CN111162362B - Double-ridge substrate integrated waveguide broadband magic T - Google Patents

Double-ridge substrate integrated waveguide broadband magic T Download PDF

Info

Publication number
CN111162362B
CN111162362B CN201911372362.2A CN201911372362A CN111162362B CN 111162362 B CN111162362 B CN 111162362B CN 201911372362 A CN201911372362 A CN 201911372362A CN 111162362 B CN111162362 B CN 111162362B
Authority
CN
China
Prior art keywords
layer
copper
sheet layer
microwave dielectric
copper sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911372362.2A
Other languages
Chinese (zh)
Other versions
CN111162362A (en
Inventor
凌天庆
居军
林维涛
孙红兵
崔文耀
王佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 14 Research Institute
Original Assignee
CETC 14 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 14 Research Institute filed Critical CETC 14 Research Institute
Priority to CN201911372362.2A priority Critical patent/CN111162362B/en
Publication of CN111162362A publication Critical patent/CN111162362A/en
Application granted granted Critical
Publication of CN111162362B publication Critical patent/CN111162362B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/20Magic-T junctions

Landscapes

  • Waveguides (AREA)

Abstract

The invention discloses a multilayer circuit of a double-ridge waveguide broadband magic T, wherein five layers are interconnected through metallized holes to form a substrate integrated waveguide, a first layer and a second layer and a fourth layer and a fifth layer are interconnected through metallized holes to form a double ridge of the substrate integrated waveguide, the second layer comprises an input and output microstrip port in gradual change line transition, the fourth layer comprises another input port, and the third layer realizes the output of a strip line through step change or gradual change line transition. Compared with the waveguide magic T, the waveguide magic T has small size and light weight, is beneficial to integration, has wider bandwidth compared with micro-strips and strip line magic T, further improves the integration level of the comprehensive network of the array surface, widens the working frequency band, and realizes the miniaturization and the light weight of the array surface.

Description

Double-ridge substrate integrated waveguide broadband magic T
Technical Field
The invention belongs to the technical field of microwave antennas, and particularly relates to a design of an integrated broadband magic T.
Background
With the continuous improvement of the radar working bandwidth, the bandwidths of various devices of a radar feeder system also need to be widened, and the working frequency band also needs to be widened as an important component and a difference network for beam forming. The magic T is a core device of a sum-difference network, the design of the broadband magic T is mainly realized in a ridge waveguide mode, the size is large, the weight is heavy, and the working bandwidth of the magic T designed by microstrip lines and strip lines is narrow.
By utilizing the integrated design of the multilayer board technology, the bandwidth of the integrated hybrid multi-beam hybrid network can be widened, the size is reduced, the weight is reduced, the working bandwidth of the hybrid multi-beam hybrid network is widened, the integrated design of the hybrid multi-beam hybrid network is realized, and the design requirements of wide bandwidth, light weight and miniaturization of the array surface comprehensive network are met.
Disclosure of Invention
The invention provides a double-ridge substrate integrated waveguide broadband magic T for solving the problems in the prior art, and adopts the following technical scheme for achieving the purpose.
The broadband magic T comprises: copper cortex, microwave dielectric slab, metallization hole, the copper cortex is the rectangle, has the gradual change line, and copper cortex and microwave dielectric slab form through integrated design manufacturing, and the metallization hole is arranged into certain interval and shape according to certain diameter, and the copper cortex is connected to the metallization hole.
The copper sheet and the microwave dielectric plate include: the microwave dielectric plate comprises a first copper sheet layer, a second copper sheet layer, a third copper sheet layer, a fourth copper sheet layer, a fifth copper sheet layer, a first microwave dielectric plate, a second microwave dielectric plate, a third microwave dielectric plate and a fourth microwave dielectric plate, wherein the first microwave dielectric plate is arranged between the first copper sheet layer and the second copper sheet layer, the second microwave dielectric plate is arranged between the second copper sheet layer and the third copper sheet layer, the third microwave dielectric plate is arranged between the third copper sheet layer and the fourth copper sheet layer, and the fourth microwave dielectric plate is arranged between the fourth copper sheet layer and the fifth copper sheet layer.
The metallized hole includes: the first metallization hole is connected with the first copper layer and the second copper layer, the second metallization hole is connected with the first copper layer and the third copper layer, the third metallization hole is connected with the fourth copper layer and the fifth copper layer, and the fourth metallization hole is connected with the first copper layer, the second copper layer, the fourth copper layer and the fifth copper layer.
Copper is spread to first copper skin layer large tracts of land, adopt coaxial interconnect as external interface, the impedance matching of second copper skin layer adoption gradual change line as input-output, the limit that adopts the rectangle is as the limit of a spine, the impedance matching of third copper skin layer adoption gradual change line or multistage ladder transform as the beam transmission, the stripline is connected to perpendicular transition hole and is realized signal surface output, fourth copper skin layer adopts the gradual change line as the impedance matching of input, the limit that adopts the rectangle is as the limit of another spine, contain another input port, the fifth copper skin layer, adopt the large tracts of land to spread the copper as shielding ground connection.
The first metalized holes and the third metalized holes are arranged in two rows and used as the edges of the ridges to form double ridges of the substrate integrated waveguide, and the fourth metalized holes are arranged in two rows and a circle.
The invention realizes the functions of broadband and difference, adopts multilayer microwave plates to integrate design by hot pressing or co-firing, widens the working frequency band, ensures the broadband of sum-beam signals by multistage impedance conversion, widens the working frequency bands of all channels, realizes high reliability, has the same thermal expansion coefficient of all materials, does not generate layering, is an integral product, improves the reliability of the product, realizes easy integration, belongs to a planar circuit, is easy to integrate and manufacture with other planar circuits, realizes light weight, adopts multilayer printed board integration lamination, avoids various interconnection structure accessories adopted in conventional integration, and reduces the integral weight.
Drawings
Fig. 1 is a perspective view of the present invention, fig. 2 is a side view of the present invention, fig. 3 is a first copper layer, fig. 4 is a second copper layer, fig. 5 is a third copper layer, fig. 6 is a fourth copper layer, fig. 7 is a fifth copper layer, fig. 8 is a first plated hole, fig. 9 is a second plated hole, fig. 10 is a third plated hole, and fig. 11 is a fourth plated hole.
The reference numbers are: 21-a first copper layer, 22-a second copper layer, 23-a third copper layer, 24-a fourth copper layer, 25-a fifth copper layer, 31-a first microwave dielectric plate, 32-a second microwave dielectric plate, 33-a third microwave dielectric plate, 34-a fourth microwave dielectric plate, 41-a first metalized hole, 42-a second metalized hole, 43-a third metalized hole and 44-a fourth metalized hole.
Detailed Description
The technical scheme of the invention is specifically explained in the following by combining the attached drawings.
An integral structure of a double-ridge substrate integrated waveguide broadband magic T is shown in figure 1, and is manufactured by integrally designing five layers of copper skins and four layers of microwave dielectric plates through high-temperature hot pressing or co-firing, prepreg hot pressing or co-firing aiming at ceramic materials, wherein the layers are interconnected through metallized holes, and the transmission of signals among different layers is realized through the metallized holes, so that the substrate integrated waveguide is formed.
The copper sheet layer and the microwave dielectric plate are spaced from each other, as shown in fig. 2, from top to bottom, the copper sheet layer comprises 21-a first copper sheet layer, 31-a first microwave dielectric plate, 22-a second copper sheet layer, 32-a second microwave dielectric plate, 23-a third copper sheet layer, 33-a third microwave dielectric plate, 24-a fourth copper sheet layer, 34-a fourth microwave dielectric plate, 25-a fifth copper sheet layer, 41-a first metallized hole penetrates through 21-the first copper sheet layer, 31-the first microwave dielectric plate, 22-a second copper sheet layer to connect 21-the first copper sheet layer and 22-the second copper sheet layer, 42-a second metallized hole penetrates through 21-the first copper sheet layer, 31-the first microwave dielectric plate, 22-the second copper sheet layer, 32-the second microwave dielectric plate, 23-a third copper sheet layer, connecting 21-a first copper layer and 23-a third copper layer, wherein 43-a third metallized hole penetrates through 24-a fourth copper layer, 34-a fourth microwave dielectric slab and 25-a fifth copper layer, connecting 24-the fourth copper layer and 25-the fifth copper layer, and 44-a fourth metallized hole penetrates through all the copper layers and the microwave dielectric slab, and connecting 21-the first copper layer, 22-the second copper layer, 24-the fourth copper layer and 25-the fifth copper layer.
A first copper sheath, shown in fig. 3, is extensively copper clad and interconnected to the output connector through a coaxial hole in the surface.
The second copper layer, as shown in fig. 4, implements impedance matching of the input and output signals through a gradient line, and implements the edge of one of the ridges by using a rectangular copper layer.
The third copper layer, as shown in fig. 5, achieves impedance matching and broadband characteristics with respect to beam signal transmission through multi-step transformation or a gradual change.
The fourth copper layer, as shown in fig. 6, implements impedance matching of the input signal through a gradient line, and implements an edge of another ridge using a rectangular copper layer, and further includes another input port.
And a fifth copper layer, as shown in fig. 7, is used for realizing shielding grounding of signals by laying the copper layer in a large area.
The first metalized holes are arranged in two rows according to a certain diameter and a certain distance as shown in fig. 8, and the first copper layer and the second copper layer are connected to form an end ridge, so that the forming of the wide-side direction ridge of the substrate integrated waveguide is realized.
The second metallized hole, as shown in fig. 9, connects the first copper layer and the third copper layer according to a certain diameter, so as to realize the vertical transition from the inside to the surface layer of the substrate integrated waveguide and the beam signal.
The third metalized holes are arranged in two rows according to a certain diameter and a certain distance as shown in fig. 10, and the fourth copper skin layer and the fifth copper skin layer are connected to form the ridge at the other end, so that the formation of the ridge at the other broadside direction of the substrate integrated waveguide is realized.
As shown in fig. 11, the fourth metalized holes are arranged in two rows according to a certain diameter and a certain distance to form the substrate integrated waveguide, and are arranged in a circle to realize vertical transition grounding with the beam, so as to realize the formation of the substrate integrated waveguide and the shielding of the beam signal.
The above-described embodiments are not intended to limit the present invention, and any modifications, equivalents, improvements, etc. made within the spirit and principle of the present invention are included in the scope of the present invention.

Claims (3)

1. A double-ridge substrate integrated waveguide broadband magic T comprises: the microwave dielectric board comprises a copper sheet layer, a microwave dielectric board and metallization holes, wherein the copper sheet layer is rectangular and has a gradient line;
the copper sheet layer comprises a first copper sheet layer, a second copper sheet layer, a third copper sheet layer, a fourth copper sheet layer and a fifth copper sheet layer, the microwave dielectric plate comprises a first microwave dielectric plate, a second microwave dielectric plate, a third microwave dielectric plate and a fourth microwave dielectric plate, the first microwave dielectric plate is arranged between the first copper sheet layer and the second copper sheet layer, the second microwave dielectric plate is arranged between the second copper sheet layer and the third copper sheet layer, the third microwave dielectric plate is arranged between the third copper sheet layer and the fourth copper sheet layer, and the fourth microwave dielectric plate is arranged between the fourth copper sheet layer and the fifth copper sheet layer;
the metallized holes comprise a first metallized hole, a second metallized hole, a third metallized hole and a fourth metallized hole, the first metallized hole is connected with the first copper layer and the second copper layer, the second metallized hole is connected with the first copper layer and the third copper layer, the third metallized hole is connected with the fourth copper layer and the fifth copper layer, and the fourth metallized hole is connected with the first copper layer, the second copper layer, the fourth copper layer and the fifth copper layer;
the first copper layer is paved with copper in a large area, and coaxial interconnection is adopted as an external interface;
a fifth copper layer, which adopts large-area copper paving as shielding grounding;
it is characterized by comprising:
the second copper layer adopts a gradient line as the impedance matching of input and output, and adopts the edge of a rectangle as the edge of a ridge;
the third copper layer adopts gradual change line or multi-stage step transformation as impedance matching of beam transmission;
and the fourth copper layer adopts the gradient line as the input impedance matching and adopts the rectangular side as the ridge side.
2. The double-ridged-substrate-integrated-waveguide broadband magic T according to claim 1, wherein said first and third metallized holes are arranged in two rows as the sides of the ridge.
3. The double-ridged-substrate-integrated-waveguide broadband magic T according to claim 1, wherein said fourth metallized holes are arranged in two rows and a circle.
CN201911372362.2A 2019-12-27 2019-12-27 Double-ridge substrate integrated waveguide broadband magic T Active CN111162362B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911372362.2A CN111162362B (en) 2019-12-27 2019-12-27 Double-ridge substrate integrated waveguide broadband magic T

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911372362.2A CN111162362B (en) 2019-12-27 2019-12-27 Double-ridge substrate integrated waveguide broadband magic T

Publications (2)

Publication Number Publication Date
CN111162362A CN111162362A (en) 2020-05-15
CN111162362B true CN111162362B (en) 2021-10-01

Family

ID=70556937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911372362.2A Active CN111162362B (en) 2019-12-27 2019-12-27 Double-ridge substrate integrated waveguide broadband magic T

Country Status (1)

Country Link
CN (1) CN111162362B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331934A (en) * 2017-07-02 2017-11-07 中国航空工业集团公司雷华电子技术研究所 A kind of ultra wide band combiner network and its processing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273151A (en) * 2009-05-22 2010-12-02 Furuno Electric Co Ltd Mode converter, power synthesizer/distributor and plane magic t
CN105024129B (en) * 2015-07-21 2017-08-25 南京邮电大学 Planar Magic-T based on folded form substrate integration wave-guide
CN106711568A (en) * 2016-11-24 2017-05-24 南京邮电大学 Planar magic T based on substrate integration technology
CN206490161U (en) * 2016-12-08 2017-09-12 江苏贝孚德通讯科技股份有限公司 A kind of novel planar waveguide magic T
EP3695456B1 (en) * 2017-10-13 2023-07-26 Commscope Technologies LLC Power couplers and related devices having antenna element power absorbers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331934A (en) * 2017-07-02 2017-11-07 中国航空工业集团公司雷华电子技术研究所 A kind of ultra wide band combiner network and its processing method

Also Published As

Publication number Publication date
CN111162362A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
CN109616759A (en) Full duplex active phased array filter antenna front
CN107240770B (en) A kind of periodic spatial wave resistance gear decoupling arrangements for micro-strip antenna array
CN107546453B (en) Medium guided wave structure and medium guided wave transmission system
CN110021805B (en) Three-dimensional transition structure based on air gap waveguide in complex feed network
CN108258404A (en) A kind of plane dipole antenna with low rejection characteristic
US20040145426A1 (en) Waveguide to laminated waveguide transition and methodology
US8106721B2 (en) Multilayer complementary-conducting-strip transmission line structure with plural interlaced signal lines and mesh ground planes
CN110212273B (en) Dual-band duplexer based on substrate integrated waveguide
CN110544812B (en) Substrate integrated dielectric resonator and antenna
CN103414004B (en) A kind of 0-dB directional coupler based on multilayer technique
CN111262025A (en) Integrated substrate gap waveguide beam scanning leaky-wave antenna
CN110311201A (en) A kind of reversed-phase power combiner
CN111162362B (en) Double-ridge substrate integrated waveguide broadband magic T
CN110611144B (en) Miniaturized broadband forward wave directional coupler unit circuit
CN110752430B (en) Miniaturized slow-wave half-mode substrate integrated waveguide E-plane coupler
CN110534920B (en) Flexible butler feed network
CN109585994B (en) Miniature double-layer half-mode substrate integrated waveguide six-port device
CN218770134U (en) Radio frequency device and electronic equipment
CN218498367U (en) Ultra-wideband long-slit coupling series monitoring network
CN111162357B (en) Multi-layer dual-passband miniature filter based on double-layer substrate integrated waveguide
CN114639954A (en) Feed structure of broadband coplanar waveguide ridge waveguide
CN112018481B (en) Miniaturized integrated microwave power divider with asymmetric near-metal grating transmission line
CN113690603A (en) Millimeter wave antenna
CN111244619A (en) Patch array antenna based on air substrate integrated waveguide
CN111326835B (en) Three-dimensional stacked SIW duplexer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant