CN111177964B - Balance adjusting method and equipment for jacking state of airplane - Google Patents

Balance adjusting method and equipment for jacking state of airplane Download PDF

Info

Publication number
CN111177964B
CN111177964B CN201911356272.4A CN201911356272A CN111177964B CN 111177964 B CN111177964 B CN 111177964B CN 201911356272 A CN201911356272 A CN 201911356272A CN 111177964 B CN111177964 B CN 111177964B
Authority
CN
China
Prior art keywords
displacement constraint
jacking
finite element
airplane
element model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911356272.4A
Other languages
Chinese (zh)
Other versions
CN111177964A (en
Inventor
宋晓鹤
程文杰
梁尚清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC First Aircraft Institute
Original Assignee
AVIC First Aircraft Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC First Aircraft Institute filed Critical AVIC First Aircraft Institute
Priority to CN201911356272.4A priority Critical patent/CN111177964B/en
Publication of CN111177964A publication Critical patent/CN111177964A/en
Application granted granted Critical
Publication of CN111177964B publication Critical patent/CN111177964B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Toys (AREA)

Abstract

The embodiment of the invention discloses a balance adjusting method for an airplane jacking state, which comprises the following steps: obtaining airplane mass distribution in advance, and constructing a complete airplane finite element model according to the airplane structure; according to the aircraft mass distribution, applying a distributed vertical load G in the full-aircraft finite element model z (ii) a Applying a vertical load F at a nose jacking point A in the full-machine finite element model Az And horizontal load F Ax (ii) a Respectively applying course linear displacement constraint delta to wing jacking points B in the finite element model of the whole machine Bx Lateral linear displacement constraint delta By And vertical load F Bz (ii) a Respectively applying course linear displacement constraint delta to wing jacking points C in the finite element model of the whole machine Cx Lateral linear displacement constraint delta Cy And a vertical load F Cz (ii) a Imposing a vertical linear displacement constraint Δ at a center of gravity point G in the full-machine finite element model Gz Course angular displacement constraint gamma Gx Lateral angular displacement constraint gamma Gy And vertical angular displacement constraint gamma Gz

Description

Balance adjusting method and equipment for jacking state of airplane
Technical Field
The present application relates to, but not limited to, the field of aerospace engineering applications, and in particular, to a method and an apparatus for balancing and adjusting a jacking state of an aircraft.
Background
When the airplane is jacked, the structure is designed to bear vertical load and horizontal load which act on each jacking point independently, and the balance mode of jacking load is not specified. Local stress analysis is typically performed considering only the jacking point individual loads. According to the experience of actual models, the result of the analysis of the local stress of the jacking point structure is inaccurate.
Disclosure of Invention
In order to solve the technical problem, embodiments of the present invention provide a method and an apparatus for adjusting balance of a jacking state of an aircraft, so as to solve a problem in the prior art that a local stress analysis of a jacking point structure is single.
In a first aspect, an embodiment of the present invention provides a method for adjusting balance of a jacking state of an aircraft, where the method includes:
obtaining airplane mass distribution in advance, and constructing a finite element model of the whole airplane according to the airplane structure;
according to the airplane mass distribution, applying a distributed vertical load G in the full-airplane finite element model z
Applying a vertical load F at a nose jacking point A in the whole-machine finite element model Az And horizontal load F Ax
Respectively applying course linear displacement constraint delta to wing jacking points B in the finite element model of the whole machine Bx Lateral linear displacement constraint delta By And vertical load F Bz
Respectively applying course linear displacement constraint delta to wing jacking points C in the finite element model of the whole machine Cx Lateral linear displacement constraint delta Cy And a vertical load F Cz
Imposing a vertical linear displacement constraint Δ at a center of gravity point G in the full-machine finite element model Gz Course angular displacement constraint gamma Gx Lateral angular displacement constraint gamma Gy And vertical angular displacement constraint gamma Gz
Preferably, the method further comprises:
according to the G z 、F Az 、F Ax 、Δ Bx 、Δ By 、F Bz 、Δ Cx 、Δ Cy 、F Cz 、Δ Gz 、γ Gx 、γ Gy And gamma Gz And carrying out balance adjustment on the airplane in a jacking state.
Preferably, said F Az 、F Ax 、F Bz And F Cz Determined for jacking and mooring equipment requirements according to CCAR 25.519, 25 th cargo attachment airworthiness standard of China civil aviation regulation.
Preferably, said Δ Bx 、Δ By 、Δ Cx 、Δ Cy 、Δ Gz 、γ Gx 、γ Gy And gamma Gz Determined according to the actual state of the aircraft。
Preferably, according to said G z 、F Az 、F Ax 、Δ Bx 、Δ By 、F Bz 、Δ Cx 、Δ Cy 、F Cz 、Δ Gz 、γ Gx 、γ Gy And gamma Gz The balance adjustment of the aircraft in the jacking state specifically comprises the following steps:
using jacks and according to said G z 、F Az 、F Ax 、Δ Bx 、Δ By 、F Bz 、Δ Cx 、Δ Cy 、F Cz 、Δ Gz 、γ Gx 、γ Gy And gamma Gz And carrying out balance adjustment on the airplane in a jacking state.
In a second aspect, an embodiment of the present invention provides a balance adjustment device for an aircraft jacking state, the device including a building unit and an applying unit, wherein:
the construction unit is used for obtaining airplane mass distribution in advance and constructing a complete airplane finite element model according to the airplane structure;
an applying unit for applying a distributed vertical load G in the full-aircraft finite element model according to the aircraft mass distribution z (ii) a Applying a vertical load F at a nose jacking point A in the full-machine finite element model Az And horizontal load F Ax (ii) a Respectively applying course linear displacement constraint delta to wing jacking points B in the finite element model of the whole machine Bx Lateral linear displacement constraint delta By And vertical load F Bz (ii) a Respectively applying heading linear displacement constraint delta to wing jacking points C in the finite element model of the whole aircraft Cx Lateral linear displacement constraint delta Cy And vertical load F Cz (ii) a Imposing a vertical linear displacement constraint Δ at a center of gravity point G in the full-machine finite element model Gz Course angular displacement constraint gamma Gx And lateral angular displacement constraint gamma Gy And vertical angular displacement constraint gamma Gz
In a third aspect, an embodiment of the present invention provides a balance adjustment apparatus for an aircraft jacking state, including: a memory and a processor;
the memory configured to hold executable instructions;
the processor is configured to implement the balance adjustment method for the jacking state of the airplane as described in any one of the above items when the executable instructions stored in the memory are executed.
In a fourth aspect, embodiments of the present invention provide a computer-readable storage medium, which stores executable instructions that, when executed by a processor, implement the balance adjustment method for the jacking state of an aircraft according to any one of the above methods.
The application provides a stress analysis method of jack direction is considered to aircraft jacking state, compares traditional stress analysis method, and the result is more reasonable, reliable, can be used to aircraft structure detailed design, makes structural design safer, advance.
Drawings
The accompanying drawings are included to provide a further understanding of the present invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the example serve to explain the principles of the invention and are not intended to limit the invention.
Fig. 1 is a schematic diagram illustrating a method for adjusting balance of a jacking state of an aircraft according to an embodiment of the present disclosure;
fig. 2 is a schematic diagram of another method for adjusting balance of a jacking state of an aircraft according to an embodiment of the present application.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that the embodiments and features of the embodiments in the present application may be arbitrarily combined with each other without conflict.
The steps illustrated in the flow charts of the figures may be performed in a computer system such as a set of computer-executable instructions. Also, while a logical order is shown in the flow diagrams, in some cases, the steps shown or described may be performed in an order different than here.
The following specific embodiments of the present invention may be combined, and the same or similar concepts or processes may not be described in detail in some embodiments.
When the airworthiness standard stipulates that the airplane is jacked, the structure is designed to bear vertical load and horizontal load which act on each jacking point independently, and the balance mode of jacking load is not stipulated explicitly. Local stress analysis is typically performed considering only the jacking point individual loads. According to the experience of actual models, the results of the local stress analysis of the jacking point structure are not conservative
The invention aims to provide a reasonable and reliable stress analysis method aiming at the actual jacking scene (each jacking point bears horizontal load in the opposite direction) when an airplane is jacked vertically and a jack inclines in the direction.
In the prior art, the mass distribution of the jacking state of an airplane is considered, and the distributed vertical load generated by the mass distribution is applied to a finite element model of the whole airplane; applying the vertical load and the horizontal load specified by the clause at one jacking point A, wherein the horizontal load is balanced by considering the horizontal load at the other two jacking points B, C; the rotation caused by the horizontal load is not considered. If the heading, lateral and vertical linear displacement is restrained at the B, C jacking point, the restraint reaction force vertical load and the horizontal load at the B, C jacking point are not consistent with the jacking load specified by the clause.
As shown in fig. 1 and fig. 2, according to the mass distribution of the jacking state of the airplane, a distributed vertical load generated by the mass distribution is applied to the finite element model of the whole airplane;
the vertical load and the horizontal load specified by the clause are applied at the jacking point a.
Heading linear displacement constraints, lateral linear displacement constraints and the vertical loads specified by the clauses are applied at jacking points B, C. And the support reaction force formed by the heading linear displacement constraint at the jacking point B, C and the support reaction force formed by the lateral linear displacement constraint are balanced with the horizontal load at the jacking point A.
And applying vertical linear displacement constraint, course angular displacement constraint, lateral angular displacement constraint and vertical angular displacement constraint at the gravity center point G. And the thrust reaction force formed by the vertical linear displacement constraint, the thrust reaction force formed by the course linear displacement constraint and the thrust reaction force formed by the lateral linear displacement constraint at the gravity center point G are 0, so that the airplane can be balanced in the jacking state.
The application provides a stress analysis method of jack direction is considered to aircraft jacking state, compares traditional stress analysis method, and the result is more reasonable, reliable, can be used to aircraft structure detailed design, makes structural design safer, advance.
Although the embodiments of the present invention have been described above, the above description is only for the convenience of understanding the present invention, and is not intended to limit the present invention. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (8)

1. A method of trim adjustment of a jacking condition of an aircraft, the method comprising:
obtaining airplane mass distribution in advance, and constructing a complete airplane finite element model according to the airplane structure;
according to the airplane mass distribution, applying a distributed vertical load G in the full-airplane finite element model z
Applying a vertical load F at a nose jacking point A in the whole-machine finite element model Az And horizontal load F Ax
Respectively applying course linear displacement constraint delta to wing jacking points B in the finite element model of the whole machine Bx Lateral linear displacement constraint delta By And vertical load F Bz
Respectively applying course linear displacement constraint delta to wing jacking points C in the finite element model of the whole machine Cx Lateral linear displacement constraint delta Cy And vertical load F Cz
Imposing a vertical linear displacement constraint Δ at a center of gravity point G in the full-machine finite element model Gz Course angular displacement constraint gamma Gx Lateral angular displacement restraintγ Gy And vertical angular displacement constraint gamma Gz
2. The method of claim 1, further comprising:
according to the G z 、F Az 、F Ax 、Δ Bx 、Δ By 、F Bz 、Δ Cx 、Δ Cy 、F Cz 、Δ Gz 、γ Gx 、γ Gy And gamma Gz And carrying out balance adjustment on the airplane in a jacking state.
3. The method of claim 1, wherein F is Az 、F Ax 、F Bz And F Cz As determined by aviation standards.
4. The method of claim 1, wherein Δ is Bx 、Δ By 、Δ Cx 、Δ Cy 、Δ Gz 、γ Gx 、γ Gy And gamma Gz Is determined based on the actual state of the aircraft.
5. The method of claim 2, wherein G is the basis of z 、F Az 、F Ax 、Δ Bx 、Δ By 、F Bz 、Δ Cx 、Δ Cy 、F Cz 、Δ Gz 、γ Gx 、γ Gy And gamma Gz Carrying out balance adjustment on the airplane in a jacking state, and specifically comprising the following steps:
using jacks and according to G z 、F Az 、F Ax 、Δ Bx 、Δ By 、F Bz 、Δ Cx 、Δ Cy 、F Cz 、Δ Gz 、γ Gx 、γ Gy And gamma Gz And carrying out balance adjustment on the airplane in a jacking state.
6. A balance adjustment device for a jacking state of an aircraft, the device comprising a construction unit and an application unit, wherein:
the construction unit is used for obtaining airplane mass distribution in advance and constructing a complete airplane finite element model according to the airplane structure;
an applying unit for applying a distributed vertical load G in the full-aircraft finite element model according to the aircraft mass distribution z (ii) a Applying a vertical load F at a nose jacking point A in the full-machine finite element model Az And horizontal load F Ax (ii) a Respectively applying course linear displacement constraint delta to wing jacking points B in the finite element model of the whole machine Bx Lateral linear displacement constraint delta By And vertical load F Bz (ii) a Respectively applying heading linear displacement constraint delta to wing jacking points C in the finite element model of the whole aircraft Cx Lateral linear displacement constraint delta Cy And vertical load F Cz (ii) a Imposing a vertical linear displacement constraint Δ at a center of gravity point G in the full-machine finite element model Gz Course angular displacement constraint gamma Gx Lateral angular displacement constraint gamma Gy And vertical angular displacement constraint gamma Gz
7. A balance adjustment device for a jacking state of an aircraft, comprising: a memory and a processor;
the memory configured to hold executable instructions;
the processor, when executing the executable instructions stored in the memory, is configured to implement the balance adjustment method for the jacking state of the aircraft according to any one of claims 1 to 5.
8. A computer-readable storage medium storing executable instructions that, when executed by a processor, implement a method of balancing jacking conditions of an aircraft according to any one of claims 1 to 5.
CN201911356272.4A 2019-12-25 2019-12-25 Balance adjusting method and equipment for jacking state of airplane Active CN111177964B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911356272.4A CN111177964B (en) 2019-12-25 2019-12-25 Balance adjusting method and equipment for jacking state of airplane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911356272.4A CN111177964B (en) 2019-12-25 2019-12-25 Balance adjusting method and equipment for jacking state of airplane

Publications (2)

Publication Number Publication Date
CN111177964A CN111177964A (en) 2020-05-19
CN111177964B true CN111177964B (en) 2023-04-14

Family

ID=70657962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911356272.4A Active CN111177964B (en) 2019-12-25 2019-12-25 Balance adjusting method and equipment for jacking state of airplane

Country Status (1)

Country Link
CN (1) CN111177964B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113704878B (en) * 2021-08-05 2023-10-10 中国航空工业集团公司沈阳飞机设计研究所 Method for applying load of landing gear by using aircraft structure full-aircraft finite element model

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582083A (en) * 1941-07-23 1946-11-05 Walter Gordon Wilson Improvements in and relating to the steering devices of air or water craft, torpedoes and the like
CN102235943A (en) * 2010-05-06 2011-11-09 中国商用飞机有限责任公司 Loading test device
CN102359848A (en) * 2011-09-06 2012-02-22 上海福伊特水电设备有限公司 Water turbine rotating wheel three-fulcrum weighing static balance device and static balance technology thereof
CN103954340A (en) * 2014-04-28 2014-07-30 山东太古飞机工程有限公司 Jack-up type aircraft weighing adaptor
CN104140060A (en) * 2014-06-27 2014-11-12 中航飞机股份有限公司西安飞机分公司 Synchronous jacking system of airplane
CN204056301U (en) * 2014-09-01 2014-12-31 北京元恒大通科技有限公司 A kind of canard aerodynamic arrangement aircraft decoy of monocoque
CN104598693A (en) * 2015-02-02 2015-05-06 西北工业大学 Method for determining thin-walled structure high-rigidity connecting area load transfer
EP2899118A1 (en) * 2014-01-27 2015-07-29 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotorcraft with a fuselage and at least one main rotor
CN104933250A (en) * 2015-06-23 2015-09-23 中国航空工业集团公司西安飞机设计研究所 Wing aerodynamics modeling method
CN105004884A (en) * 2015-07-03 2015-10-28 北京航空航天大学 SiC-based micro-optics high-temperature accelerometer and design method
CN106202699A (en) * 2016-07-07 2016-12-07 中国飞机强度研究所 A kind of sensitivity method for solving under many displacement constraints
CN206430927U (en) * 2017-02-14 2017-08-22 成都飞机工业(集团)有限责任公司 A kind of bearing test device of aircraft jack
CN107521695A (en) * 2017-08-04 2017-12-29 中国航空工业集团公司西安飞机设计研究所 A kind of blended wing-body connects wing aircraft
CN108193604A (en) * 2017-11-28 2018-06-22 中交二航局第二工程有限公司 Ballasting method of weighing during box beam T structures balance swivel
CN108622435A (en) * 2018-05-07 2018-10-09 中国商用飞机有限责任公司 Six-freedom-degree APU (auxiliary Power Unit) installation adjusting device
CN108820245A (en) * 2018-06-26 2018-11-16 北京航空航天大学 A kind of solar powered aircraft aerofoil mask film tensioning installation equipment
CN109987541A (en) * 2019-03-21 2019-07-09 沈阳飞研航空设备有限公司 Aircraft intelligent electric machinery jacking apparatus
CN110002004A (en) * 2019-04-02 2019-07-12 中国飞机强度研究所 Complete aircraft structural floor strength test sidewise restraint control method and system
CN110182385A (en) * 2018-12-11 2019-08-30 中国航空工业集团公司北京长城计量测试技术研究所 A kind of lateral force eliminating device of aircraft jack-up system
CN209797364U (en) * 2019-03-21 2019-12-17 沈阳飞研航空设备有限公司 Intelligent electric mechanical jacking device for airplane

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582083A (en) * 1941-07-23 1946-11-05 Walter Gordon Wilson Improvements in and relating to the steering devices of air or water craft, torpedoes and the like
CN102235943A (en) * 2010-05-06 2011-11-09 中国商用飞机有限责任公司 Loading test device
CN102359848A (en) * 2011-09-06 2012-02-22 上海福伊特水电设备有限公司 Water turbine rotating wheel three-fulcrum weighing static balance device and static balance technology thereof
EP2899118A1 (en) * 2014-01-27 2015-07-29 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotorcraft with a fuselage and at least one main rotor
CN103954340A (en) * 2014-04-28 2014-07-30 山东太古飞机工程有限公司 Jack-up type aircraft weighing adaptor
CN104140060A (en) * 2014-06-27 2014-11-12 中航飞机股份有限公司西安飞机分公司 Synchronous jacking system of airplane
CN204056301U (en) * 2014-09-01 2014-12-31 北京元恒大通科技有限公司 A kind of canard aerodynamic arrangement aircraft decoy of monocoque
CN104598693A (en) * 2015-02-02 2015-05-06 西北工业大学 Method for determining thin-walled structure high-rigidity connecting area load transfer
CN104933250A (en) * 2015-06-23 2015-09-23 中国航空工业集团公司西安飞机设计研究所 Wing aerodynamics modeling method
CN105004884A (en) * 2015-07-03 2015-10-28 北京航空航天大学 SiC-based micro-optics high-temperature accelerometer and design method
CN106202699A (en) * 2016-07-07 2016-12-07 中国飞机强度研究所 A kind of sensitivity method for solving under many displacement constraints
CN206430927U (en) * 2017-02-14 2017-08-22 成都飞机工业(集团)有限责任公司 A kind of bearing test device of aircraft jack
CN107521695A (en) * 2017-08-04 2017-12-29 中国航空工业集团公司西安飞机设计研究所 A kind of blended wing-body connects wing aircraft
CN108193604A (en) * 2017-11-28 2018-06-22 中交二航局第二工程有限公司 Ballasting method of weighing during box beam T structures balance swivel
CN108622435A (en) * 2018-05-07 2018-10-09 中国商用飞机有限责任公司 Six-freedom-degree APU (auxiliary Power Unit) installation adjusting device
CN108820245A (en) * 2018-06-26 2018-11-16 北京航空航天大学 A kind of solar powered aircraft aerofoil mask film tensioning installation equipment
CN110182385A (en) * 2018-12-11 2019-08-30 中国航空工业集团公司北京长城计量测试技术研究所 A kind of lateral force eliminating device of aircraft jack-up system
CN109987541A (en) * 2019-03-21 2019-07-09 沈阳飞研航空设备有限公司 Aircraft intelligent electric machinery jacking apparatus
CN209797364U (en) * 2019-03-21 2019-12-17 沈阳飞研航空设备有限公司 Intelligent electric mechanical jacking device for airplane
CN110002004A (en) * 2019-04-02 2019-07-12 中国飞机强度研究所 Complete aircraft structural floor strength test sidewise restraint control method and system

Also Published As

Publication number Publication date
CN111177964A (en) 2020-05-19

Similar Documents

Publication Publication Date Title
CN105066994B (en) A kind of data fusion method of embedded air data system and inertial navigation system
US9645054B2 (en) Method for determining reduction factor of bearing capacity of axial load cylindrical shell structure
CN103593524B (en) Dynamics modeling and analyzing method for aerospace vehicle
CN111177964B (en) Balance adjusting method and equipment for jacking state of airplane
CN104002988B (en) A kind of method that aircraft arrestment static test is implemented
US8326587B2 (en) System, method, and computer program product for predicting cruise orientation of an as-built airplane
CN104058101B (en) A kind of normal direction load applying method in wing gross distortion situation
CN110941920B (en) Method for calculating and post-processing flight load data of unmanned aerial vehicle
US7869895B2 (en) System, method, and computer program product for computing orientation alignment transfer tool locations to transfer predicted cruise orientation alignment of an as-built airplane
CN109558685B (en) Projectile body fulcrum judging method and device, storage medium and electronic equipment
CN105444999A (en) Static test loading method for long straight wings of small unmanned air vehicle
Wolowicz Considerations in the determination of stability and control derivatives and dynamic characteristics from flight data
CN105447249A (en) Static test load calculation method for engine nacelle structure
CN113155393B (en) Air-drop buffering air bag test device
CN110765550B (en) Least square method for static test load design of plane symmetry reentry aircraft structure
CN104019983B (en) A kind of device for testing reliability of cabin door lock for aircrafts
Shen et al. A 6DOF mathematical model of parachute in Mars EDL
CN109323841B (en) Coordination method for total load and distributed load of wing based on grid
Thanapalan et al. Modeing of a helicopter with an under-slung load system
Guglieri et al. Dynamic Stability of a Helicopter with an External Suspended Load.
Neubauer et al. Aircraft loads
CN112364494B (en) Method for calculating hanging load and checking strength of plane-symmetric aircraft
CN113051785A (en) Stress analysis method for jacking point structures of airplane in jacking state
CN108009334B (en) Method for calculating load of hanger rail joint of aircraft freight system
Gebbink et al. Consistency Verifications of the DNW-HST Tunnel Interference Correction Bookkeeping

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant