CN111167522A - 超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用 - Google Patents

超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN111167522A
CN111167522A CN201911411473.XA CN201911411473A CN111167522A CN 111167522 A CN111167522 A CN 111167522A CN 201911411473 A CN201911411473 A CN 201911411473A CN 111167522 A CN111167522 A CN 111167522A
Authority
CN
China
Prior art keywords
cmf
tio
pdms
temperature
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911411473.XA
Other languages
English (en)
Other versions
CN111167522B (zh
Inventor
朱海光
刘勇
袁勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoneng Environmental Technology Nantong Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201911411473.XA priority Critical patent/CN111167522B/zh
Publication of CN111167522A publication Critical patent/CN111167522A/zh
Application granted granted Critical
Publication of CN111167522B publication Critical patent/CN111167522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明属于CMF‑TiO2‑PDMS复合材料技术领域,公开了超疏水CMF‑TiO2‑PDMS复合材料及其制备方法和应用。将非晶态TiO2负载在碳化三聚氰胺材料(CMF)骨架上并高温处理,得到结晶态CMF‑TiO2;在固化剂作用下,采用热固化法将聚二甲基硅氧烷(PDMS)在所述CMF‑TiO2表面交联成膜,得到CMF‑TiO2‑PDMS复合材料。所述超疏水CMF‑TiO2‑PDMS复合材料,既能吸附水溶性污染物和油溶性污染物,又可有效地解决传统光降解催化材料疏水性稳定性差的缺陷,同时表现出良好的耐用性、稳定性和抗紫外氧化性。

Description

超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用
技术领域
本发明涉及CMF-TiO2-PDMS复合材料技术领域,特别涉及超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用。
背景技术
随着近几十年化工行业快速的发展,化学试剂泄露,工业废水排放和原油泄漏事故等频繁发生,不仅给人类环境带来了巨大威胁,而且对整个自然环境造成了灾难性破坏。因此,治理和清除水体有机污染物,防止水质进一步恶化已经成为全人类所面临的难题。
目前,大多数有机污染物可以根据其极性可分为两类:即水溶性有机污染物与油溶性有机污染物。对于油溶性有机污染物,可以利用其与水不互溶的特点,通常采用分离法治理,通常会采用疏水材料将油溶性污染物从水中分离出来,但是,现有疏水材料的疏水性能不够,不能有效地、快速的将油溶性污染物从污水分离出来。同时,一些疏水性差材料会吸附一些污水,导致油水分离效率极低。而对于水溶性污染物,目前多采用基于半导体光催化技术来治理,其原理是在光引发下,半导体会在水中产生强氧化活性自由基,能够有效地氧化、分解水溶性污染物。但是大多数是半导体材料表现出亲水性,又缺乏分离油溶性污染物的性能。
考虑现实生活中污水成分比较复杂,同时包含水溶性和油溶性污染物,而单一对于疏水或者半导体光催化材料,只能用于单一类型的污染物。因此,制备疏水性的光催化复合材料,首先其疏水性分离油溶性污染物,然后利用其光催化活性降解水溶性染料,对治理水体污染有着重要的意义。
目前,虽然已有研究人员通过将疏水材料涂覆在半导体光材料表面,制备疏水的光催化材料,用于水体有机污染物处理,但这样复合材料存在着以下缺陷:一是疏水材料抗氧化性差,在光催化降解有机污染物时,由于半导体产生活性自由基没有选择性,导致疏水材料分解,从而失去疏水性;疏水材料的疏水性还够高,没有达到超疏水的状态,导致污染物的分离不够彻底。二是,大多数半导体材料都是纳米颗粒,缺乏分离或者吸附油溶性污染物能力。综上所述,提供不易分解、分离水溶性和油溶性污染物效果佳的超疏水和光催化三维多孔复合材料,对拓展光催化技术在有机废水处理方面的应用有着极大研究价值。
发明内容
为了解决现有技术中的材料在光作用下易分解、分离水溶性和油溶性污染物效果不佳的技术问题,本发明提供了一种超疏水CMF-TiO2-PDMS复合材料的制备方法。
为了解决上述技术问题,本发明采用以下技术方案:
超疏水CMF-TiO2-PDMS复合材料的制备方法,将非晶态TiO2负载在碳化三聚氰胺材料(CMF)骨架上并高温处理,得到结晶态CMF-TiO2;在固化剂作用下,采用热固化法将聚二甲基硅氧烷(PDMS)在所述CMF-TiO2表面交联成膜,得到CMF-TiO2-PDMS复合材料。
本发明制备得到的CMF-TiO2-PDMS复合材料为超疏水结构,经过测试水滴在其表面可形成球形,其接触角可大于150°,具有超疏水性能;将非晶态TiO2负载在碳化三聚氰胺材料(CMF)骨架上并高温处理,高温碳化处理后,三聚氰胺CMF高分子链会发生断裂,会释放大量的气体,进行碳化、脱氧、脱氢、脱氮和脱硫等反应,最终得到CMF骨架,耐高温、高弹性,内部是由相互交联的多孔结构组成,非晶态TiO2负载在上述三维多孔骨架上,使CMF复合泡沫表面一层TiO2颗粒,形成结晶态CMF-TiO2,为得到超疏水结构的CMF-TiO2-PDMS复合材料提供基础;最后将采用热固化法将PDMS在CMF-TiO2表面进行成膜,在固化剂作用下,PDMS在CMF-TiO2表面进行交联,形成一种稳定的、超疏水性的膜。
本发明提供的热固化法具体为,可将PDMS和固化剂按照10:1比例,溶入乙酸乙酯溶液,将所述CMF-TiO2放入所述溶液浸泡、吸附,然后将CMF-TiO2取出,并加热固化,得到CMF-TiO2-PDMS复合材料。所述固化剂用于对PDMS进行固化的固化剂,并且没有具体限制,只要能够固化PDMS即可,可以选自羟基封端正硅酸乙酯,也可以通过商业手段购入道康宁公司出售的PDMS预聚物Sylgard 184。
作为优选,所述PDMS、固化剂和乙酸乙酯的体积为2:0.2:20,固化温度120℃,固化时间0.5h。
本发明提供的多孔CMF骨架的制备方法为:在氮气保护下,将三聚氰胺(CMF)泡沫进行高温碳化,三聚氰胺高分子链发生断裂,得到多孔CMF骨架;作为优选,高温碳化反应为,在管式炉中,加热至800℃,升温速率控制在5℃/min,并在800℃高温热处理2h,然后自然冷却至室温,得到多孔CMF骨架。
本发明提供的结晶态CMF-TiO2的制备方法为,将前驱体钛酸正四丁酯、异丙醇和N-N二甲基甲酰胺混合为混合溶液,碳化后的CMF浸泡在所述混合溶液中,并转移到高压反应釜中,放入高温烘箱进行水热反应。
作为优选,所述钛酸正四丁酯、异丙醇和N-N二甲基甲酰胺的体积比为5:40:10。
作为优选,所述水热反应的温度为180℃,反应时间为12h;所述水热反应结束后,将产物洗涤、烘干后进行高温处理,高温处理的温度为450℃,升温速率为5℃/min,高温处理的时间是2h。
本发明还提供了根据上述制备方法制备得到的超疏水CMF-TiO2-PDMS复合材料。
最后,本发明的另外一个发明目的,是所述超疏水CMF-TiO2-PDMS复合材料在清除水中油溶性污染物和水溶性污染物中应用。
本发明采用TiO2作为半导体光催化剂,PDMS作为超疏水改性材料,在两者协同作用下,CMF-TiO2-PDMS复合材料既具备超疏水性能又具备光催化活性。首先利用其超疏水性和多孔性吸附水中油溶性污染物,并且因为其超疏水性,疏水性差材料不会吸附污水,从而油水分离效率极高,油溶性污染物分离彻底,并利用其可压缩性通过挤压的方式将油溶性污染物回收;然后再利用TiO2光催化活性进一步降解催化水溶性污染物,从而达到水体污染物净化的目的,原理为,TiO2在紫外光照射下,价带电子受到激发跃迁至导带,形成电子与空穴分离。价带空穴具有氧化性,能够氧化其表面吸附的水分子,生成羟基自由基(·OH)。而导带电子具有还原性,可以吸附O2反应,生成超氧活性自由基(·O2 -),同时,进一步产生自由基·HO2与·OH,这些活性自由基物种有很强的氧化性,能够将有机污染物降解成无机物和水,从而达到水净化目的。
于此同时,PDMS是一种有机硅高分子材料,表面能低,疏水性好,当PDMS涂覆在TiO2表面上,在紫外光照射时,TiO2产生的活性自由基可以降解PDMS,使PDMS长链大分子氧化断裂,但是断裂之后的分子链可以与TiO2形成更牢固的共价键,从而接枝在TiO2表面,复合材料仍然保持良好的疏水性,故可有效地解决传统光降解催化材料疏水性稳定性差的缺陷。
由以上技术方案可知,本发明提供的超疏水CMF-TiO2-PDMS复合材料,既能保持TiO2光催化活性,去除水溶性污染物,又赋予其多孔性和超疏水性,有利于从水中高效彻底的吸附油溶性污染物,其次,超疏水CMF-TiO2-PDMS复合材料可有效地解决传统光降解催化材料疏水性稳定性差的缺陷;最后,本发明提供的CMF-TiO2-PDMS复合材料表现出良好的耐用性、稳定性和抗紫外氧化性。
附图说明
图1为实施例1的碳化CMF电镜扫描图;
图2为实施例2的CMF-TiO2复合材料的电镜扫描图;
图3为实施例3的超疏水CMF-TiO2-PDMS复合材料的电镜扫描图;
图4为实施例3的超疏水CMF-TiO2复合材料亲油(左)和亲水(右)接触角测量结果示意图;
图5为实施例3的超疏水CMF-TiO2-PDMS复合材料用以吸附水面或水底油溶性污染物示意图;
图6为实施例3的超疏水CMF-TiO2-PDMS复合材料的光催化降解水溶性污染物示意图;
图7为实施例3的超疏水CMF-TiO2-PDMS复合材料可循环性使用性示意图;
图8为实施例3的CMF-TiO2-PDMS复合材料的紫外灯照射后的接触角变化示意图。
具体实施方式
本发明公开了超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明当中。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
为了使本领域技术人员能够更好的理解本发明,下面结合具体实施方式对本发明作进一步的详细说明。
实施例1 CMF的制备
将商业三聚氰胺泡沫(10cm×6cm×2cm)放入管式炉,在氮气气氛下加热至800℃,升温速率控制在5℃/min。并在800℃高温热处理2h,然后自然冷却至室温,得到碳化CMF。将所述碳化CMF进行电镜扫描,扫描图见图1,图1显示,CMF内部是由相互交联的多孔结构组成,孔径大小从几十微米到几百微米不等,这种三维多孔的结构为污染物吸附提供了空间,其放大图显示,CMF骨架表面非常光滑。
实施例2 CMF-TiO2复合材料的制备
取异丙醇40份,N-N二甲基甲酰胺10份,钛酸正四丁酯5份于烧杯中,将实施例1制备的CMF浸泡在上述混合液中,并转移到高压反应釜中,放入高温烘箱进行水热反应,反应条件180℃,时间12h;然后将产物取出,用异丙醇50份洗涤,放至80℃的烘箱里烘干;最后,将上述泡沫放入管式炉里进行高温处理,温度为450℃,升温速率为5℃/min,时间是2h。将CMF-TiO2复合材料进行电镜扫描,扫描图见图2,图2所示,CMF复合泡沫表面均匀的覆盖着一层TiO2颗粒,从其放大图更能清楚看到TiO2堆积在CMF骨架上,说明通过水热制备了CMF-TiO2T复合材料。
实施例3 CMF-TiO2-PDMS复合材料的制备
取PDMS 2份,固化剂PDMS预聚物Sylgard 184 0.2份,乙酸乙酯20份于烧杯中,将实施例2制备的CMF-TiO2放入该溶液浸泡1h,充分吸附,最后将CMF-TiO2取出,并放入120℃烘箱中固化0.5h,得到超疏水CMF-TiO2-PDMS复合材料。将所述超疏水CMF-TiO2-PDMS复合材料进行电镜扫描,扫描图见图3,图3显示,在TiO2表面涂覆一层高分子聚合物,说明成功将PDMS修饰到TiO2表面。
实施例4 CMF-TiO2-PDMS复合材料性能检测
CMF-TiO2-PDMS复合材料的疏水性能检测和油溶性污染物吸附性能检测:
将实施例3制备得到的CMF-TiO2-PDMS复合材料进行疏水性能检测和油溶性污染物吸附性能检测,取1.5份氯仿和正乙烷(油性染色),分别放入含20份水的容器中,然后用CMF-TiO2-PDMS进行吸附,来模拟水底污染物和水面污染吸附性能测试,检测结果见图4和图5。
图4左图亲油性测试,其接触角为0°,说明CMF-TiO2-PDMS是超亲油;右图亲水性测试,可以明显的观察到水滴在CMF-TiO2-PDMS近似成球形,接触角大小为152.4°,表明是CMF-TiO2-PDMS是超疏水性。
图5显示,CMF-TiO2-PDMS复合材料可以能够有效高效地吸附水面或水底油溶性污染物,从而实现水净化,从图5中可看出,在吸附油溶性污染物时,因其超疏水性较好,周围没有出现浑浊现象或乳化现象,CMF-TiO2-PDMS复合材料不会吸附多余污水,油水分离效率高,油溶性污染物分离彻底。
CMF-TiO2-PDMS复合材料的光催化降解水溶性污染物测试:
取20份甲基橙溶液,浓度为20mg/L,双氧水0.05份于玻璃容器中,将实施例3制备得到的CMF-TiO2-PDMS放在上述溶液中,并放置紫外灯下,进行光催化降解测试,每隔一定时间取一次样品,进行吸光度测试,测试甲基橙的浓度变化。反应结束后,将CMF-TiO2-PDMS取出后,重新放入到甲基橙溶液,进行循环降解测试,测试结果如图6所示。
如图6所示,随着光照时间的增加,水溶性的污染物的浓度逐渐下降,80min后,水溶性的污染物基本被完全降解,此时,水溶性的污染物颜色由黄色变成无色,表明CMF-TiO2-PDMS能够光催化降解水溶性有机污染物。而且通过试验证明(详见图7),CMF-TiO2-PDMS复合材料循环五次后仍能保持良好的光催化活性,说明CMF-TiO2-PDMS的耐用性较佳。
CMF-TiO2-PDMS稳定性测试:
将实施例3制备得到的CMF-TiO2-PDMS,放在紫外灯下72h,然后用接触角测量仪测试CMF-TiO2-PDMS紫外灯照射后的接触角变化,详见图8。CMF-TiO2-PDMS复合材料在放置在紫外灯辐射72h后,水滴在CMF-TiO2-PDMS表面仍然能成球形,其接触角大小为150.8°,表现出超疏水性能,说明CMF-TiO2-PDMS表现出良好的稳定性和抗紫外氧化性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.超疏水CMF-TiO2-PDMS复合材料的制备方法,其特征在于:将非晶态TiO2负载在碳化三聚氰胺材料(CMF)骨架上并高温处理,得到结晶态CMF-TiO2;在固化剂作用下,采用热固化法将聚二甲基硅氧烷(PDMS)在所述CMF-TiO2表面交联成膜,得到CMF-TiO2-PDMS复合材料。
2.如权利要求1所述的制备方法,其特征在于:所述热固化法为,将PDMS、固化剂和乙酸乙酯混合成溶液,将所述CMF-TiO2放入所述溶液浸泡、吸附,然后将CMF-TiO2取出,并加热固化,得到CMF-TiO2-PDMS复合材料。
3.如权利要求2所述的制备方法,其特征在于:所述PDMS、固化剂和乙酸乙酯的体积为2:0.2:20,固化温度120℃,固化时间0.5h。
4.如权利要求1所述的制备方法,其特征在于:在氮气保护下,将三聚氰胺(CMF)泡沫进行高温碳化,三聚氰胺高分子链发生断裂,得到多孔CMF骨架。
5.如权利要求4所述的制备方法,其特征在于:高温碳化反应为,在管式炉中,加热至800℃,升温速率控制在5℃/min,并在800℃高温热处理2h,然后自然冷却至室温,得到多孔CMF骨架。
6.如权利要求1所述的制备方法,其特征在于:所述结晶态CMF-TiO2的制备方法为,将前驱体钛酸正四丁酯、异丙醇和N-N二甲基甲酰胺混合为混合溶液,碳化后的CMF浸泡在所述混合溶液中,并转移到高压反应釜中,放入高温烘箱进行水热反应。
7.如权利要求6所述的制备方法,其特征在于:所述钛酸正四丁酯、异丙醇和N-N二甲基甲酰胺的体积比为5:40:10。
8.如权利要求6所述的制备方法,其特征在于:所述水热反应的温度为180℃,反应时间为12h;所述水热反应结束后,将产物洗涤、烘干后进行高温处理,高温处理的温度为450℃,升温速率为5℃/min,高温处理的时间是2h。
9.如权利要求1-8任一所述的制备方法制备得到的超疏水CMF-TiO2-PDMS复合材料。
10.如权利要求9所述的超疏水CMF-TiO2-PDMS复合材料在清除水中油溶性污染物和水溶性污染物中应用。
CN201911411473.XA 2019-12-31 2019-12-31 超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用 Active CN111167522B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911411473.XA CN111167522B (zh) 2019-12-31 2019-12-31 超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911411473.XA CN111167522B (zh) 2019-12-31 2019-12-31 超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111167522A true CN111167522A (zh) 2020-05-19
CN111167522B CN111167522B (zh) 2021-10-22

Family

ID=70620345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911411473.XA Active CN111167522B (zh) 2019-12-31 2019-12-31 超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111167522B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540390A (zh) * 2021-06-29 2021-10-22 哈尔滨工业大学 一种锌离子电池金属锌负极动态界面涂层的制备方法及其应用
CN114832803A (zh) * 2022-04-08 2022-08-02 重庆城市综合交通枢纽(集团)有限公司 成膜组合物及其制备方法和复合光催化剂的用途
CN114989609A (zh) * 2022-05-19 2022-09-02 同济大学 一种可用于低频相干完美吸声的柔性复合薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159129A (zh) * 2017-05-22 2017-09-15 江苏大学 一种pdms构筑超疏水三聚氰胺海绵碳材料的一步制备法及用途
CN108854968A (zh) * 2018-06-15 2018-11-23 同济大学 一种弹性可重复吸油密胺海绵及其制备方法
CN109701582A (zh) * 2019-02-19 2019-05-03 上海师范大学 一种泡沫状可见光催化材料、制备方法及其用途
CN110105917A (zh) * 2019-04-28 2019-08-09 深圳大学 一种光热复合材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159129A (zh) * 2017-05-22 2017-09-15 江苏大学 一种pdms构筑超疏水三聚氰胺海绵碳材料的一步制备法及用途
CN108854968A (zh) * 2018-06-15 2018-11-23 同济大学 一种弹性可重复吸油密胺海绵及其制备方法
CN109701582A (zh) * 2019-02-19 2019-05-03 上海师范大学 一种泡沫状可见光催化材料、制备方法及其用途
CN110105917A (zh) * 2019-04-28 2019-08-09 深圳大学 一种光热复合材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAN SHUAI,ET AL: ""A superhydrophobic poly(dimethylsiloxane)-TiO2 coated polyurethane sponge for selective absorption of oil from water"", 《MATERIALS CHEMISTRY AND PHYSICS》 *
王峰: ""三维多孔碳海绵和氮化碳超滤膜制备及处理印染废水研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540390A (zh) * 2021-06-29 2021-10-22 哈尔滨工业大学 一种锌离子电池金属锌负极动态界面涂层的制备方法及其应用
CN113540390B (zh) * 2021-06-29 2022-04-01 哈尔滨工业大学 一种锌离子电池金属锌负极动态界面涂层的制备方法及其应用
CN114832803A (zh) * 2022-04-08 2022-08-02 重庆城市综合交通枢纽(集团)有限公司 成膜组合物及其制备方法和复合光催化剂的用途
CN114832803B (zh) * 2022-04-08 2024-06-14 重庆城市综合交通枢纽(集团)有限公司 成膜组合物及其制备方法和复合光催化剂的用途
CN114989609A (zh) * 2022-05-19 2022-09-02 同济大学 一种可用于低频相干完美吸声的柔性复合薄膜及其制备方法
CN114989609B (zh) * 2022-05-19 2023-02-10 同济大学 一种可用于低频相干完美吸声的柔性复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN111167522B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN111167522B (zh) 超疏水CMF-TiO2-PDMS复合材料及其制备方法和应用
Hickman et al. TiO2-PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants
Han et al. Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar
Idrissi et al. Degradation of crystal violet by heterogeneous Fenton-like reaction using Fe/Clay catalyst with H2O2
CN109453679A (zh) 一种掺氮氧化石墨烯二氧化钛复合超滤膜的制备方法
CN101579622A (zh) 活性炭纤维负载纳米二氧化钛光催化网的制备方法
Silva et al. Carbon-modified titanium oxide materials for photocatalytic water and air decontamination
Ngoh et al. Fabrication and properties of an immobilized P25TiO2-montmorillonite bilayer system for the synergistic photocatalytic–adsorption removal of methylene blue
Wan et al. Ordered mesoporous carbon coating on cordierite: Synthesis and application as an efficient adsorbent
Nawi et al. Photoetching of Immobilized TiO2‐ENR50‐PVC Composite for Improved Photocatalytic Activity
Saqlain et al. Enhanced removal efficiency of toluene over activated carbon under visible light
CN108854968B (zh) 一种弹性可重复吸油密胺海绵及其制备方法
Singh et al. Enhanced dye adsorption and rapid photo catalysis in candle soot coated Bi2WO6 ceramics
Xue et al. Super‐Wetting Porous g‐C3N4 Nanosheets Coated PVDF Membrane for Emulsified Oil/Water Separation and Aqueous Organic Pollutant Elimination
CN106582611A (zh) 一种有机污染物光降解催化剂的制备方法
CN115970520B (zh) 一种蛾眼结构仿生光催化自清洁油水分离膜的制备方法
CN115121232B (zh) 一种二氧化钛自清洁膜及其制备方法与应用
Lu et al. High-efficiency phenol removal by novel biomass-based alginate composite hydrogel
Ramamoorthy et al. Photocatalytic degradation of textile reactive dyes—A comparative study using nano silver decorated titania-silica composite photocatalysts
Tian et al. Preparation of βCD‐AC functionalized ZnO/ZnSe for photocatalytic degradation of organic dye wastewater
Sharma et al. Efficient cationic dye removal from water through Arachis hypogaea skin-derived carbon nanospheres: a rapid and sustainable approach
Sadegh Hassani et al. Comparable study of 4-chlorophenol removal from petrochemical wastewater using mesoporous and microporous carbons: Equilibrium and kinetics investigations
Surendra et al. Acid activation of bentonite clay under microwave irradiation: Characterization, cyclic voltammetry and photocatalytic activity
KR100615515B1 (ko) 광촉매의 고정화 방법 및 이 방법을 이용한 광촉매 흡착제
CN111036308A (zh) 一种光催化材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230911

Address after: 226000, Group 12, Yaodunba Village, Yongxing Street, Chongchuan District, Nantong City, Jiangsu Province-

Patentee after: Baoneng Environmental Technology Nantong Co.,Ltd.

Address before: 266042 Zhengzhou Road, Shibei District, Qingdao, Shandong 53

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY