.5~1.2M的KOH溶液,并且通过外电路导线连通;开启光源平行照射所述的光阳极和光阴极,此时所述的光阳极和光阴极表面分别发生氧化与还原反应并通过外电路形成回路,从而实现无偏压光电催化全分解水产氢。
2.根据权利要求1所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,n/i/p结构的单节硅薄膜或p/i/n结构的单节硅薄膜,其中n层厚度为60-80nm,i层厚度300-400nm,p层厚度为20-40nm。
3.根据权利要求1或2所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,所述衬底包括透明导电玻璃或柔性不锈钢或高分子薄膜。
4.根据权利要求1或2所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,所述氧化物包括CoOx、NiOx、RuOx、NiFeOx,其中x为1-2.5。
5.根据权利要求1或2所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,所述产氢金属包括Pt、Ni或其合金或过渡金属化合物。
6.根据权利要求1或2所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,所述的光阳极制备方法如下:1)利用甚高频等离子气相沉积设备依次在清洗干净后衬底上沉积n型硅薄膜、本征硅薄膜和p型硅薄膜,获得n/i/p结构的单节硅薄膜;其中,在腔室中通入SiH4和氢气,在衬底上生成本征硅薄膜;而且通过掺杂磷烷,硼烷气体,制备n型硅薄膜,p型硅薄膜,2)利用磁控溅射方法制备氧化物薄膜作为产氧催化剂也作为保护层担载在具有n/i/p结构的硅薄膜表面,形成氧化物/nip光阳极。
7.根据权利要求1或2所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,所述的光阴极制备方法如下:1)利用甚高频等离子气相沉积设备依次在清洗干净后衬底上沉积p型硅薄膜、本征硅薄膜和n型硅薄膜,获得p/i/n结构的单节硅薄膜;其中,在腔室中通入SiH4和氢气,在衬底上生成本征硅薄膜;而且通过掺杂磷烷,硼烷气体,制备n型硅薄膜,p型硅薄膜,2)利用磁控溅射方法制备产氢金属纳米颗粒薄膜作为助催化剂,也作为保护层担载在具有p/i/n结构的单节硅薄膜表面,形成产氢催化剂/pin光阴极。
8.根据权利要求1或2所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,单节硅薄膜无论光阳极还是光阴极都采用双节或三节硅薄膜代替。
9.根据权利要求8所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系,其特征在于,双节硅薄膜为:非晶硅/纳晶硅,非晶硅/非晶硅,非晶硅/硅锗中的任一种;三节硅薄膜为:非晶硅/非晶硅/非晶硅,非晶硅/纳晶硅/硅锗,非晶硅/非晶硅/硅锗中的任一种。
10.权利要求1-9中任意一项权利要求所述全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系在太阳能制氢中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010084395.3A CN111188058B (zh) | 2020-02-10 | 2020-02-10 | 一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010084395.3A CN111188058B (zh) | 2020-02-10 | 2020-02-10 | 一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111188058A CN111188058A (zh) | 2020-05-22 |
CN111188058B true CN111188058B (zh) | 2021-02-19 |
Family
ID=70706632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010084395.3A Active CN111188058B (zh) | 2020-02-10 | 2020-02-10 | 一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111188058B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112760668B (zh) * | 2020-12-25 | 2022-05-24 | 华南理工大学 | 一种基于石墨烯上InGaN纳米柱光电极无偏压光电化学制氢系统与应用 |
WO2023283687A1 (en) * | 2021-07-15 | 2023-01-19 | Australian National University | A photoelectrode and method for fabrication thereof |
CN113846289A (zh) * | 2021-09-24 | 2021-12-28 | 厦门大学 | 基于共溅射中间膜原位转化制备层状双羟基氢氧化物膜的方法 |
CN114351176B (zh) * | 2021-12-01 | 2023-08-01 | 电子科技大学长三角研究院(湖州) | 一种水分解制氢的方法及其装置 |
CN115011921B (zh) * | 2022-05-25 | 2023-07-25 | 华南师范大学 | 具有微空心砖结构的硒化亚锗薄膜、太阳能发电和水解制氢装置及其制备方法 |
CN115679371B (zh) * | 2022-11-22 | 2024-06-18 | 电子科技大学长三角研究院(湖州) | 一种双阴极并联光驱动分解水制氢电极系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101246932A (zh) * | 2007-02-14 | 2008-08-20 | 北京行者多媒体科技有限公司 | 氢氩高稀释方法生产氢化硅薄膜 |
US7833391B2 (en) * | 2007-07-26 | 2010-11-16 | Gas Technology Institute | Solar hydrogen charger |
CN102437226B (zh) * | 2011-12-13 | 2013-12-11 | 清华大学 | 一种碳纳米管-硅薄膜叠层太阳能电池及其制备方法 |
CN102646794A (zh) * | 2012-04-23 | 2012-08-22 | 华北电力大学 | 一种p-i-n型聚合物太阳能电池及其制备方法 |
CN104711627B (zh) * | 2013-12-13 | 2017-02-15 | 中国科学院大连化学物理研究所 | 一种光阳极‑光伏电池耦合的双光照完全光驱动分解水制氢方法 |
CN107641817B (zh) * | 2017-09-12 | 2019-04-05 | 苏州大学 | 一种提高光解水性能的光阳极制备方法及所得光阳极结构 |
CN109252179B (zh) * | 2018-09-19 | 2020-02-21 | 苏州大学 | 一种用于光解水的双吸收层光阳极及制备方法 |
-
2020
- 2020-02-10 CN CN202010084395.3A patent/CN111188058B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111188058A (zh) | 2020-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111188058B (zh) | 一种全薄膜硅半导体双电极无偏压光电催化全分解水产氢的体系及其应用 | |
Li et al. | Water splitting: from electrode to green energy system | |
Liang et al. | Efficient H2 production in a microbial photoelectrochemical cell with a composite Cu2O/NiOx photocathode under visible light | |
Verlage et al. | A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO 2 films | |
Zeng et al. | A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting | |
Bai et al. | A Cu2O/Cu2S-ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting | |
Liu et al. | Tandem cells for unbiased photoelectrochemical water splitting | |
US20040262154A1 (en) | Photoelectrochemical device and electrode | |
US7833391B2 (en) | Solar hydrogen charger | |
JP2006508253A (ja) | 液状電解物を有した集積型光電気化学とそのシステム | |
Li et al. | Recent progress in hydrogen: From solar to solar cell | |
CN110205638B (zh) | 一种Z型CuBi2O4/SnO2光电阴极薄膜及其制备方法和应用 | |
Ji et al. | Solar-Powered Environmentally Friendly Hydrogen Production: Advanced Technologies for Sunlight-Electricity-Hydrogen Nexus | |
CN111334812B (zh) | 基于水合羟基氧化铁的非晶硅薄膜光电极及其制备方法 | |
US20080314435A1 (en) | Nano engineered photo electrode for photoelectrochemical, photovoltaic and sensor applications | |
JP2013253294A (ja) | 水電解装置 | |
CN111525142A (zh) | 一种用于光催化燃料电池的CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极 | |
CN109487291A (zh) | 一种光阴极制备方法、光阴极及其光电化学电池 | |
RU2596214C2 (ru) | Гальванический элемент и батарея на основе электрогенерирующего материала | |
Pham et al. | Photovoltaic partner selection for high-efficiency photovoltaic-electrolytic water splitting systems: brief review and perspective | |
US20170077572A1 (en) | Hybrid system for storing solar energy as heat and electricity | |
CN116815233B (zh) | 一种rGO修饰的InGaN纳米柱光电极材料及其制备方法与应用 | |
CN113061906B (zh) | 一种光电催化分解水制氢的方法 | |
Ji et al. | Enhanced Quantum Dot Sensitized Solar Cells Performance with One-Step Synthesized Co0. 85Se Counter Electrode | |
Filiz et al. | Solar–Hydrogen Coupling Hybrid Systems for Green Energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |